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Face recognition under varying pose is a challenging problem, especially when illumination variations are also present. In this
paper, we propose to address one of the most challenging scenarios in face recognition. That is, to identify a subject from a test
image that is acquired under different pose and illumination condition from only one training sample (also known as a gallery
image) of this subject in the database. For example, the test image could be semifrontal and illuminated by multiple lighting
sources while the corresponding training image is frontal under a single lighting source. Under the assumption of Lambertian
reflectance, the spherical harmonics representation has proved to be effective in modeling illumination variations for a fixed pose.
In this paper, we extend the spherical harmonics representation to encode pose information. More specifically, we utilize the fact
that 2D harmonic basis images at different poses are related by close-form linear transformations, and give a more convenient
transformation matrix to be directly used for basis images. An immediate application is that we can easily synthesize a different
view of a subject under arbitrary lighting conditions by changing the coefficients of the spherical harmonics representation. A
more important result is an efficient face recognition method, based on the orthonormality of the linear transformations, for
solving the above-mentioned challenging scenario. Thus, we directly project a nonfrontal view test image onto the space of frontal
view harmonic basis images. The impact of some empirical factors due to the projection is embedded in a sparse warping matrix;
for most cases, we show that the recognition performance does not deteriorate after warping the test image to the frontal view.
Very good recognition results are obtained using this method for both synthetic and challenging real images.

Copyright © 2008 Zhanfeng Yue et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Face recognition is one of the most successful applications
of image analysis and understanding [1]. Given a database of
training images (sometimes called a gallery set, or gallery im-
ages), the task of face recognition is to determine the facial ID
of an incoming test image. Built upon the success of earlier
efforts, recent research has focused on robust face recogni-
tion to handle the issue of significant difference between a
test image and its corresponding training images (i.e., they
belong to the same subject). Despite significant progress, ro-
bust face recognition under varying lighting and different
pose conditions remains to be a challenging problem. The
problem becomes even more difficult when only one train-
ing image per subject is available. Recently, methods have
been proposed to handle the combined pose and illumina-
tion problem when only one training image is available, for

example, the method based on morphable models [2] and its
extension [3] that proposes to handle the complex illumina-
tion problem by integrating spherical harmonics representa-
tion [4, 5]. In these methods, either arbitrary illumination
conditions cannot be handled [2] or the expensive computa-
tion of harmonic basis images is required for each pose per
subject [3].

Under the assumption of Lambertian reflectance, the
spherical harmonics representation has proved to be effec-
tive in modelling illumination variations for a fixed pose. In
this paper, we extend the harmonic representation to encode
pose information. We utilize the fact that all the harmonic
basis images of a subject at various poses are related to each
other via close-form linear transformations [6, 7], and de-
rive a more convenient transformation matrix to analytically
synthesize basis images of a subject at various poses from
just one set of basis images at a fixed pose, say, the frontal
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Figure 1: The proposed face synthesis and recognition system.

view [8]. We prove that the derived transformation matrix
is consistent with the general rotation matrix of spherical
harmonics. According to the theory of spherical harmon-
ics representation [4, 5], this implies that we can easily syn-
thesize from one image under a fixed pose and lighting to
an image acquired under different poses and arbitrary light-
ings. Moreover, these linear transformations are orthonor-
mal. This suggests that recognition methods based on pro-
jection onto fixed-pose harmonic basis images [4] for test
images under the same pose can be easily extended to handle
test images under various poses and illuminations. In other
words, we do not need to generate a new set of basis images
at the same pose as that of test image. Instead, we can warp
the test images to a frontal view and directly use the exist-
ing frontal view basis images. The impact of some empiri-
cal factors (i.e., correspondence and interpolation) due to the
warping is embedded in a sparse transformation matrix; for
most cases, we show that the recognition performance does
not deteriorate after warping the test image to the frontal
view.

To summarize, we propose an efficient face synthesis and
recognition method that needs only one single training im-
age per subject for novel view synthesis and robust recog-
nition of faces under variable illuminations and poses. The
structure of our face synthesis and recognition system is
shown in Figure 1. We have a single training image at the
frontal pose for each subject in the training set. The basis
images for each training subject are recovered using a sta-
tistical learning algorithm [9] with the aid of a bootstrap
set consisting of 3D face scans. For a test image at a ro-
tated pose and under an arbitrary illumination condition,
we manually establish the image correspondence between

the test image and a mean face image at the frontal pose.
The frontal view image is then synthesized from the test im-
age. A face is identified for which there exists a linear re-
construction based on basis images that is the closest to the
test image. Note that although in Figure 1 we only show the
training images acquired at the frontal pose, it does not ex-
clude other cases when the available training images are at
different poses. Furthermore, the user is given the option
to visualize the recognition result by comparing the synthe-
sized images of the chosen subject against the test image.
Specifically, we can generate novel images of the chosen sub-
ject at the same pose as the test image by using the close-
form linear transformation between the harmonic basis im-
ages of the subject across poses. The pose of the test image
is estimated from a few manually selected main facial fea-
tures.

We test our face recognition method on both synthetic
and real images. For synthetic images, we generate the train-
ing images at the frontal pose and under various illumina-
tion conditions, and the test images at different poses, un-
der arbitrary lighting conditions, all using Vetter’s 3D face
database [10]. For real images, we use the CMU-PIE [11]
database which contains face images of 68 subjects under
13 different poses and 43 different illumination conditions.
The test images are acquired at six different poses and under
twenty one different lighting sources. High recognition rates
are achieved on both synthetic and real test images using the
proposed algorithm.

The remainder of the paper is organized as follows.
Section 2 introduces related work. The pose-encoded spher-
ical harmonic representation is illustrated in Section 3 where
we derive a more convenient transformation matrix to
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analytically synthesize basis images at one pose from those
at another pose. Section 4 presents the complete face recog-
nition and synthesis system. Specifically, in Section 4.1 we
briefly summarize a statistical learning method to recover
the basis images from a single image when the pose is fixed.
Section 4.2 describes the recognition algorithm and demon-
strates that the recognition performance does not degrade
after warping the test image to the frontal view. Section 4.3
presents how to generate the novel image of the chosen sub-
ject at the same pose as the test image for visual comparison.
The system performance is demonstrated in Section 5. We
conclude our paper in Section 6.

