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linear transforms such as the DCT, in an optimal manner. The problem is important in real-time systems where the computational
resources available are time-dependent. Our approach is generic and applies to any linear transform and we use the DCT as
a specific example. There are three key ideas: (a) a joint transform pruning and Haar basis projection-based approximation
technique. The idea is to save computations by factoring the DCT transform into signal-independent and signal-dependent parts.
The signal-dependent calculation is done in real-time and combined with the stored signal-independent part, saving calculations.
(b) We propose the idea of the complexity-distortion framework and present an algorithm to efficiently estimate the complexity
distortion function and search for optimal transform approximation using several approximation candidate sets. We also propose
a measure to select the optimal approximation candidate set, and (c) an adaptive approximation framework in which the operating
points on the C-D curve are embedded in the metadata. We also present a framework to perform adaptive approximation in real
time for changing computational resources by using the embedded metadata. Our results validate our theoretical approach by
showing that we can reduce transform computational complexity significantly while minimizing distortion.
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1. INTRODUCTION

This paper presents a novel framework for developing
linear transform approximations that adapt to changing
computational resources. The problem is important since in
real-time multimedia systems, the computational resources
available to content analysis algorithms are not fixed and
can also vary with time (Figure 1). A generic computationally
scalable framework for content analysis would be very useful.
The problem is made difficult by the observation that the
relationship between computational resources and distortion
depends on the specific content. The desired approximation
framework should provide a set of approximations that
significantly decreases the computational complexity while
introducing small errors. Such framework would be very
useful for low-power hand-held devices or wireless sensor
devices since power consumption is affected by the number
of CPU cycles. Hence decreasing computational complexity

(CPU cycles) while minimally affecting distortion would be
a useful strategy to conserve power.

1.1. Relatedwork

There has been prior work on fast computation for exact
transform. Fast, recursive DCT algorithm based on the sparse
factorizations of the DCT matrix is proposed in [1–3].
Besides, 1D algorithms, two-dimensional DCT algorithms
have also been investigated in [4–7]. The theoretical lower
bound on the number of multiplications required for the
eight point 1-D DCT has been proven to be 11 [8, 9] and
the Loeffler’s method [10] with 11 multiplications and 29
additions is the most efficient solution. The energy tradeoffs
for DSP-based implementation of IntDCT was proposed in
[11].

There has been prior work on hardware-adaptive optimal
implementation of linear digital signal processing (DSP)
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Figure 1: Computational complexity for fixed and adaptive
transforms (e.g., video decoding algorithm that adapts to changing
computational resources). During the time between t1 and t2, the
available resources for video player are less than the computational
complexity needed for video decoding and rendering. This can
either result in a delay or a frame drop.

transforms. SPIRAL [12] automatically generates high-
performance code that is tuned to the given platform for
a specified transform. ATLAS [13, 14] is a well-known
linear algebra library and generates platform-optimized
BLAS routines by searching over different blocking strategies,
operation schedules, and degrees of unrolling. We note that
both fast DCT calculation and hardware adaptation are
exact transform implementations. Our proposed research is
complementary to these approaches and will take advantage
of prior research.

The DCT approximations based on pruning techniques
have been well studied. The pruning techniques save compu-
tations by removing the operations on the input coefficients
that equal to zero and removing the operations on the output
coefficients that have small energy. Only a subset of output
coefficients that have higher energy is computed and the
rest output coefficients are set to zero directly. In [15–17],
several fast 1-D FFT pruning techniques are proposed. The
2-D FFT pruning method is presented in [18]. It saves more
computation compared to the row-column pruning method
for 2-D FFT. In [19, 20], the authors propose algorithms
for pruning 1-D DCT. The 2-D DCT pruning algorithms
that are more efficient than row-column pruning method are
presented in [21, 22].

There has been prior work on adaptation in multimedia
applications. Part 7 of the MPEG-21 standard, entitled digital
item adaptation (DIA), has specified a set of description
tools for adapting multimedia based on the user charac-
teristics, terminal capabilities, network characteristics, and
natural environment characteristics [23, 24]. The system-
specific complexity or power optimization have already
been thoroughly studied for different multimedia codecs
[25–30]. The computational efficient transforms in video
coding was proposed in [31, 32]. A number of complexity-
scalable coders [33–38] have been proposed to perform
real-time coding/decoding under different computational
complexity. In more theoretical work [39], the authors look

at properties of approximate transform formalisms and [40]
look at relationship between Kolmogorov complexity and
distortion.

However, several issues remain: (a) while there has been
some success in complexity scalable decoders, there are
no formal generic adaptation strategies to guide us for
other content analysis applications, (b) given a specific
transform (say DCT) approximation and distortion, there is
no framework that enables us to systematically change the
approximation in real-time to take advantage of additional
computational resources to minimize distortion.

1.2. Our approach

In this paper, we build upon earlier results [41, 42] to develop
a novel framework to systematically trade off computational
complexity with output distortion, in linear transform
approximation, in an optimal manner. We address three
problems (shown in Figure 2) in this paper.

(i) estimate the optimal linear transform approximation
for single input for different computational resources
with minimum distortion. We address this problem
by showing that a transform can be efficiently
factored into two parts—a signal-dependent and a
signal-independent calculation. We will use basis
projection, pruning and joint pruning, and basis
approximation schemes;

(ii) estimate the optimal linear transform approxima-
tion for input set for different overall compu-
tational resources with minimum distortion. We
solve this problem by introducing the formalism of
a complexity-distortion function using ideas from
rate-distortion theory. We then show how approxi-
mate this function using an approximate candidate
set. Finally, we will present a fast algorithm to
transform each input element with an approximation
operator, such that we satisfy the computational com-
plexity requirements while minimizing distortion;

(iii) perform the real-time optimal approximation for
input set that adapts to the available computational
resources. We will show how to compute and embed
metadata in the image as well as show a decoding
algorithm to allow for adaptive approximation. The
metadata is embedded by the encoder and the
complexity adaptation is done at the decoder.

We have tested our approximation ideas on a widely
used linear transform—the DCT. We have used the Haar
wavelet basis projection to approximate the transforms
and combine it with DCT pruning approximation. Our
experimental results on the Lena image are excellent. They
show that (a) the joint approximation that combines basis
projection and pruning has better results (i.e., better tradeoff
of computational complexity and distortion) than using
basis projection or pruning alone. (b) Our fast algorithm
works well for estimating conditional complexity distortion
function (CCDF). The estimation result is close to the exact
CCDF. The relative error is 0.039%. (c) We finally show
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the relationship between the metadata size and introduced
distortion.

This submission is our first comprehensive submission
on this subject, and includes several new theoretical and
experimental results as well as detailed algorithms. In
particular, there are several key innovations over prior work
[41, 42].

(1) DCT approximation: we focus on a joint pruning-
basis projection approximation strategy for the DCT
in this paper—the prior work focused on FFT
approximation using basis projection. This is an
important difference as we exploit the unique spectral
structure of the DCT for transform-based pruning in
our approximation framework.

(2) New joint pruning-projection approximation strategy:
we improve the basis projection approximation algo-
rithms in earlier work by joint approximation that
combines basis projection and pruning. This is a sig-
nificant improvement, as it significantly extends the
earlier theoretical framework using basis projection
alone. Importantly, it reveals that incorporating the
spectral characteristics of the transform can provide
significant gains to approximation. In experiment
results, we can clearly see that the complexity
distortion curve drops down after combining basis
projection and pruning approximation.

(3) New theoretical proof and detailed algorithms: real-
time adaptive approximation. We show new theoreti-
cal proofs for operating point selection. We provide
detailed algorithms for metadata embedding and
decoding.

(4) New experimental results: we discuss how to construct
approximation candidate set for each approximation
technique in detail. We compare three different
approximation techniques (basis projection, prun-
ing, and joint approximation that combines basis
projection and pruning) in terms of conditional
complexity distortion function. The experimental
results show that the joint approximation has less
distortion for the same computational complexity.
We show the relationship between the metadata size
and sampling distortion.