2. RELATEDWORK

As pointed out in [1] and many references cited therein,
pose and/or illumination variations can cause serious per-
formance degradation to many existing face recognition sys-
tems. A review of these two problems and proposed solu-
tions can be found in [1]. Most earlier methods focused on
either illumination or pose alone. For example, an early ef-
fort to handle illumination variations is to discard the first
few principal components that are assumed to pack most of
the energy caused by illumination variations [12]. To han-
dle complex illumination variations more efficiently, spher-
ical harmonics representation was independently proposed
by Basri and Jacobs [4] and Ramamoorthi [5]. It has been
shown that the set of images of a convex Lambertian face ob-
ject obtained under a wide variety of lighting conditions can
be approximated by a low-dimensional linear subspace. The
basis images spanning the illumination space for each face
can then be rendered from a 3D scan of the face [4]. Follow-
ing the statistical learning scheme in [13], Zhang and Sama-
ras [9] showed that the basis images spanning this space can
be recovered from just one image taken under arbitrary illu-
mination conditions for a fixed pose.

To handle the pose problem, a template matching scheme
was proposed in [14] that needs many different views per
person and does not allow lighting variations. Approaches
for face recognition under pose variations [15, 16] avoid the
strict correspondence problem by storing multiple normal-
ized images at different poses for each person. View-based
eigenface methods [15] explicitly code the pose information
by constructing an individual eigenface for each pose. Ref-
erence [16] treats face recognition across poses as a bilinear
factorization problem, with facial identity and head pose as
the two factors.

To handle the combined pose and illumination varia-
tions, researchers have proposed several methods. The syn-
thesis method in [17] can handle both illumination and pose
variations by reconstructing the face surface using the illumi-
nation cone method under a fixed pose and rotating it to the
desired pose. The proposed method essentially builds illu-
mination cones at each pose for each person. Reference [18]
presented a symmetric shape-from-shading (SFS) approach
to recover both shape and albedo for symmetric objects. This
work was extended in [19] to recover the 3D shape of a hu-
man face using a single image. In [20], a unified approach
was proposed to solve the pose and illumination problem. A

generic 3D model was used to establish the correspondence
and estimate the pose and illumination direction. Reference
[21] presented a pose-normalized face synthesis method un-
der varying illuminations using the bilateral symmetry of
the human face. A Lambertian model with a single light
source was assumed. Reference [22] extended the photomet-
ric stereo algorithms to recover albedos and surface normals
from one image illuminated by unknown single or multiple
distant illumination source.

Building upon the highly successful statistical modeling
of 2D face images [23], the authors in [24] propose a 2D
+ 3D active appearance model (AAM) scheme to enhance
AAM in handling 3D effects to some extent. A sequence
of face images (900 frames) is tracked using AAM and a
3D shape model is constructed using structure-from-motion
(SFM) algorithms. As camera calibration and 3D reconstruc-
tion accuracy can be severely affected when the camera is
far away from the subjects, the authors imposed these 3D
models as soft constraints for the 2D AAM fitting procedure
and showed convincing tracking and image synthesis results
on a set of five subjects. However, this is not a true 3D ap-
proach with accurate shape recovery and does not handle oc-
clusion.

To handle both pose and illumination variations, a 3D
morphable face model has been proposed in [2], where the
shape and texture of each face is represented as a linear
combination of a set of 3D face exemplars and the param-
eters are estimated by fitting a morphable model to the in-
put image. By far the most impressive face synthesis results
were reported in [2] accompanied by very high recogni-
tion rates. In order to effectively handle both illumination
and pose, a recent work [3] combines spherical harmon-
ics and the morphable model. It works by assuming that
shape and pose can be first solved by applying the morphable
model and illumination can then be handled by building
spherical harmonic basis images at the resolved pose. Most
of the 3D morphable model approaches are computation-
ally intense [25] because of the large number of parame-
ters that need to be optimized. On the contrary, our method
does not require the time-consuming procedure of build-
ing a set of harmonic basis images for each pose. Rather, we
can analytically synthesize many sets of basis images from
just one set of basis images, say, the frontal basis images.
For the purpose of face recognition, we can further im-
prove the efficiency by exploring the orthonormality of lin-
ear transformations among sets of basis images at different
poses. Thus, we do not synthesize basis images at differ-
ent poses. Rather, we warp the test image to the same pose
as that of the existing basis images and perform recogni-
tion.

3. POSE-ENCODED SPHERICAL HARMONICS

The spherical harmonics are a set of functions that form an
orthonormal basis for the set of all square-integrable func-
tions defined on the unit sphere [4]. Any image of a Lamber-
tian object under certain illumination conditions is a linear
combination of a series of spherical harmonic basis images
{blm}. In order to generate the basis images for the object, 3D
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information is required. The harmonic basis image intensity
of a point p with surface normal n = (nx,ny ,nz) and albedo
λ can be computed as the combination of the first nine spher-
ical harmonics, shown in (1), where nx2 = nxnx. ny2 , nz2 , nxy ,
nxz, nyz are defined similarly. λ.∗t denotes the component-
wise product of λ with any vector t. The superscripts e and o
denote the even and the odd components of the harmonics,
respectively:

b00 = 1√
4π

λ, b10 =
√

3
4π

λ.∗nz,

be11 =
√

3
4π

λ.∗nx, bo11 =
√

3
4π

λ.∗ny ,

b20 = 1
2

√
5

4π
λ.∗(2nz2 − nx2 − ny2 ),

be21 = 3

√
5

12π
λ.∗nxz, bo21 = 3

√
5

12π
λ.∗nyz,

be22 =
3
2

√
5

12π
λ.∗(nx2 − ny2 ), bo22 = 3

√
5

12π
λ.∗nxy.

(1)

Given a bootstrap set of 3D models, the spherical har-
monics representation has proved to be effective in modeling
illumination variations for a fixed pose, even in the case when
only one training image per subject is available [9]. In the
presence of both illumination and pose variations, two pos-
sible approaches can be taken. One is to use a 3D morphable
model to reconstruct the 3D model from a single training
image and then build spherical harmonic basis images at the
pose of the test image [3]. Another approach is to require
multiple training images at various poses in order to recover
the new set of basis images at each pose. However, multiple
training images are not always available and a 3D morphable
model-based method could be computationally expensive.
As for efficient recognition of a rotated test image, a natural
question to ask is that can we represent the basis images at
different poses using one set of basis images at a given pose,
say, the frontal view. The answer is yes, and the reason lies on
the fact that 2D harmonic basis images at different poses are
related by close-form linear transformations. This enables an
analytic method for generating new basis images at poses dif-
ferent from that of the existing basis images.

Rotations of spherical harmonics have been studied by
researchers [6, 7] and it can be shown that rotations of
spherical harmonic with order l are linearly composed en-
tirely of other spherical harmonics of the same order. In
terms of group theory, the transformation matrix is the
(2l + 1)-dimensional representation of the rotation group
SO (3) [7]. Let Yl,m(ψ,ϕ) be the spherical harmonic, the gen-
eral rotation formula of spherical harmonic can be written as
Yl,m(Rθ,ω,β(ψ,ϕ)) = ∑ l

m′=−lD
l
mm′(θ,ω,β)Yl,m′(ψ,ϕ), where

θ, ω, β are the rotation angles around the Y , Z, and X axes,
respectively. This means that for each order l, Dl is a matrix
that tells us how a spherical harmonic transforms under rota-
tion. As a matrix multiplication, the transformation is found

to have the following block diagonal sparse form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y ′0,0

Y ′1,−1
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=
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,

(2)

where, H1 = D0
00, H2 = D1
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D2
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2,2. The
analytic formula is rather complicated, and is derived in [6,
equatioin (7.48)].

Assuming that the test image Itest is at a different pose
(e.g., a rotated view) from the training images (usually at the
frontal view), we look for the basis images at the rotated pose
from the basis images at the frontal pose. It will be more con-
venient to use the basis image form as in (1), rather than
the spherical harmonics form Yl,m(ψ,ϕ). The general rota-
tion can be decomposed into three concatenated Euler angles
around the X , Y , and Z axes, namely, elevation (β), azimuth
(θ), and roll (ω), respectively. Roll is an in-plane rotation
that can be handled much easily and so will not be discussed
here. The following proposition gives the linear transforma-
tion matrix from the basis images at the frontal pose to the
basis images at the rotated pose for orders l = 0, 1, 2, which
capture 98% of the energy [4].

Proposition 1. Assume that a rotated view is obtained by ro-
tating a frontal view head with an azimuth angle−θ. Given the
correspondence between the frontal view and the rotated view,
the basis images B′ at the rotated pose are related to the basis
images B at the frontal pose as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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where C1 = 1 − (3/2)sin2θ, C2 = −√3sinθ cos θ, C3 =
(
√

3/2)sin2θ, C4 =
√

3sinθ cos θ, C5 = cos2θ − sin2θ, C6 =
− cos θsinθ, C7 = (

√
3/2)sin2θ, C8 = cos θsinθ, C9 = 1 −

(1/2)sin2θ.
Further, if there is an elevation angle −β, the basis images

B′′ for the newly rotated view are related to B′ in the following
linear form:
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=
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0 − sinβ 0 cosβ 0 0 0 0 0

0 0 0 0 A1 0 A2 A3 0

0 0 0 0 0 cosβ 0 0 sinβ

0 0 0 0 A4 0 A5 A6 0

0 0 0 0 A7 0 A8 A9 0

0 0 0 0 0 − sinβ 0 0 cosβ
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b′e22

b′o22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

where A1 = 1 − (3/2)sin2β, A2 =
√

3sinβ cosβ, A3 = (−√3/
2) sin2β, A4 = −√3sinβ cosβ, A5 = cos2β − sin2β, A6 =
− cosβsinβ, A7 = (−√3/2)sin2β, A8 = cosβsinβ, A9 = 1 −
(1/2)sin2β.

A direct proof (rather than deriving from the general ro-
tation equations) of this proposition is given in the appendix,
where we also show that the proposition is consistent with
the general rotation matrix of spherical harmonics.

To illustrate the effectiveness of (3) and (4), we synthe-
sized the basis images at an arbitrarily rotated pose from
those at the frontal pose, and compared them with the
ground truth generated from the 3D scan in Figure 2. The
first three rows present the results for subject 1, with the first
row showing the basis images at the frontal pose generated
from the 3D scan, the second row showing the basis images
at the rotated pose (azimuth angle θ = −30◦, elevation angle
β = 20◦) synthesized from the images at the first row, and
the third row showing the ground truth of the basis images
at the rotated pose generated from the 3D scan. Rows four
through six present the results for subject 2, with the fourth
row showing the basis images at the frontal pose generated
from the 3D scan, the fifth row showing the basis images for
another rotated view (azimuth angle θ = −30◦, elevation an-
gle β = −20◦) synthesized from the images at the fourth row,
and the last row showing the ground truth of the basis images
at the rotated pose generated from the 3D scan. As we can
see from Figure 2, the synthesized basis images at the rotated
poses are very close to the ground truth. Note in Figure 2 and
the figures in the sequel the dark regions represent the nega-
tive values of the basis images.

Given that the correspondence between the rotated-pose
image and the frontal-pose image is available, a consequence
of the existence of such linear transformation is that the pro-
cedure of first rotating objects and then recomputing basis
images at the desired pose can be avoided. The block diag-
onal form of the transformation matrices preserves the en-
ergy on each order l = 0, 1, 2. Moreover, the orthonormality

of the transformation matrices helps to further simplify the
computation required for the recognition of the rotated test
image as shown in Section 4.2. Although in theory new basis
images can be generated from a rotated 3D model inferred by
the existing basis images (since basis images actually capture
the albedo (b00) and the 3D surface normal (b10, be11, bo11) of a
given human face), the procedure of such 3D recovery is not
trivial in practice, even if computational cost is taken out of
consideration.

4. FACE RECOGNITION USING POSE-ENCODED
SPHERICAL HARMONICS

In this section, we present an efficient face recognition
method using pose-encoded spherical harmonics. Only one
training image is needed per subject and high recognition
performance is achieved even when the test image is at a dif-
ferent pose from the training image and under an arbitrary
illumination condition.

4.1. Statistical models of basis images

We briefly summarize a statistical learning method to recover
the harmonic basis images from only one image taken under
arbitrary illumination conditions, as shown in [9].

We build a bootstrap set with fifty 3D face scans and cor-
responding texture maps from Vetter’s 3D face database [10],
and generate nine basis images for each face model. For a
novel N-dimensional vectorized image I , let B be the N × 9
matrix of basis images, α, a 9-dimensional vector, and e, an
N-dimensional error term. We have I = Bα+ e. It is assumed
that the probability density functions (pdf ’s) of B are Gaus-
sian distributions. The sample mean vectors μb(x) and co-
variance matrixes Cb(x) are estimated from the basis images
in the bootstrap set. Figure 3 shows the sample mean of the
basis images estimated from the bootstrap set.

By estimating α and the statistics of E(α) in a prior step
with kernel regression and using them consistently across all
pixels to recover B, it is shown in [9] that for a given novel
face image i(x), the corresponding basis images b(x) at each
pixel x are recovered by computing the maximum a posteri-
ori (MAP) estimate, bMAP(x) = argb(x)max(P(b(x) | i(x))).
Using the Bayes rule,

bMAP(x)

= arg
b(x)

maxP
(
i(x) | b(x)

)
P
(
b(x)

)
= arg

b(x)
max

{
N
(
b(x)Tα + μe, σ

2
e

)
N
(
μb(x),Cb(x)

)}
.