This paper is organized as follows. In Section 2, we
define the notations that are used in this paper. In Section 3,
we define the optimal approximation for single input and
propose three approximation techniques. We apply the
three approximation techniques on the DCT and analyze
the computational complexity of the approximations in
Section 4. In Section 5, we define the optimal approximation
for input set and estimate the optimal approximation by
using conditional approximation algorithm. In Section 6,
we define complexity distortion function and conditional
complexity distortion function (CCDF) for linear trans-
form approximation on input set. We also present a fast
algorithm to estimate conditional complexity distortion
function (CCDF) and propose how to find the conditional

Table 1: Notations with light background are related to single input
(e.g., image block). Notations with dark background are related to
input set (e.g., entire image).

Notation Explanation

x Single input (e.g., image block)

T Linear transform operator (e.g., DCT)
˜T Approximate transform operator for a single input

Tx Result of exact transform for a single input x

˜Tx
Result of approximation transform for a single input
x

C(T)
Computational complexity of the linear transform T
for single input (number of operations)

C( ˜T)
Computational complexity of the approximate trans-
form ˜T for a single input (number of operations)

X
A set of inputs (X = {xi}, i = 1, . . . ,N), where xi is an
element of the input set X (e.g., image)

N Number of elements in input set X. |X| = N

T

Linear transform set operator (e.g., DCT) T = {Ti |
Ti = T , i = 1, . . . ,N}. Each element Ti is the
linear transform operator for the corresponding
input element xi. All elements are identical (exact
transform T)

˜T
Approximate transform set for an input set (˜T = { ˜Ti |
i = 1, . . . ,N}). Each element ˜Ti is the approximation
operator for the corresponding input element xi

TX
Result of exact transform for input set X (TX =
{Txi})

˜TX
Result of approximation transform for input set X
(˜TX = { ˜Tixi})

C(T)
Computational complexity of the linear transform set
T for input set (number of operations)

C(˜T)
Computational complexity of the approximate trans-
form set ˜T or input set (number of operations)

approximation based on estimated CCDF. We discuss how
to encode and decode metadata for resource adaptive
approximations in real time in Section 7. We show the
experimental results in Section 8 and conclude the paper in
Section 9.

2. PRELIMINARIES

In this section, we define the notations that are used in the
rest of this paper. Table 1 shows a list of notations and their
meanings. We separate notations into two categories:

(1) notations related to approximate transform for single
input (e.g., DCT approximation for an image block);

(2) notations related to approximate transform for input
set (e.g., DCT approximation for entire image).

The computational complexity of the exact transform
set T and the computation complexity of the approximate
transform set ˜T for any input set X—(i.e., C(T) and C(˜T))
are defined as the average number of operations per input
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element to compute TX and ˜TX for any input set X:

C(T) � 1
N

N
∑

i=1

C
(

Ti
) = C(T), C(˜T) � 1

N

N
∑

i=1

C
(

˜Ti
)

,

(1)

where N is the number of elements in input set X (i.e., |X| =
N), since all elements in exact transform set T are identical
(i.e., exact DCT operator T), the average operation number
of exact transform set T equals the operation number of the
DCT operator T (i.e., C(T) = C(T)). We use the definition
involving the average in (1), as it allows us to analyze the
input independent of the input resolution.

Note that in this paper, when we refer to complexity, it is
computational complexity of the transform. We will assume
that a single real addition, subtraction, or multiplication uses
equivalent computing costs and they are all considered to
cost one operation. This is also true for some of the DSP
chips. The case when the costs are different is easily handled
by using appropriate weights in the calculations.

3. TRANSFORMAPPROXIMATION FOR SINGLE INPUT

In this section, we will discuss the transform approximation
for single input. First, we define the optimal transform
approximation for single input x and then discuss our
approximation approach.

3.1. Problem statement

The optimal approximate transform ˜T∗x (C) for the single
input x for desired exact transform T for available compu-
tational resource C is defined as follows:

˜T∗x (C) � arg min
˜T :C( ˜T)≤C

d(Tx, ˜Tx), (2)

where d(·) is the standard Euclidean metric. The equation
indicates that the optimal approximate transform ˜T∗x (C)
minimizes output distortion while satisfying computational
complexity constraints C. In the rest of this section, without
loss of generality, we will assume that x is an M × 1
dimensional vector and that the exact transform T and
approximate transform ˜T are both M × M matrices. The
matrix Bk is an M × k matrix with only k orthogonal column
vectors.

3.2. Our approach

We now propose three techniques for linear transform
approximation for single input: (a) basis projection approx-
imation, (b) pruning, and (c) joint approximation that
combines basis projection and pruning.

3.2.1. Basis projection approximation

The main idea in our basis projection approximation
algorithm for the single input involves dimensionality reduc-

tion. The approximate transform based on basis projection
approximation can be represented as follows:

˜Tx = TBkB
T
k x. (3)

This decomposition allows us to compute ˜Tx into two steps:
(a) project x onto Bk: (i.e., BT

k x), then (b) project the
result onto TBk. The significant advantage is that TBk is
independent of the input, and can be precomputed and stored
offline. We only need compute BT

k x and combine with the
stored TBk matrix during real-time computation (Figure 3).

3.2.2. Pruning

The key idea of a pruning algorithm [19, 20] is that we
remove the calculations in the exact transform that are only
related to the output coefficients with small energy (close to
zero).

The pruning operator P is an M × M diagonal matrix
defined as follows:

P = diag
(

λ1, λ2, . . . , λM
)

λi =
⎧

⎨

⎩

1, if the ith coefficient of Tx is computed,

0, otherwise.

(4)

If the ith coefficient of transform result Tx is computed,
P(i, i) equals 1, otherwise P(i, i) equals 0. The approximation
operator ˜T is the product of T and P.

3.2.3. Joint approximation—combination of
basis projection and pruning

The combination (Figure 4) of basis projection and prun-
ing can further reduce the computational complexity for
approximating the input. The joint approximation can be
represented as follows:

˜Tx = PTBkB
T
k x. (5)

Compared to basis projection approximation (3), joint
approximation saves more calculations in the second pro-
jection (PTBk). This is because that pruning operator P is
a diagonal matrix with diagonal coefficients equal to 1 or 0.
Hence PTBk has more zero coefficients than TBk thus saving
calculations.

In Section 4, we will discuss how to apply these three
approximation techniques on a DCT for single input (8 ×
8 image block).

4. DCT APPROXIMATION FOR IMAGE BLOCK

In this section, we show how the three approximation
techniques (discussed in Section 3) can be applied on the 2D
DCT for an 8 × 8 image block. We will specifically show the
effect of using Haar wavelet basis projection, pruning, and
joint approximation using basis projection and pruning.

The DCT for 8 × 8 image block can be represented
as a 64 × 64 real matrix. The exact 2D DCT has a fixed
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Figure 2: Three problems addressed in this paper: (1) estimation of optimal approximation for single input, (2) estimation of optimal
transform approximation for input set, and (3) real-time adaptive approximation framework through selecting operating points on the
conditional complexity distortion function.
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T
k
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Figure 3: Basis projection approximation for single input.

Approximate transform operator: ˜T = PTBkB
T
k

Project x onto Bk Project BT
k x onto PTBk

x BT
k

BT
k x Bk T P PTBkB

T
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PTBk is input independent
and computed offline

Figure 4: Diagram of joint approximation (combination of basis
projection approximation and pruning).

computational complexity. The algorithm proposed in [43]
makes possible the calculation of an eight point 1D DCT
using just 29 additions and 5 multiplications. Thus just total
544 operations (464 additions and 80 multiplications) are
needed for the 2D DCT calculation of one 8× 8 image block.
In this section, when we refer to the DCT, it is the scaled DCT
[43].