(5)

Taking logarithm, and setting the derivatives of the right-
hand side of (5) (w.r.t. b(x)) to 0, we get A∗bMAP = U , where
A = (1/σ2

e)ααT + C−1
b and U = ((i− μe)/σ

2
e)α + C−1

b μb. Note
that the superscript (·)T denotes the transpose of the matrix
here and in the sequel. By solving this linear equation, b(x)
of the subject can be recovered.

In Figure 4, we illustrate the procedure for generating the
basis images at a rotated pose (azimuth angle θ = −30◦)
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(a) Subject 1: the basis images at the frontal pose generated from the 3D scan

(b) Subject 1: the basis images at the rotated pose synthesized from (a)

(c) Subject 1: the ground truth of the basis images at the rotated pose generated from the 3D scan

(d) Subject 2: the basis images at the frontal pose generated from the 3D scan

(e) Subject 2: the basis images at the rotated pose synthesized from (d)

(f) Subject 2: the ground truth of the basis images at the rotated pose generated from the 3D scan

Figure 2: (a)–(c) present the results of the synthesized basis images for subject 1, where (a) shows the basis images at the frontal pose
generated from the 3D scan, (b) the basis images at a rotated pose synthesized from (a), and (c) the ground truth of the basis images at the
rotated pose. (d)-(e) present the results of the synthesized basis images for subject 2, with (d) showing the basis images at the frontal pose
generated from the 3D scan, (e) the basis images at a rotated pose synthesized from (d), and (f) the ground truth of the basis images at the
rotated pose.

b00 b10 be11 bo11 b20 be21 bo21 be22 bo22

Figure 3: The sample mean of the basis images estimated from the bootstrap set [10].

from a single training image at the frontal pose. In Figure 4,
rows one through three show the results of the recovered ba-
sis images from a single training image, with the first column
showing different training images I under arbitrary illumi-
nation conditions for the same subject and the remaining

nine columns showing the recovered basis images. We can
observe from the figure that the basis images recovered from
different training images of the same subject look very simi-
lar. Using the basis images recovered from any training image
in row one through three, we can synthesize basis images at
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(a)

(b)

(c)

Figure 4: The first column in (a) shows different training images I under arbitrary illumination conditions for the same subject and the
remaining nine columns in (a) show the recovered basis images from I . We can observe that the basis images recovered from different training
images of the same subject look very similar. Using the basis images recovered from any training image I in (a), we can synthesize basis images
at the rotated pose, as shown in (b). As a comparison, (c) shows the ground truth of the basis images at the rotated pose generated from the
3D scan.

the rotated pose, as shown in row four. As a comparison, the
fifth row shows the ground truth of the basis images at the
rotated pose generated from the 3D scan.

For the CMU-PIE [11] database, we used the images of
each subject at the frontal pose (c27) as the training set.
One hundred 3D face models from Vetter’s database [10]
were used as the bootstrap set. The training images were first
rescaled to the size of the images in the bootstrap set. The
statistics of the harmonic basis images was then learnt from
the bootstrap set and the basis images B for each training
subject were recovered. Figure 5 shows two examples of the
recovered basis images from the single training image, with
the first column showing the training images I and the re-
maining 9 columns showing the reconstructed basis images.

4.2. Recognition

For recognition, we follow a simple yet effective algorithm
given in [4]. A face is identified for which there exists a
weighted combination of basis images that is the closest to
the test image. Let B be the set of basis images at the frontal
pose, with size N × v, where N is the number of pixels in the
image and v = 9 is the number of basis images used. Every
column of B contains one spherical harmonic image. These
images form a basis for the linear subspace, though not an
orthonormal one. A QR decomposition is applied to com-
pute Q, an N × v matrix with orthonormal columns, such
that B = QR, where R is a v × v upper triangular matrix.

For a vectorized test image Itest at an arbitrary pose, let
Btest be the set of basis images at that pose. The orthonor-
mal basis Qtest of the space spanned by Btest can be com-
puted by QR decomposition. The matching score is defined
as the distance from Itest to the space spanned by Btest : stest =
‖QtestQT

testItest− Itest‖. However, this algorithm is not efficient
to handle pose variation because the set of basis images Btest

has to be generated for each subject at the arbitrary pose of a
test image.

We propose to warp the test image Itest at the arbitrary
(rotated) pose to its frontal view image I f to perform recog-
nition. In order to warp Itest to I f , we have to find the point
correspondence between these two images, which can be em-
bedded in a sparse N × N warping matrix K , that is, I f =
KItest. The positions of the nonzero elements in K encode
the 1-to-1 and many-to-1 correspondence cases (the 1-to-
many case is same as 1-to-1 case for pixels in I f ) between
Itest and I f , and the positions of zeros on the diagonal line
of K encode the no-correspondence case. More specifically,
if pixel I f (i) (the ith element in vector I f ) corresponds to
pixel Itest( j) (the jth element in vector Itest), then K(i, j) = 1.
There might be cases that there are more than one pixel in
Itest corresponding to the same pixel I f (i), that is, there are
more than one 1 in the ith row of K , and the column indices
of these 1’s are the corresponding pixel indices in Itest. For
this case, although there are several pixels in Itest mapping to
the same pixel I f (i), it can only have one reasonable intensity
value. We compute a single “virtual” corresponding pixel in
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I b00 b10 be11 bo11 b20 be21 bo21 be22 bo22

Figure 5: The first column shows the training images I for two subjects in the CMU-PIE database and the remaining nine columns show
the reconstructed basis images.

Itest for I f (i) as the centroid of I f (i)’s real corresponding pix-
els in Itest, and assign it the average intensity. The weight for
each real corresponding pixel Itest( j) is proportional to the
inverse of its distance to the centroid, and this weight is as-
signed as the value of K(i, j). If there is no correspondence in
Itest for I f (i) which is in the valid facial area and should have a
corresponding point in Itest, it means that K(i, i) = 0. This is
often the case that the corresponding “pixel” of I f (i) falls in
the subpixel region. Thus, interpolation is needed to fill the
intensity for I f (i). Barycentric coordinates [26] are calculated
with the pixels which have real corresponding integer pixels
in Itest as the triangle vertices. These Barycentric coordinates
are assigned as the values of K(i, j), where j is the column
index for each vertex of the triangle.

We now have the warping matrix K which encodes the
correspondence and interpolation information in order to
generate I f from Itest. It provides a very convenient tool to
analyze the impact of some empirical factors in image warp-
ing. Note that due to self-occlusion, I f does not cover the
whole area, but only a subregion, of the full frontal face of
the subject it belongs to. The missing facial region due to the
rotated pose is filled with zeros in I f . Assume that Bf is the
basis images for the full frontal view training images and Qf

is its orthonormal basis, and let b f be the corresponding ba-
sis images of I f and q f its orthonormal basis. In b f , the rows
corresponding to the valid facial pixels in I f form a subma-
trix of the rows in Bf corresponding to the valid facial pix-
els in the full frontal face images. For recognition, we can-
not directly use the orthonormal columns in Qf because it is
not guaranteed that all the columns in q f are still orthonor-
mal.

We study the relationship between the matching score for
the rotated view stest = ‖QtestQT

testItest − Itest‖ and the match-
ing score for the frontal view sf = ‖q f q

T
f I f − I f ‖. Let sub-

ject a be the one that has the minimum matching score at
the rotated pose, that is, satest = ‖Qa

testQ
a
test

TItest − Itest‖ ≤
sctest = ‖Qc

testQ
c
test

TI test − Itest‖, for all c ∈ [1, 2, . . . ,C], where
C is the number of training subjects. If a is the correct sub-
ject for the test image Itest, warping Qa

test to qaf undertakes
the same warping matrix K as warping Itest to I f , that is, the
matching score for the frontal view saf = ‖qaf qaf TI f − I f ‖ =

‖KQa
testQ

a
test

TKTKItest − KItest‖. Note here that we only con-
sider the correspondence and interpolation issues. Due to the
orthonormality of the transformation matrices as shown in
(3) and (4), the linear transformation from Btest to b f does
not affect the matching score. For all the other subjects c ∈
[1, 2, . . . C], c /= a, the warping matrix Kc for Qc

test is differ-
ent from that for Itest, that is, scf = ‖KcQc

testQ
c
test

TK
cTKItest −

KItest‖. We will show that warping Itest to I f does not deteri-
orate the recognition performance, that is, given satest ≤ sctest,
we have saf ≤ scf .

In terms of K , we consider the following cases.

Case 1. K = ( Ek 0
0 0

)
, where Ek is the k-rank identity matrix.

It means that K is a diagonal matrix and the first k elements
on the diagonal line are 1, all the rest are zeros.

This is the case when Itest is at the frontal pose. The dif-
ference between Itest and I f is that there are some missing
(nonvalid) facial pixels in I f than in Itest, and all the valid fa-
cial pixels in I f are packed in the first k elements. Since Itest

and I f are at the same pose, Qtest and q f are also at the same
pose. In this case, for subject a, the missing (nonvalid) facial
pixels in q f are at the same locations as in I f since they have
the same warping matrix K . On the other hand, for any other
subject c, the missing (nonvalid) facial pixels in q f are not at
the same locations as in I f since Kc /=K . Apparently the 0’s
and 1’s on the diagonal line of Kc has different positions from
that of K , thus KcK has more 0’s on the diagonal line than K .

Assume K = ( Ek 0
0 0

)
and V = QtestQT

test =
( V11 V12
V21 V22

)
,

where V11 is a (k × k) matrix. Similarly, let Itest =
( I1
I2

)
,

where I1 is a (k × 1) vector. Then KQtestQT
testK

T = ( V11 0
0 0

)
,

KItest =
( I1

0

)
, and KQtestQT

testK
TKItest − KItest =

( V11I1
0

) −( I1
0

) = ( (V11−Ek)I1
0

)
. Therefore, saf = ‖(V11 − Ek)I1‖. Simi-

larly, KcQtestQT
testK

cT = ( Vc
11 0
0 0

)
, where Vc

11 is also a (k × k)
matrix that might contain rows with all 0’s, depending on
the locations of the 0’s on the diagonal line of Kc. We have
KcQtestQT

testK
cTKItest − KItest =

( Vc
11I1
0

)− ( I1
0

) = ( (Vc
11−Ek)I1

0

)
.

Thus, scf = ‖(Vc
11 − Ek)I1‖.

If Vc
11 has rows with all 0’s in the first k rows, these rows

will have −1’s at the diagonal positions for Vc
11 − Ek, which

will increase the matching score scf . Therefore, saf ≤ scf .
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Table 1

Pose
(
θ = 30◦, β = 0◦

) (
θ = 30◦, β = −20◦

) (
θ = −30◦, β = 0◦

) (
θ = −30◦, β = 20◦

)
mean

(
(sf − stest)/stest

)
3.4% 3.9% 3.5% 4.1%

std
(
(sf − stest)/stest

)
5.0% 5.2% 4.9% 5.1%

Case 2. K is a diagonal matrix with rank k, however, the k 1’s
are not necessarily the first k elements on the diagonal line.

We can use some elementary transformation to reduce
this case to the previous case. That is, there exists a orthonor-
mal matrix P, such that K̂ = PKPT = ( Ek 0

0 0

)
.

Let Q̂test = PQtestPT and Îtest = PItest. Then

saf =
∥∥P(KQtestQ

T
testK

TKItest − KItest
)∥∥

= ∥∥K̂Q̂testQ̂
T
testK̂

TK̂ Îtest − K̂ Îtest
∥∥. (6)

Note that elementary transformation does not change the
norm. Hence, it reduces to the previous case. Similarly, we
have that scf stays the same as in Case 1. Therefore, saf ≤ scf
still holds.

In the general case, 1’s in K can be off-diagonal. This
means that Itest and I f are at different poses. There are three
subcases that we need to discuss for a general K .

Case 3. 1-to-1 correspondence between Itest and I f . If pixel
Itest( j) has only one corresponding point in I f , denoted as
I f (i), then K(i, j) = 1 and there are no 1’s in both the
ith row and the jth column in K . Suppose there are only
k columns of the matrix K containing 1. Then, by appro-
priate elementary transformation again, we can left multiply
and right multiply K by an orthonormal transformation ma-
trixes, W and V , respectively, such that K̃ = WKV . If we
define Q̃test = VTQtestW and Ĩtest = VTItest, then

saf =
∥∥KQtestQ

T
testK

TKItest − KItest
∥∥

= ∥∥W(
KQtestQ

T
testK

TKItest − KItest
)∥∥

= ∥∥WKVVTQtestWWTQT
testVVTKTWTWKV

(
VTItest

)
−WKV

(
VTItest

)∥∥
= ∥∥K̃Q̃testQ̃

T
testK̃

TK̃ Ĩtest − K̃ Ĩtest
∥∥.