4.1. DCT approximation using Haar
wavelet basis projection

In this section, we present DCT approximation on 8 × 8
image block using Haar wavelet basis projection. The 2D
nonstandard Haar wavelet basis decomposition [44] for an
8 × 8 image block (i.e., x) can be represented as follows:

x′J = c0
0,0φφ

0
0,0 +

J−1
∑

j=0

2 j−1
∑

k=0

2 j−1
∑

l=0

(

d
j
k,lφψ

j
k,l + e

j
k,lψφ

j
k,l + f

j
k,lψψ

j
k,l

)

,

(6)

where x′J is the approximation of image block x using Haar
wavelet basis at the Jth resolution, c0

0,0 and φφ0
0,0 are the

scaling coefficient and scaling function, respectively, d
j
k,l

and φψ
j
k,l are the (k,l)th horizontal wavelet coefficient and

function at the (j + 1)th resolution, e
j
k,l and ψφ

j
k,l are the

(k,l)th vertical wavelet coefficient and function at the (j +

1)th resolution, f
j
k,l and ψψ

j
k,l are the (k,l)th diagonal wavelet

coefficient and function at the (j + 1)th resolution.
The 2D Haar wavelet basis can be easily represented using

basis matrix Bk. Bk is a 64× k matrix, each column is a vector
representation of basis. k equals 1, 4, and 16 at resolution
J = 0, 1 and 2, respectively. The higher-resolution basis set
includes the basis at the lower resolution. Since Haar wavelet
basis are orthogonal, the columns of Bk are orthogonal. We
do not consider resolution J = 3 because when J = 3 the Haar
wavelet basis is complete for 8 × 8 image block and the basis
projection approximation is equivalent to the exact DCT.

Table 2 shows the computational complexity of DCT
approximation using Haar wavelet basis projection. We can
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Table 2: Computational complexity (number of operations) of
DCT approximation using Haar wavelet basis projection.

Operation
Resolution

J = 0 J = 1 J = 2 Exact DCT

Projection onto Bk 63 68 88

Projection onto TBk 0 18 184

Total 63 86 272 544

0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 2 3 4 5 6 7

3 3 3 3 4 5 6 7
4 4 4 4 4 5 6 7

5 5 5 5 5 5 6 7
6 6 6 6 6 6 6 7
7 7 7 7 7 7 7 7

(a)

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14

(b)

Figure 5: Resolution indicator matrices for DCT pruning on an 8
× 8 image block.

see that as the resolution J increases, complexity of projection
of input x onto Haar wavelet basis Bk increases slowly while
the complexity of projection of BT

k x onto TBk increases fast.
This is because we can save computations in computing BT

k x
by reusing intermediate results.

4.2. DCT pruning

We now present a 2D DCT pruning approximation frame-
work using rectangle and triangle pruning. Figure 5(a) shows
the rectangle pattern of DCT coefficients in DCT approxi-
mation using rectangle pruning and Figure 5(b) shows the
triangle pattern of DCT coefficients in triangle pruning.

We classify the DCT coefficients into several pruning
resolutions based on frequency value for both the rectangle
pruning and the triangle pruning. Each coefficient is asso-
ciated with a resolution indicator. The resolution indicator
matrices of the rectangle pruning and the triangle pruning
are shown in Figures 5(a) and 5(b), respectively. There are
8 resolutions (J: 0–7) for the rectangle pruning and 15
resolutions (J: 0–14) for the triangle pruning. At resolution
J, only the coefficients with resolution number less than
or equal to J are computed and remaining coefficients are
set to zero. At the lowest resolution (J = 0), only the top
left coefficient (lowest frequency) is computed and at the
highest resolution all coefficients are computed, which is
equivalent to the exact DCT. We can define the rectangle
pruning operator and triangle pruning operator for the
DCT pruning. Both pruning operators can be represented
as 64 × 64 diagonal matrices. Figure 5 illustrates the matrix
representation of IR and IT in the DCT pruning.

In this paper, we use 1D DCT pruning techniques and
apply it on row and column separately. In the future, we will

14131211109876543210
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Figure 6: The figure shows the speedup of the approximate 2D
DCT under joint Haar projection (three resolutions, J = 0, 1, 2)
with triangular pruning when compared to the baseline, the exact
2D DCT (544 operations). The x axis shows the pruning resolution,
the y-axis shows the speedup.

use 2D DCT pruning which can be easily incorporated in our
framework.

4.3. Joint DCT approximation

We compute the joint DCT approximation through com-
bining Haar wavelet basis projection and the DCT pruning.
The combination yields significant savings when compared
to the baseline exact 2D DCT (544 operations). Figure 6
shows a plot of the speedup achieved when using the joint
DCT approximation combining triangle pruning and Haar
wavelet basis projection at three different Haar resolutions,
when compared to the baseline, exact DCT transform. The
speedup is just the ratio of the number of operations needed
for the exact 2D DCT (544 operations) to the number of
operations needed for the approximation.

Increasing the pruning resolution implies that more
coefficients in the triangular pruning matrix (Figure 5(b))
are nonzero. This is why the speedup decreases with increas-
ing pruning resolution. Similarly, when the Haar wavelet
resolution increases, speedup decreases as the number of
basis elements increases. The graph for the rectangular
pruning case has been omitted for the sake of brevity and
is similar to Figure 6.

In this section, we applied the three approximation
techniques (basis projection, pruning, and joint approximation
Section 3) on the 2D DCT for an 8 × 8 image block and
analyzed the computational complexity.

5. TRANSFORMAPPROXIMATION FOR INPUT SET

In this section, we define the technical problem of linear
transform approximation for input set and present our
approach. Let us explain the problem of approximation for
input set by an example. Let us assume that we need to
compute the DCT approximation for all 8 × 8 image blocks
of a given image. Each image block is a single input and
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the entire image is the input set. The problem is to select
proper approximation operator for each image block such
that the overall transform computational complexity satisfies
the resource complexity constraint and the overall distortion
is minimized. We will first define the optimal approximation
for input set and then propose our approach.

In this paper, we define the computational complexity
constraint C and the computational complexity and distor-
tion of approximation for input set in the sense of average
per input element. We use the definition involving the
average, as it allows us to analyze the input independent of
the input resolution. We acknowledge that the complexity
constraint, computational complexity and distortion can
also be defined in terms of summation over all input
elements in the input set. In the following of the paper, when
we refer to the computational complexity constraint C, the
computational complexity and distortion of approximation
for input set, they are all in the sense of average per input
element.

5.1. Optimal approximation for input set X = {xi}

We now define the optimal approximation for an input set:

the optimal approximation operators ˜T∗X(C) for
input set X = {xi}, for a linear transform T, for
a average computational complexity constraint C
is defined as a set of approximation operators (i.e.,
˜T∗X = { ˜Ti}) such that the average computation
complexity per input element satisfies the average
complexity constraint and the average distortion is
minimized.

Formally, the definition can be represented as follows:

˜T∗X(C) � arg min
˜T:˜T={ ˜Ti},C(˜T)≤C

1
N

N
∑

i=1

d
(

Txi, ˜Tixi
)

, (7)

where C(˜T) is the computational complexity of approxima-
tion set ˜T (1), xi is the ith element (e.g., image block) of
the input set X (e.g., entire image), ˜Ti is the ith element
in approximation set ˜T that indicates the approximation
operator for the input element xi and N is the cardinality
of the input set X (|X| = N). Note that, d(·) represents
the standard Euclidean metric. Note that, ˜Ti is an approx-
imation operator for a single input. The equation indicates
that the optimal approximation ˜T∗X has minimum average
output distortion while satisfying computational complexity
constraint C. The optimal approximation set ˜T∗X(C) is related
to the computational complexity constraint C and the input
set X. Furthermore, in (7), the optimization is over all
possible approximations to the operator T. Formally, this is
equivalent to the halting problem and hence not computable.
Note, however, with additional constraints (e.g., reduced
approximation space to a finite approximation set), we can
determine a conditional approximation. We will discuss the
conditional approximation in Section 6.