(7)

Under K̃ , it reduces to Case 2, which can be further reduced
to Case 1 by the aforementioned technique. Similarly, we
have that scf stays the same as in Case 2. Therefore, saf ≤ scf
still holds.

In all the cases discussed up to now, the correspondence
between Itest and I f is 1-to-1 mapping. For such cases, the fol-
lowing lemma shows that the matching score stays the same
before and after the warping.

Lemma1. Given the correspondence between a rotated test im-
age Itest and its geometrically synthesized frontal view image I f
is 1-to-1 mapping, the matching score stest of Itest based on the
basis images Btest at that pose is the same as the matching score
sf of I f based on the basis images b f .

Let O be the transpose of the combined coefficient ma-
trices in (3) and (4), we have b f = KBtestO = QtestRO by
QR decomposition, where K is the warping matrix from Itest

to I f with only 1-to-1 mapping. Applying QR decomposi-
tion again to RO, we have RO = q̃r̃, where q̃v×v is an or-
thonormal matrix and r̃ is an upper triangular matrix. We
now have b f = KQtestq̃ r̃ = q f r̃ with q f = KQtestq̃. Since
Qtestq̃ is the product of two orthonormal matrices, q f forms
a valid orthnormal basis for b f . Hence the matching score is
sf = ‖q f q

T
f I f − I f ‖ = ‖KQtestq̃q̃TQT

testK
TKItest − KItest‖ =

‖QtestQT
testItest − Itest‖ = stest.

If the correspondence between Itest and I f is not 1-to-1
mapping, we have the following two cases.

Case 4. Many-to-1 correspondence between Itest and I f .

Case 5. There is no correspondence for I f (i) in Itest.

For Cases 4 and 5, since the 1-to-1 correspondence as-
sumption does not hold any more, the relationship between
stest and sf is more complex. This is due to the effects of
fortshortening and interpolation. Fortshortening leads to
more contributions for the rotated view recognition but less
in the frontal view recognition (or vice versa) because of
the fortshortening. The increased (or decreased) informa-
tion due to interpolation, and the assigned weight for each
interpolated pixel, is not guaranteed to be the same as that
before the warping. Therefore, the relationship between stest

and sf relies on each specific K , which may vary significantly
depending on the variation of the head pose. Instead of the-
oretical analysis, the empirical error bound between stest and
sf is sought to give a general idea of how the warping affects
the matching scores. We conducted experiments using Vet-
ter’s database. For the fifty subjects which are not used in
the bootstrap set, we generated images at various poses and
obtained their basis images at each pose. For each pose, stest

and sf are compared, and the mean of the relative error and
the relative standard deviation for some poses are listed in
Table 1.

We can see from the experimental results although stest

and sf are not exactly the same that the difference between
stest and sf is very small. We examined the ranking of the
matching scores before and after the warping. Table 2 shows
the percentage that the top one pick before the warping still
remains as the top one after the warping.

Thus, warping the test image Itest to its frontal view im-
age I f does not reduce the recognition performance. We now
have a very efficient solution for face recognition to handle
both pose and illumination variations as only one image I f
needs to be synthesized.

Now, the only remaining problem is that the corre-
spondence between Itest and I f has to be built. Although a
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Table 2

Pose
(
θ = 30◦, β = 0◦

) (
θ = 30◦, β = −20◦

) (
θ = −30◦, β = 0◦

) (
θ = −30◦, β = 20◦

)
percentage of the top one
pick keeps its position

98.4% 97.6% 99.2% 97.9%

Figure 6: Building dense correspondence between the rotated view and the frontal view using sparse features. The first and second images
show the sparse features and the constructed meshes on the mean face at the frontal pose. The third and fourth images show the picked
features and the constructed meshes on the given test image at the rotated pose.

necessary component of the system, finding correspondence
is not the main focus of this paper. Like most of the ap-
proaches to handle pose variations, we adopt the method to
use sparse main facial features to build the dense cross-pose
or cross-subject correspondence [9]. Some automatic facial
feature detection/selection techniques are available, but most
of them are not robust enough to reliably detect the facial fea-
tures from images at arbitrary poses and are taken under ar-
bitrary lighting conditions. For now, we manually pick sixty
three designated feature points (eyebrows, eyes, nose, mouth,
and the face contour) on Itest at the arbitrary pose. An average
face calculated from training images at the frontal pose and
the corresponding feature points were used to help to build
the correspondence between Itest and I f . Triangular meshes
on both faces were constructed and barycentric interpolation
inside each triangle was used to find the dense correspon-
dence, as shown in Figure 6. The number of feature points
needed in our approach is comparable to the 56 manually
picked feature points in [9] to deform the 3D model.

4.3. View synthesis

To verify the recognition results, the user is given the option
to visually compare the chosen subject and the test image Itest

by generating the face image of the chosen subject at the same
pose and under the same illumination condition as Itest. The
desired N-dimensional vectorized image Ides can be synthe-
sized easily as long as we can generate the basis images Bdes of
the chosen subject at that pose by using Ides = Bdesαtest. As-
suming that the correspondence between Itest and the frontal
pose image has been built as described in Section 4.2, then
Bdes can be generated from the basis images B of the cho-
sen subject at the frontal pose using (3) and (4), given that
the pose (θ,β) of Itest can be estimated as described later.
We also need to estimate the 9-dimensional lighting coef-
ficient vector αtest. Assuming that the chosen subject is the
correct one, that is, Btest = Bdes, we have Itest = Bdesαtest

by substituting Btest = Bdes into Itest = Btestαtest. Recalling
that Bdes = QdesRdes, we have Itest = QdesRdesαtest and then
QT

desItest = QT
desQdesRdesαtest = Rdesαtest due to the orthonor-

mality of Qdes. Therefore, αtest = R−1
desQ

T
desItest.

Having both Bdes and αtest available, we are ready to gen-
erate the face image of the chosen subject at the same pose
and under the same illumination condition as Itest using
Ides = Bdesαtest. The only unknown to be estimated is the pose
(θ,β) of Itest, which is needed in (3) and (4).

Estimating head pose from a single face image is an ac-
tive research topic in computer vision. Either a generic 3D
face model or several main facial features are utilized to esti-
mate the head pose. Since we already have the feature points
to build the correspondence across views, it is natural to use
these feature points for pose estimation. In [27], five main fa-
cial feature points (four eye corners and the tip of the nose)
are used to estimate the 3D head orientation. The approach
employs the projective invariance of the cross-ratios of the
eye corners and anthropometric statistics to determine the
head yaw, roll and pitch angles. The focal length f has to be
assumed known, which is not always available for the uncon-
trollable test image. We take the advantage that the facial fea-
tures on the frontal view mean face are available, and show
how to estimate the head pose without knowing f . All nota-
tions follow those in [27].