5.2. Our approach

We now propose our approach to estimate the optimal
approximation for input set X. The key idea is that we
reduce the dimension of approximation operator space by
constraining the approximate operator ˜Ti for every input
element xi to be in a finite approximation candidate set
Φ (i.e., ˜Ti ∈ Φ). Let us explain how to construct the
finite approximation candidate set Φ by an example. Let us
assume we compute the DCT approximation for all image
blocks using the Haar wavelet basis projection (Section 4.1).
Hence we have four options of DCT approximation for
every image block, that is, DCT approximation using
Haar wavelet basis projection at resolution J = 0, 1, 2
(denoted as ˜T0

H , ˜T1
H , ˜T2

H) and exact DCT operator T.
Therefore, we can use these four operators to construct Φ
= { ˜T0

H , ˜T1
H , ˜T2

H ,T}.
We now define the conditional approximation for input

set using finite approximation candidate set Φ:

the conditional approximation set ˜T∗X(C | Φ) for
an input set X = {xi}, for a linear transform T,
for an average complexity constraint C for a given
approximation candidate set Φ defined as a set
approximation operators such that:

(1) each element (i.e., ˜Ti) belongs toΦ;

(2) the average computation complexity satisfies the
average complexity constraint C;

(3) the average distortion is minimized.

Mathematically, the conditional approximation for input
set is defined as follows:

˜T∗X(C | Φ) � arg min
˜T: ˜Ti∈Φ,C(˜T)≤C

1
N

N
∑

i=1

d
(

Txi, ˜Tixi
)

. (8)

The equation indicates that every approximation operator
element in ˜T∗X(C | Φ) (i.e., ˜Ti) belongs to the approximation
candidate set Φ and the conditional approximation ˜T∗X(C |
Φ) has minimum average output distortion while satisfying
average computational complexity constraint C.

In Section 6, we will address the conditional approxima-
tion for input set X in detail by introducing the formalism of
the conditional complexity distortion function.

6. THE COMPLEXITY DISTORTION FUNCTION

In this section, we will propose a complexity distortion
framework to address the approximation for an input set X
for any complexity constraint C (8). We solve this problem
in three steps. First, we present a theoretical definition for
the complexity distortion function. Second, we show how
the complexity distortion function can be approximated
by specifying an approximation candidate set Φ. Finally,
we show an algorithm to select the optimal approximation
candidate set Φ∗ from multiple approximation candidate
sets.
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6.1. Definition

We now discuss the complexity distortion function for linear
transform approximation given an input set X. The problem
can be stated as follows: given an input set X = {xi} and
a distortion measure D, what is the minimum distortion
achievable at a specific computational complexity constraint?
Or, equivalently, what is the minimum computational com-
plexity required to achieve a particular distortion?

We use the well-established definitions from rate distor-
tion theory [45] to define the relationship between the com-
putational complexity and distortion. The computational
complexity of transform approximation set C(˜T) is defined
in (1). We now define the distortion due to the transform
approximation as follows.

Definition 1. The distortion DX(˜T) due to a transform ap-
proximation set ˜T = { ˜Ti} for a transform T on an input set
X = {xi} is defined as follows:

DX(˜T) = 1
N

N
∑

i=1

Dxi

(

˜Ti
) = 1

N

N
∑

i=1

d
(

Txi, ˜Tixi
)

, (9)

where X is a set of inputs (X = {xi}, i = 1, . . . ,N), xi is
the ith element of the input set X, N is the cardinality of
the input set, ˜T is an approximation set (˜T = { ˜Ti}, i =
1, . . . ,N), each element ˜Ti is the approximation operator for
the corresponding input xi, Dxi( ˜Ti) is the distortion due to
the approximation ˜Ti for the ith element of the input set (i.e.,
xi), and d(·) is the distortion measure. In this paper, d(·) is
the standard Euclidean norm.

Definition 2. The complexity distortion region is the closure of
the set of achievable complexity distortion pairs (C,D). This
definition is similar to the definition of the rate distortion
region in rate distortion theory [45].

Definition 3. The complexity distortion function CT
X(D) for an

input set X, for the approximation of linear transform T, is
defined as the infimum of all complexities C such that (C,D)
is in the achievable complexity distortion region for a given
distortion D.

CT
X(D) = Inf

˜T:DX(˜T)≤D
C(˜T), (10)

where CT
X(D) is the complexity distortion function of

approximation of linear transform T for an input set X,
C(˜T) and DX(˜T) are the computational complexity (1)
and distortion (9) of transform approximation ˜T for the
input set X, respectively. In the case of DCT of image,
each image (X) has a complexity distortion function CT

X(D)
for a particular transform approximation T (DCT). It
is straightforward to show that the complexity distortion
function is nonincreasing and convex. These properties are
used in estimating the complexity distortion function.

6.2. Conditional complexity distortion function (CCDF)

In this section, we discuss how we can estimate the com-
plexity distortion function, given a set of approximation
operators. The conditional complexity distortion allows us to
estimate the C-D curve in practice. This is because the com-
plexity distortion function (10) is a theoretical lower bound,
obtained via a search over all possible approximations of T.
In practice, we need to define a set of approximation oper-
ators on T so that we determine the complexity distortion
function conditioned on that approximation strategy.

Assume that we have a finite approximation candidate
set Φ. Then similar to the definitions in Section 6.1, it is
straightforward to define a conditional complexity distortion
region and a conditional complexity distortion function.

Specifically, the conditional complexity distortion function
(CCDF) CT

X(D | Φ) for an input set X, for the approximation
of linear transform T, is defined as the infimum of all com-
plexities C such that (C,D) is in the conditional complexity
distortion region achieved by using approximation candidate
set Φ for a given distortion:

CT
X(D | Φ) = Inf

˜T: ˜Ti∈Φ,DX (˜T)≤D
C(˜T), (11)

where C(˜T) and DX(˜T) are the computational complexity
(1) and distortion (9) of transform approximation ˜T for the
input set X, respectively.

Estimation of the complexity distortion function is
a challenging computational problem. Let Q denote the
cardinality of the given approximation candidate set Φ and
let N the cardinality of the input set X. Then the number
of possible achievable C-D pairs is NQ. Therefore, com-
putational cost of searching the lower bound of achievable
complexity distortion region is exponential in Q. In order to
reduce the computational cost, we developed a fast stepwise
algorithm that is linear in Q to estimate CCDF.

We now outline a fast stepwise algorithm to estimate
the conditional complexity distortion function (details can
be found in the appendix). Let us assume that the approx-
imation candidate set Φ has Q elements Φ = {Φ j , j =
1, . . . ,Q, C(Φ1) ≥ C(Φ2) ≥ · · · ≥ C(ΦQ)}. We start assign-
ing all input elements xi with the highest computational
complexity approximation in the approximation candidate
set Φ (i.e., ˜Ti = Φ1, i = 1, . . . ,N). At each step, we try to find
one input element such that by changing its approximation
to the lower complexity approximation in Φ (e.g., Φ1 →
Φ2 or Φ2 → Φ3), we are able to minimize the slope of
distortion increment with respect to complexity decrement.
We repeat this procedure until all input elements use the
lowest computational complexity approximation in Φ (i.e.,
˜Ti = ΦQ, i = 1, . . . ,N).

Intuitively, we are looking for that location in the image
for which reducing the complexity of the approximation has
minimum effect on distortion. This strategy is equivalent
to traversing the D-C curve, starting from the highest
complexity, lowest distortion value to the lowest complexity,
highest distortion point. Our fast algorithm only generates
NQ − N + 1 complexity-distortion (C-D) pairs, where
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N and Q are the cardinality of the input set X and the
approximation candidate set Φ, respectively (i.e., N = |X|,
Q =|Φ|).