Let (u2,u1, v1, v2) be the image coordinates of the four eye
corners, and D and D1 denote the width of the eyes and half
of the distance between the two inner eye corners, respec-
tively. From the well known projective invariance of the cross
ratios we have J = (u2 − u1)(v1 − v2)/(u2 − v1)(u1 − v2) =
D2/(2D1 + D)2 which yields D1 = DQ/2, whereQ = 1/

√
J−1.

In order to recover the yaw angle θ (around the Y-axis), it is
easy to have, as shown in [27], that θ = arctan( f /(S + 1)u1),
where f is the focal length and S is the solution to the equa-
tion Δu/Δv = −(S− 1)(S− (1 + 2/Q))/(S+ 1)(S+ 1 + 2/Q)),

where Δu = u2 − u1 and Δv = v1 − v2. Assume that u
f
1 is

the inner corner of one of the eyes for the frontal view mean
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Table 3: The mean and standard deviation (std) of the estimated pose for images from the Vetter’s database.

Rotation angles (θ = 30◦, β = 0◦) (θ = 30◦, β = −20◦) (θ = −30◦, β = 0◦) (θ = −30◦, β = 20◦)

Mean of the estimated pose (θ = 28◦, β = 2◦) (θ = 31◦, β = −23◦) (θ = −32◦, β = 1◦) (θ = −33◦, β = 22◦)

std of the estimated pose (3.2◦, 3.1◦) (3.9◦, 4.2◦) (3.4◦, 2.7◦) (4.2◦, 4.5◦)

c05(θ = 16◦) c07(β = 13◦) c09(β = −13◦) c11(θ = −32◦) c29(θ = −17◦) c37(θ = 31◦)

Figure 7: An illustration of the pose variation in part of the CMU-PIE database, with the ground truth of the pose shown beside each pose
index. Four of the cameras (c05, c11, c29, and c37) sweep horizontally, and the other two are above (c09) and below (c07) the central camera,
respectively.

face. With perspective projection, we have u
f
1 = f D1/Z and

u1 = f X1/(Z + Z1) = f D1 cos θ/(Z + D1 sin θ). Thus,

f = (S + 1)u1tanθ. (8)

Then we have S = (u1/u
f
1 )((S + 1)/ cos θ), which gives

θ = arccos
(S + 1)

S

u1

u
f
1

. (9)

In [27], β (the rotation angle around the x-axis) is shown
to be β = arcsin (E) with E = ( f /p0(p2

1 + f 2))[p2
1 ±√

(p2
0p

2
1 − f 2p2

1 + f 2p2
0)], where p0 denotes the projected

length of the bridge of the nose when it is parallel to the im-
age plane, and p1 denotes the observed length of the bridge of
the nose at the unknown pitch β. Anthropometric statistics
is employed in [27] to get p0. With the facial features on the
mean face at the frontal view available, we do not need the
anthropometric statistics. p0 is just the length between the
upper midpoint of the nose and the tip of the nose for the
frontal view mean face. So we can directly use this value and
the estimated focal length f in (8) to get the pitch angle β.

The head pose estimation algorithm is tested on both
synthetic and real images. For synthetic images, we use Vet-
ter’s 3D face database. The 3D face model for each subject
is rotated to the desired angle and project to the 2D image
plane. Four eye corners and the tip of the nose are used to
estimate the head pose. The mean and standard deviation of
the estimated poses are listed in Table 3. For real images, we
use the CMU-PIE database. The ground truth of the head
pose can be obtained from the available 3D locations of the
head and the cameras. The experiments are conducted for all
68 subjects in the CMU-PIE database at six different poses, il-
lustrated in Figure 7 with the ground truth of the pose shown
beside each pose index. The mean and standard deviation of
the estimated poses are listed in Table 4. Overall the pose esti-
mation results are satisfying and we believe that the relatively
large standard deviation is due to the error in selecting the
facial features. The mean and standard deviation (std) of the
estimated pose for images from the Vetter’s database.

Having the head pose estimated, we can now perform the
face synthesis. Figure 8 shows the comparison of the given

test image Itest and some synthesized face images at the same
pose as Itest from the chosen subject, where Figure 8(a) is for
the synthetic images in Vetter’s 3D database and Figure 8(b)
is for the real images in the CMU-PIE database. Column one
shows the training images. Column two shows the synthe-
sized images at the same pose as Itest by direct warping. Col-
umn three shows the synthesized images using the basis im-
ages Bdes from the chosen subject and the illumination co-
efficients αtr of the training images. A noticeable difference
between column two and three is the lighting change. By di-
rect warping, we obtain the synthesized images by not only
rotating the head pose, but also rotating the lighting direc-
tion at the same time. By using αtr, we only rotate the head
pose to get the synthesized images, while the lighting condi-
tion stays same as the training images. Column four shows
the synthesized images using the basis images Bdes from the
chosen subject and the same illumination coefficients αtest of
Itest. As a comparison, column five shows the given test im-
age Itest. Overall, the columns from left to right in Figure 8
show the procedure migrating from the training images to
the given test images.

5. RECOGNITION RESULTS

We first conducted recognition experiments on Vetter’s 3D
face model database. There are totally one hundred 3D face
models in the database, from which fifty were used as the
bootstrap set and the other fifty were used to generate train-
ing images. We synthesized the training images under a wide
variety of illumination conditions using the 3D scans of the
subjects. For each subject, only one frontal view image was
stored as the training image and used to recover the basis
images B using the algorithm in Section 4.1. We generated
the test images at different poses by rotating the 3D scans
and illuminated them with various lighting conditions (rep-
resented by the slant angle γ and tilt angle τ). Some examples
are shown in Figures 9(a), 9(b), 9(c) and 9(d). For a test im-
age Itest at an arbitrary pose, the frontal view image I f was
synthesized by warping Itest, as shown in Figures 9(e), 9(f),
9(g) and 9(h).
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Table 4: The mean and standard deviation (std) of the estimated pose for images from the CMU-PIE database.