6.3. Optimal approximation set selection

We now show how we can determine the optimal approx-
imation candidate set Φ∗ from multiple approximation
candidate sets (e.g., Φ1,Φ2, . . . ,ΦW ). This is useful since for
every linear transform, there exist many options to construct
the approximation candidate set Φ.

We use the average distortion of conditional distortion
complexity function (CDCF) (Section 6.2) to evaluate the
approximation candidate set Φ. Then the optimal approxi-
mation candidate set Φ∗

X(T) for an input set X for the linear
transform T is defined as the approximation candidate set
with minimum average distortion:

Φ∗
X(T) = arg min

Φ∈Ψ

[

δTX (Φ)
]

, (12)

where δTX (Φ) is the average distortion of CDCF for input set
X, for the linear transform T and for a given approximation
candidate set Φ and Ψ is a set that includes multiple
approximation candidate sets (i.e., Ψ = {Φi, i = 1, . . . ,W}).

7. REAL-TIME RESOURCE
ADAPTIVE APPROXIMATION

In this section, we present a real-time adaptive framework
for linear transform approximation on input set X using
conditional complexity distortion function (CCDF). The
main idea is that we sample the CCDF using several operating
points and store operating points as part of the input
metadata at the encoder.

Hence we can use the operating points embedded by
the encoder as part of the metadata to perform adaptive
approximation at the decoder. We select the proper operating
point in the metadata that satisfies the complexity constraint
and use its corresponding conditional approximation to
perform the approximation at the decoder.

We will discuss this method in detail over the next few
sections. First, we present an algorithm to determine the
optimal operating points. Second, we show the structure of
metadata. Finally, we show how to decode the metadata for
adaptive approximation in real time.

7.1. Operating point selection

We now present an iterative algorithm to determine the
optimal operating points on the distortion complexity
function DT

X(C) (Section 6.1). For the sake of simplicity,
we use D(C) to represent distortion complexity function
DT

X(C). It is straightforward to extend the algorithm to the
conditional complexity distortion function.

Assume that we wish to sample the D(C) function using
K points. We can denote the K operating points on D(C)
as a set ΩK = {(Ck,Dk), k = 1, . . . ,K , C1 ≤ · · · ≤
CK , D1 ≥ · · · ≥ DK}. When the available complexity C
is in the interval [Ck,Ck+1), the operating point (Ck,Dk) is

used because it introduces minimum distortion amongst all
operating points while satisfying the complexity constraint
(Ck ≤ C). The result distortion is Dk − D(C). We call this
distortion as sampling distortion because it is introduced
by sampling the distortion complexity function using the
operating points. The overall sampling distortion ds(ΩK ) due
to K operating points ΩK on the D-C function is computed
as follows:

ds
(

ΩK
) =

K
∑

k=0

∫ Ck+1

Ck

p(C)
[

Dk −D(C)
]

dC, (13)

where ΩK contains the K operating points on D(C) (ΩK =
{(Ck,Dk), k = 1, . . . ,K}), (C0,D0) and (CK+1,DK+1) are two
extreme points, (C0 ≤ C1 ≤ · · · ≤ CK ≤ CK+1, D0 ≥
D1 ≥ · · · ≥ DK ≥ DK+1), p(C) is the pdf of the complexity
constraint. We define the set Ω∗

K with minimum sampling
distortion to be the one with the optimal K operating points
on D(C). Formally, it is defined as follows:

Ω∗
K = arg min

ΩK

ds
(

ΩK
)

, (14)

where ds(ΩK ) is the sampling distortion (13). In each of
the small figures in Figure 7, the area of dark region is
proportional to the sampling distortion when p(C) is a
uniform distribution.

We now discuss our algorithm to iteratively determine
the K operating points that minimize sampling distortion.
The intuition behind the algorithm rests on two ideas:
(a) operating points that are globally optimal are also
locally optimal (the proof is straightforward) (b) given two
operating points on the D-C curve, it we can determine an
operating point between the two that minimizes sampling
distortion. This latter idea is repeatedly used in our algo-
rithm.

We first show how to compute the optimal operating
point given two extrema. Let us assume that we wish to
determine the operating point Ω1 = (C1,D1), that lies
between (C0,D0) and (C2,D2). That is, (C0 ≤ C1 ≤ C2,
D0 ≥ D1 ≥ D2). The problem is to find the optimal (C1,D1)
to minimize the sampling distortion. We proceed by splitting
the sampling distortion as follows:

ds
(

Ω1
) =

∫ C1

C0

p(C)
[

D0−D(C)
]

dC+
∫ C2

C1

p(C)
[

D1−D(C)
]

dC

= −(D0 −D1
)[

F
(

C2
)− F

(

C1
)]

︸ ︷︷ ︸

1

+ D0
[

F
(

C2
)− F

(

C0
)]−

∫ C2

C0

p(C)D(C)dC
︸ ︷︷ ︸

2

,

(15)

where F is cumulative distribution function for p(C). Since
the second part of (15) is only related to the extreme
points (C0,D0) and (C2,D2) which are fixed, it is a constant.
Thus minimizing the sampling distortion is equivalent to
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minimizing the first part of (15). Therefore, the optimal
operating point can be obtained as follows:

Ω∗
1 =

(

C∗1 ,D∗1
)

,

C∗1 = arg max
C0≤c≤C2

([

D0 −D(c)
]·[F(C2

)− F(c)
])

,

D∗1 = D
(

C∗1
)

.

(16)

Once, we can determine an optimal operating point between
two extrema, the iterative algorithm is shown in Algorithm 1
(Figure 7 illustrates the iteration procedure).

7.2. Encodingmetadata

In this section, we discuss the metadata that needs to
be embedded at the encoder, to allow the decoder to
approximate the transform T in an adaptive manner, in
response to changing computational constraints. We need
to know three things in order to adaptively approximate the
transform at the decoder side. They include (a) the optimal
approximation candidate set Φ∗

X(T) (12), (b) the operating
points (C,D) along the conditional complexity distortion
function (CCDF) for Φ∗

X(T), and (c) the approximation
operator ˜Ti for every input element xi.

Let us assume that we have W approximation candidate
sets Φ1, . . . ,ΦW. For the sake of simplicity, let us assume
without loss of generality that these W sets have the same
cardinality Q. First, estimate the conditional complexity
distortion function (CCDF) for all approximation candidate
sets (Φ1, . . . ,ΦW) and select the approximation candidate
set Φ∗

X(T) with the minimum average distortion (12). Then
given the optimal approximation candidate set Φ∗

X(T), select
K optimal operating points along the conditional distortion
complexity function (CCDF). Each optimal operating point
is associated with an approximation index list Lk.

The metadata contains the following information.

(1) Approximation candidate set indicator—the index of
the optimal candidate set Φ∗

X(T).

(2) Complexity distortion pairs for (K + 2) operating
points (K operating points on the C-D curve and two
extreme points).

(3) K approximation index lists Lk. Each operating
point (Ck,Dk) (k = 1, . . . ,K) is associated with an
approximation index list Lk. The cardinality of each
approximation index list Lk is the same as the number
of elements in the input set X (|Lk| = |X| = N).
The element of list Lk(i) indicates the approximation
operator ˜Ti for the corresponding input element
xi. For example, if we use the jth operator in the
approximation candidate set Φ (i.e., Φ j), for the ith

input element xi (i.e., ˜Ti = Φ j) then Lk(i) = j.

The inclusion of the metadata has a size penalty. The
approximation candidate set indicator needs log2W bits. The
K + 2 operating points need 32(K + 2) bits if we use 16 bit
precision to represent complexity and distortion values. And
finally, the K approximation index lists need KN(log2Q) bits,

D D D

C C C

Iterate until coverage

Figure 7: Iteration for optimal multiple selection.

where Q and N are the cardinality of optimal approximation
candidate set Φ∗

X(T) and the cardinality of input set X,
respectively. Hence the overall metadata size S is

S = K
(

N
(

log2Q
)

+ 32
)

+
(

log2W + 64
)

. (17)

If the approximation candidate sets (Φ1, . . . ,ΦW) and the
input set X are given, Q, N, and W are fixed. Then the
metadata size is a linear function of the number of operating
points K on the distortion complexity function D(C). The
selection of K can be influenced by application-dependent
constraint on metadata size.

7.3. Real-time decoding

We now show how the decoder can use the metadata embed-
ded at the encoder for real-time adaptive approximation. Let
us assume the input set X and computational complexity
constraint C are given. The decoding includes four steps.

(1) The approximation candidate set indicator is used
to select the optimal approximation candidate set
Φ∗

X(T) (12).

(2) Then we select the operating point (Ck,Dk) such that
Ck+1 > C ≥ Ck from the operating points saved in the
metadata.

(3) We determine the approximation index list Lk cor-
responding to the selected operating point (Ck,Dk)
and assign the approximation selection for each
input. For example, if Lk(i) = j, we select the jth
approximation in the approximation candidate set
Φ∗

X(T) for the ith input element xi.

(4) Finally, we perform approximation for every input
element using its assigned approximation operator
˜Ti.

The complexity of this approximation is guaranteed to be less
than the complexity constraint C.

In this section, we addressed the problem of real-time
adaptive approximation. First, we presented an algorithm
to select K operating points (Ck,Dk) along the conditional
distortion complexity function (CDCF). Second, we encode
the operating points (Ck,Dk) and associated approximation
index lists Lk into metadata as part of input. Finally, we used
the embedded metadata to perform real-time approximation
at the decoder.
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Input: distortion complexity function D(C), number of
operating points K, two extreme points (C0,D0) and
(CK+1,DK+1).
Output: K operating points ΩK = {(Ck ,Dk), k = 1, . . . ,K}.

1. Initialization—randomly select K points on the
distortion complexity function D(C), sort them in
ascending order of complexity value, and compute
the sampling distortion d.

2. for j = 1 : K.
Update (Cj ,Dj) with the optimal single selec-
tion (16) of the subcurve of D(C) from (Cj−1,
Dj−1) to (Cj+1,Dj+1).

end

3. Update sampling distortion d.

4. If the sampling distortion no longer decreases, stop,
otherwise go to step 2.

Algorithm 1: Iterative algorithm.

8. EXPERIMENTAL RESULTS

In this section, we present our experimental results for

(i) estimate the conditional complexity distortion func-
tion. CCDF (Section 6.2).

(ii) compare three different approximation techniques:
basis projection, pruning, and joint approximation
(Section 3).

(iii) select optimal operating points (Section 7.1).

We have used a well-known image—Lena at resolution 256×
256 and 64 × 64 to test our framework. The Lena image at
resolution 64 × 64 as the input set X is used for estimation
of conditional complexity distortion (CCDF). We select the
resolution 64 × 64 rather than 256 × 256 here because of
the high computational complexity of searching exact CCDF
(Section 6.2). We use Lena image at resolution 256 × 256 as
the input set X to compare three approximation techniques
and to test operating point selection. In this section, let us
denote the exact DCT as TDCT.

8.1. Estimation of conditional complexity
distortion function (CCDF)

We now present our experimental results for estimating
the conditional complexity distortion function (CCDF). We
select DCT as the linear transform TDCT and construct DCT
approximation candidate set ΦDCT

H by four DCT approxima-
tion operators: ΦDCT

H = { ˜TDCT
H (0), ˜TDCT

H (1), ˜TDCT
H (2),TDCT},

where ˜TDCT
H (0), ˜TDCT

H (1), and ˜TDCT
H (2) are DCT approxima-

tion for 8 × 8 image block using Haar wavelet basis pro-
jection approximation at resolution J = 0, 1, 2, respectively,
and TDCT is the exact DCT operator for 8 × 8 image block.
The cardinality of ΦDCT

H is four (|ΦDCT
H | = 4). We select Lena

image with resolution 64× 64 as the input set X that contains
64 8 × 8 image blocks (|X| = 64). We select the resolution 64
× 64 rather than 256 × 256 here because the computational
complexity of searching exact CCDF (Section 6.2) increases

Table 3: Approximation techniques and their approximation can-
didate set notations.

Approximation techniques
Approximation

candidate set notations

Haar wavelet basis projection ΦDCT
H

Rectangle pruning ΦDCT
R

Triangle pruning ΦDCT
T

Joint approximation (rectangle pruning
+ Haar wavelet basis projection)

ΦDCT
R+H

Joint approximation (triangle pruning
+ Haar wavelet basis projection)

ΦDCT
T+H

exponentially with the number of image blocks. The number
of achievable C-D pairs for Lena 256 × 256 and Lena 64 ×
64 are 10244 and 644, respectively. Therefore, computing the
exact CCDF for Lena 256 × 256 is very expensive.

We use the relative difference between the average
distortions of exact CCDF and estimated CCDF to evaluate
our fast estimation algorithm. The relative difference is
defined as follows:

τ = δ′ − δ

δ
, (18)

where δ and δ
′

represent the average distortion of exact
CCDF and our estimate, respectively (δ′ > δ). The relative
difference in estimating the conditional complexity distor-
tion function for DCT approximation for Lena 64× 64 using
approximation candidate set ΦDCT

H is τ = 1.30%. This shows
that our fast CCDF estimation algorithm works well.

8.2. Comparing different approximation techniques

In this section, we compare three approximation techniques:

(i) basis projection approximation (Section 3.2.1);

(ii) pruning (Section 3.2.2);

(iii) joint approximation that combines basis projection
approximation and pruning (Section 3.2.3).

We use Lena image at resolution 256 × 256 as the input set
X and we apply these three approximation techniques on the
DCT. We use the fast estimation of conditional complexity
distortion function (CCDF) and use the average distortion
as the evaluation metric.

8.2.1. Constructing approximation candidate set

We now show how to construct approximation candidate
set Φ (Section 5.2) for each approximation technique. We
construct five approximation candidate sets. Table 3 shows
the notations of these five approximation candidate sets and
their corresponding approximation techniques.

For the sake of consistency, every approximation can-
didate set has four approximation operators (e.g., |ΦDCT

H |
= |ΦDCT

R | = |ΦDCT
T | = |ΦDCT

R+H| = |ΦDCT
T+H| = 4) and every

approximation candidate set includes the exact transform
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Figure 8: Average distortion of CCDF for Lena image 256 × 256 for joint DCT approximation using combination of DCT pruning and
Haar wavelet basis projection at different pruning resolutions Jp. At each pruning resolution Jp, the approximation candidate set Φ includes
combination of DCT pruning at pruning resolution Jp and Haar wavelet basis projection at basis resolution Jb = 0, 1, 2 and exact DCT.

Table 4: Approximation candidate set construction for all DCT approximation techniques for Lena image 256 × 256. Each approximation
candidate set has four elements (Φ1–Φ4). The five approximation candidate sets share the same Φ1 (only computing the lowest coefficient)
and the same Φ4 (exact DCT).TDCT is the exact DCT for 8 × 8 image block, respectively. ˜TDCT

H (j) is DCT approximation using Haar wavelet
basis projection at basis resolutionJb = j. ˜TDCT

R (j) and ˜TDCT
T (j) are DCT pruning using rectangle pruning and triangle pruning at pruning

resolutionJp = j, respectively. ˜TDCT
R+H ( j, k) is joint DCT approximation combining rectangle pruning and Haar wavelet basis projection at

pruning resolutionJp = j and basis resolutionJb = k. ˜TDCT
T+H( j, k) is joint DCT approximation combining triangle pruning and Haar wavelet

basis projection at pruning resolutionJp = j and basis resolutionJb = k.

Transform Candidate set
Approximation operator elements

Φ1 Φ2 Φ3 Φ4

DCT

ΦDCT
H

˜TDCT
H (0) ˜TDCT

H (1) ˜TDCT
H (2)

TDCT
ΦDCT

R
˜TDCT
R (0) ˜TDCT

R (1) ˜TDCT
R (2)

ΦDCT
T

˜TDCT
T (0) ˜TDCT

T (1) ˜TDCT
T (2)

ΦDCT
R+H

˜TDCT
R+H (3,0) ˜TDCT

R+H (3,1) ˜TDCT
R+H (3,2)

ΦDCT
T+H

˜TDCT
T+H(4,0) ˜TDCT

T+H(4,1) ˜TDCT
T+H(4,2)

(DCT) and the lowest complexity approximation (only
compute the lowest frequency coefficient in DCT). Note
that the lowest complexity approximations for all DCT
approximation techniques presented in this paper are equiv-
alent. They all compute the lowest frequency coefficient and
require 63 operations. For the sake of completeness, we note
that the C = 0 (constant output) is the lowest complexity
case, but is ignored here as this is unlikely to be of practical
interest. We describe the construction of five approximation
candidate set for DCT in details as follows.

Haar wavelet basis projection (ΦDCT
H )—the DCT approx-

imation candidate set using Haar wavelet basis projec-
tion (Section 4.1)—ΦDCT

H includes DCT approximation
using Haar wavelet basis projection at basis resolution

Jb = 0, 1, 2 and exact DCT. ΦDCT
H can be represented

as ΦDCT
H = { ˜TDCT

H (0), ˜TDCT
H (1), ˜TDCT

H (2),TDCT}, where
˜TDCT
H (0), ˜TDCT

H (1), and ˜TDCT
H (2) are DCT approximation

for 8 × 8 image block using Haar wavelet basis projection
approximation at resolution J = 0, 1, 2, respectively, and
TDCT is the exact DCT operator.

Pruning (ΦDCT
R and ΦDCT

T )—we now present the con-
struction of DCT approximation candidate set for rectangle
pruning (Section 4.2)—ΦDCT

R . In the similar manner, we
can construct ΦDCT

T . There are eight pruning resolutions
in DCT rectangle pruning operator. The minimum prun-
ing resolution Jp = 0 (computing the lowest frequency
coefficient) and maximum pruning resolution Jp = 7
(exact DCT) are included in the ΦDCT

R . We need to select
another two resolutions (Jap , Jbp) from Jp = 1, 2, 3. Let us
denote the DCT approximation using rectangle pruning

at resolution Jp as ˜TDCT
R (Jp). We choose the resolution

pair (Jap , Jbp) such that the approximation candidate set

ΦDCT
R = { ˜TDCT

R (0), ˜TDCT
R (Jap), ˜TDCT

R (Jbp),TDCT} has the mini-

mum average distortion of conditional complexity distortion
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Figure 9: Conditional complexity distortion function (CCDF) for Lena image 256 × 256 for five DCT approximation candidate sets.
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Figure 10: Average distortion of conditional complexity distortion
function (CCDF) for Lena image 256 × 256 for five DCT
approximation candidate sets.

function (CCDF) δDCT
X (ΦDCT

R ) over 3C2 possible resolution
pairs (Jap , Jbp). The ΦDCT

R for the input set X is computed as
follows:

ΦDCT
R (X) = arg min

Φ={ ˜TDCT
R (0), ˜TDCT

R (Jap), ˜TDCT
R (Jbp),TDCT}

1≤Jap<Jbp≤3

[

δDCT
X (Φ)

]

.

(19)

For Lena image 256 × 256, it is straightforward to show
that the selection (Jap = 1, Jbp = 2) has the minimum average

distortion. Hence ΦDCT
R includes the DCT rectangle pruning

at pruning resolution Jp = 0, 1, 2 and exact DCT (equivalent
to Jp = 7). Similarly, we can show that ΦDCT

T includes DCT
triangle pruning at pruning resolution Jp = 0, 1, 2 and exact
DCT.

Joint approximation that combines basis projection and
pruning (ΦDCT

R+H and ΦDCT
T+H)—we now discuss the con-

struction of approximation candidate set for joint DCT
approximation that combines Haar wavelet basis projection

and DCT rectangle pruning (Section 4.3)—ΦDCT
R+H. In the

similar manner, we can create ΦDCT
T+H . The key idea is that

we select an optimal pruning resolution J∗p and use the joint
approximation that combines DCT pruning at resolution J∗p
and Haar basis projection at basis resolution Jb = 0, 1, 2 and
exact DCT to construct ΦDCT

R+H. The optimal is in the sense
of minimum average distortion of conditional complexity
distortion function (CCDF) δDCT

X (ΦDCT
R+H). Let us denote

the joint DCT approximation using rectangle pruning at
resolution Jp and Haar wavelet basis projection at basis

resolution Jb as ˜TDCT
R+H (Jp, Jb). The ΦDCT

R+H for the input set X
is computed as follows:

ΦDCT
R+H(X) = arg min

Φ={ ˜TDCT
R+H (Jp ,0), ˜TDCT

R+H (Jp ,1), ˜TDCT
R+H (Jp ,2),TDCT}

1≤Jp≤3

[

δDCT
X (Φ)

]

.

(20)

For Lena image 256 × 256, the pruning resolution with min-
imum average distortion is Jp = 3 (shown in Figure 8(a)).
Hence ΦDCT

R+H includes the combination of DCT pruning at
pruning resolution Jp = 3 and Haar wavelet basis projection
at basis resolution Jb = 0, 1, 2 and exact DCT. In the similar
manner, we can construct ΦDCT

T+H . The optimal pruning
resolutions Jp to construct ΦDCT

T+H is 4 (shown in Figure 8(b)).
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complexity distortion function (CCDF) using DCT approximation
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T+H (joint DCT approximation that combines

triangle pruning and Haar wavelet basis projection) for Lena image
256 × 256. Each operating point is associated with a recovered
image that is obtained by using exact inverse DCT on the DCT
approximation result.
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Figure 12: Tradeoff between average saving load of metadata (bits
per image block) and sampling distortion. K: number of operating
points on the C-D curve.

Table 4 shows the approximation operator elements for
all approximation candidate sets for DCT approximation for
Lena image 256 × 256. Note that each operator element is
used for approximation of 8 × 8 image blocks. Note also
that the first elements Φ1 of all approximation candidate
sets are equivalent. This is just the computation of the
lowest frequency coefficient of DCT result and it requires 63
operations.

8.2.2. Results

We now discuss the experimental results of DCT approx-
imation using five approximation candidate sets (Table 4).
Figure 9 shows the CCDFs based on five DCT approximation

candidate sets (Table 4). Figure 10 plots the average distor-
tions of CCDF for these five DCT approximation candidate
sets.

We have two observations:

(1) Haar > Pruning—the approximation only using Haar
wavelet basis projection is better than the approx-
imation only using pruning (rectangle or triangle
pruning).

(2) Joint > Haar—the joint approximation is better than
both the approximation only using Haar wavelet basis
approximation and the approximation only using
pruning.

The term “better” is in the sense of lower conditional
complexity distortion function (CCDF) that results in lower
average distortions of CCDF. We use “>” to represent “is
better than.”

The result Haar > Pruning holds true because the Haar
wavelet basis projection can approximate the low-frequency
coefficients of DCT with small distortion while costing
less computations than the pruning operator. For the same
distortion D, the Haar wavelet basis projection needs less
computational resources C than pruning. Let us explain this
in terms of complexity and distortion in detail. The approx-
imation candidate set for Haar wavelet basis projection
(ΦDCT

H ) only have two approximation operators (Φ2 and Φ3

Table 4) that are different from the approximation candidate
set for pruning (ΦDCT

R /ΦDCT
T ). Hence we only compare the

Haar wavelet basis at basis resolution basis Jb = 1, 2 (Φ2 and
Φ3 in ΦDCT

H ) to the pruning at pruning resolution Jp = 1, 2

(Φ2 and Φ3 in ΦDCT
R /ΦDCT

T ).

(i) Complexity—the computational complexity of DCT
approximation only using Haar wavelet basis pro-
jection at basis resolution Jb = 2 (272 operations
Table 2) is close to the complexity of DCT pruning
at pruning resolution Jp = 2 (286 operations for
rectangle pruning and 262 operations for triangle
pruning). However, the DCT approximation using
Haar wavelet basis projection at basis resolution Jb =
1 (86 operations) requires significantly less com-
putation than DCT pruning at pruning resolution
Jp = 1 (210 operations for rectangle pruning and 196
operations for triangle pruning).

(ii) Distortion—the DCT approximation using Haar
wavelet basis projection at basis resolution Jb = 1, 2
does not introduce more distortion compared to
DCT pruning at pruning resolution Jp = 1, 2. This
is because of two reasons: (a) the DCT coefficients
that are not dropped in the DCT pruning at pruning
resolution Jp = 1, 2 (Figure 5) are approximated with
small distortion by the DCT approximation using
Haar wavelet basis projection at basis resolution
Jb = 1, 2, respectively, (b) some of higher-frequency
coefficients that are dropped in the DCT pruning at
pruning resolution Jp = 1, 2 are still approximated
with small distortion by the DCT approximations
using Haar wavelet basis projection at basis resolu-
tion Jb = 1, 2.
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Input: input set X = {xi, i = 1, . . . ,N} and approximation
candidate set Φ = {Φ j , j = 1, . . . ,Q, C(Φ1) ≥ C(Φ2) ≥
· · · ≥ C(ΦQ)}.
Output: estimation of CCDF-(Ck ,Dk) and the corresponding
approximation index list Lk.

1. Initialization—using approximation Φ1 for all input
elements and obtain the first C-D pair (C1,D1) and
the first approximation index list L1(L1(i) = 1, i =
1, . . . ,N), k = 1.

2. Compute the ratio between distortion increment
and complexity decrement for the input elements
that do not use the lowest complexity approximation
ΦQ as follows:

ri =
Dxi

(

ΦLk(i)+1
)−Dxi

(

ΦLk(i)
)

C
(

ΦLk(i)
)− C

(

ΦLk(i)+1
) if Lk(i) < Q,

where C(·) is the complexity operator for single
input (Table 1), Dxi (·) is the distortion operator
for the single input xi (9), Lk is the approximation
index list associated with the C-D pair (Ck ,Dk), each
element of Lk—(i.e., Lk(i)) indicates the selection of
approximation for the corresponding input element
xi, Φ j is the jth element of approximation candidate
set Φ.

3. Find the input element xi with the minimum ratio
ri, change its approximation operator ˜Ti to the lower
complexity approximation operator in Φ (e.g., ˜Ti ←
Φ j+1 if the current ˜Ti is Φ j), obtain a new C-D pair
(Ck+1,Dk+1) and new approximation index list Lk+1 =
{Lk(1), . . . , Lk(i− 1), Lk(i) + 1, Lk(i+ 1), . . . , Lk(N)},
k = k + 1.

4. If all input elements use the lowest complexity
approximation in Φ—(i.e., ΦQ), stop, otherwise go
to step 2.

Algorithm 2: Fast stepwise algorithm.

The result Joint > Haar holds true because in the joint
case by combining the basis projection with the pruning
operator, we save computation in approximating high-
frequency coefficients. Since these high-frequency coeffi-
cients typically have small energy, directly setting these high
coefficients zero only introduces a small distortion but saves
significant number of computations.

8.3. Optimal operating point selection

We now present our experimental results for optimal operat-
ing point selection (Section 7.1). Figure 11 shows the optimal
operating point selection (K = 4) results on the estimated
CCDF for Lena image 256 × 256 using approximation
candidate set ΦDCT

T+H (Table 3). For each operating point, we
also show the corresponding recovered image by using exact
inverse DCT (IDCT). The triangles in the figure are the two
extreme points and the dots are the 4 optimal operating
points.

Figure 12 shows the tradeoff between the metadata size
(17) and sampling distortion (13). K operating points are

selected on the CCDF for Lena image 256 × 256 based on
the approximation candidate set ΦDCT

T+H (DCT approximation
using the combination of Haar wavelet basis projection
and triangle pruning). In Figure 12, we use bits per image
block to represent the metadata size. We can see that as the
number of operating points K on the C-D curve increases,
the sampling distortion decreases and the metadata size (bits
per image block) increases. We also find that when K > 4, the
sampling distortion decrease very slowly, but the metadata
size increase significantly. If we select K = 4, the bits per
image block is about 8 bits which means the metadata size
is about 1/64th of the gray image.

9. CONCLUSION

In this paper, we have attempted to create a systematic
framework for linear transform approximation. There were
three key ideas: (a) we presented the basis projection
approximation technique and combined it with pruning
approximation techniques, (b) we proposed an algorithm
to estimate the complexity distortion function and search
for optimal transform approximation using several approx-
imation candidate sets. We also proposed a measure to
select the optimal approximation candidate set, and (c) we
presented an adaptive approximation framework in which
the operating points on the C-D curve are embedded in the
metadata. Our approach is generic, and applies to any linear
transform.

First, we developed an efficient Haar wavelet basis pro-
jection framework to approximate a widely used multimedia
transform—the DCT. We showed how approximations to
the input signal as well as the transform output can
efficiently trade off computational complexity for signal
distortion. Second, we presented a theoretical definition
of the complexity distortion function, using ideas from
rate-distortion theory and proposed conditional complexity
distortion function (CCDF) to estimate C-D function. We
also presented a fast CCDF estimation algorithm and showed
how to estimate the optimal transform approximation.
Finally, we showed how to compute the optimal operating
points on the CCDF curve and embed their information
into the image metadata. We also presented a framework to
perform adaptive approximation in real time for changing
computational resources by using this metadata.

Our experimental results on the Lena image are excellent.
They showed (a) that combination of the input approxima-
tion (basis projection) and output transform approximation
(pruning) have the best results. (b) Our CCDF estimation
algorithm is close to the exact CCDF. The relative error is
0.039%. (c) We additionally showed the relationship between
the metadata size and the introduced distortion.

In our paper, we did not consider the issue of transform
coefficient quantization, an important real world issue. The
quantization of the coefficients will have the effect of shifting
right the C-D curves. However, this needs further elaboration
as the exact effect in general will be content dependent.

This result can be extended in many directions. We plan
to combine different basis projection techniques (e.g., Haar
and polynomials), for more efficient basis approximation.
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We plan to incorporate metadata size as a constraint of our
approximation algorithm. We are hopeful that the results in
this paper along with the metadata size constraint can allow
us to develop a joint complexity distortion rate (C-D-R)
optimization framework, thus trading off complexity versus
distortion versus rate.

APPENDIX

ESTIMATIONOF THE CONDITIONAL COMPLEXITY
DISTORTION FUNCTION

We now describe the algorithm for fast estimation of the
conditional complexity distortion function in detail. Let
us assume that the approximating candidate set Φ has Q
elements. For each C-D pair (Ck,Dk), that is part of the C-
D curve, we generate an approximation index list Lk. The
cardinality of each approximation index list Lk is the same
as the number of elements in the input set X (|Lk| = |X|
= N). The purpose of the list is to indicate the specific
approximation to be performed at the specific location
in the image, that is, each element of list Lk(i) indicates
the approximation operator ˜Ti for the corresponding input
element xi. For example, if we use the jth operator in the
approximation candidate set Φ (i.e., Φ j), for the ith input

element xi (i.e., ˜Ti = Φ j), then Lk(i) = j. The approximation
operator for the input element xi can be also represent as
˜Ti = ΦLk(i), the detailed algorithm is shown in Algorithm 2.

Our fast stepwise algorithm saves significant computa-
tions. Our algorithm only generates NQ − N + 1 C-D
pairs (linear in Q) while searching the exact conditional
complexity distortion function requires computing NQ C-D
pairs.
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