Pose index c05 c07 c09 c11 c29 c37

Mean of the estimated pose θ = 15◦ β = 11◦ β = −15◦ θ = −36◦ θ = −17◦ θ = 35◦

std of the estimated pose 4.1◦ 3.8◦ 4.0◦ 6.2◦ 3.3◦ 5.4◦

(a)

(b)

Figure 8: View synthesis results with different lighting conditions for (a) synthetic images from Vetter’s 3D database and (b) real images
in the CMU-PIE database. Columns from left to right show the training images, the synthesized images at the same pose as the test images
using direct warping (both the head pose and the lighting direction are rotated), the synthesized images at the same pose as the test images
from Bdes (the basis images of the chosen subject) and αtr (the illumination coefficients of the training images), the synthesized images at the
same pose as the test images from Bdes and αtest (the illumination coefficients of the given test images), and the given test images Itest.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: (a) shows the test images of a subject at azimuth θ = −30◦ under different lighting conditions (γ = 90◦, τ = 10◦; γ = 30◦, τ = 50◦;
γ = 40◦, τ = −10◦; γ = 20◦, τ = 70◦; γ = 80◦, τ = −20◦; γ = 50◦, τ = 30◦ from left to right). The test images of the same subject under some
extreme lighting conditions (γ = 20◦, τ = −70◦; γ = 20◦, τ = 70◦; γ = 120◦, τ = −70◦; γ = 120◦, τ = −70◦ from left to right) are shown
in (b). (c) and (d) show the generated frontal pose images from the test images in (a) and (b), respectively. The test images at another pose
(with θ = −30◦ and β = 20◦) of the same subject are shown in (e) and (f), with the generated frontal pose images shown in (g) and (h),
respectively.

The recognition score was computed as ‖q f q
T
f I f − I f ‖

where q f is the orthonormal basis of the space spanned by
b f . As a benchmark, the first column (f2f) of Table 5 lists the
recognition rates when both the testing images and the train-
ing images are from the frontal view. The correct recognition
rates using the proposed method are listed in columns (r2f)
of Table 5. As a comparison, we also conducted the recogni-
tion experiment on the same test images assuming that the
training images at the same pose are available. By recover-
ing the basis images Btest at that pose using the algorithm in
Section 4.1 and computing ‖QtestQT

testItest−Itest‖, we achieved
the recognition rates as shown in columns (r2r) of Table 5. As
we can see, the recognition rates using our approach (r2f) are
comparable to those when the training images at the rotated
pose are available (r2r). The last two rows of show the mean
and standard deviation of the recognition rates for each pose
under various illumination conditions. We believe that rel-
atively larger standard deviation is due to the images under
some extreme lighting conditions, as shown in Figures 9(b)
and 9(f).

We also conducted experiments on real images from the
CMU-PIE database. For testing, we used images at six differ-
ent poses, as shown in the first and third rows in Figure 10,
and under twenty one different illuminations. Examples of
the generated frontal view images are shown in the second
and fourth rows of Figure 10.

Similar to Table 5,Table 6 lists the correct recognition
rates under all these poses and illumination conditions,

where column (f2f) is the frontal view testing image against
frontal view training images, columns (r2r) are the ro-
tated testing image against the same pose training images,
and columns (r2f) are the rotated testing image against the
frontal view training images. The last two rows of Table 6
show the mean and standard deviation of the recognition
rates for each pose under various illumination conditions.
As we can see, the recognition rates using our approach are
comparable to those when the training images at the rotated
pose are available, even slightly better. The reason is that the
training images of different subjects at the same rotated pose
are actually at slightly different poses. Therefore, the 2D-3D
registration of the training images and the bootstrap 3D face
models are not perfect, producing slightly worse basis images
recovery than the frontal pose case.

We have to mention that although colored basis images
are recovered for visualization purpose, all the recognition
experiments are performed on grayscale images for faster
speed. We are taking the efforts to investigate how color in-
formation affects the recognition performance.

6. DISCUSSIONS AND CONCLUSION

We have presented an efficient face synthesis and recognition
method to handle arbitrary pose and illumination from a
single training image per subject using pose-encoded spher-
ical harmonics. Using a prebuilt 3D face bootstrap set, we
apply a statistical learning method to obtain the spherical
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Table 5: The correct recognition rates at two rotated pose under various lighting conditions for synthetic images generated from Vetter’s 3D
face model database.

Lighting/pose f2f
Pose θ = −30◦ and β = 0◦ Pose θ = −30◦ and β = 20◦

r2f r2r r2f r2r

(γ = 90◦, τ = 10◦) 100 100 96 84 80

(γ = 30◦, τ = 50◦) 100 100 100 100 100

(γ = 40◦, τ = −10◦) 100 100 100 100 100

(γ = 70◦, τ = 40◦) 100 100 100 94 88

(γ = 80◦, τ = −20◦) 100 100 98 88 84

(γ = 50◦, τ = 30◦) 100 100 100 100 96

(γ = 20◦, τ = −70◦) 94 86 64 80 68

(γ = 20◦, τ = 70◦) 100 100 80 96 76

(γ = 120◦, τ = −70◦) 92 84 74 74 64

(γ = 120◦, τ = 70◦) 96 90 64 82 70

Mean 98 96 88 90 83

std 3 6.6 15 9.5 13

(c05) (c07) (c09) (c11) (c29) (c37)

Figure 10: The first and third rows show the test images of two subjects in the CMU-PIE database at six different poses, with the pose
numbers shown above each column. The second and fourth rows show the corresponding frontal view images generated by directly warping
the given test images.

harmonic basis images from a single training image. For a
test image at a different pose from the training images, we
accomplish recognition by comparing the distance from a
warped version of the test image to the space spanned by
the basis images of each subject. The impact of some em-
pirical factors (i.e., correspondence and interpolation) due
to warping is embedded in a sparse transformation matrix,
and we prove that the recognition performance is not sig-
nificantly affected after warping the test image to the frontal
view. Experimental results on both synthetic and real im-
ages show that high recognition rate can be achieved when
the test image is at a different pose and under arbitrary
illumination condition. Furthermore, the recognition re-

sults can be visually verified by easily generated face im-
age of the chosen subject at the same pose as the test im-
age.

In scenarios where only one training image is available,
finding the cross-correspondence between the training im-
ages and the test image is inevitable. Automatic correspon-
dence establishment is always a challenging problem. Re-
cently, promising results have been shown by using the 4
planes, 4 transitions stereo matching algorithm described
in [28]. The disparity map can be reliably built for a pair
of images of the same person taken under the same light-
ing condition, even with some occlusions. We conducted
some experiments using this technique on both synthetic
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Table 6: The correct recognition rates at six rotated pose under various lighting conditions for 68 subjects in the CMU-PIE database.

Lighting/pose f2f
c05 c07 c09 c11 c29 c37

(r2f) (r2r) (r2f) (r2r) (r2f) (r2r) (r2f) (r2r) (r2f) (r2r) (r2f) (r2r)

f 02 86 84 80 84 82 82 80 82 76 82 80 80 76

f 03 95 94 90 95 92 94 92 92 84 92 88 90 84

f 04 97 96 94 97 95 97 94 94 90 97 94 92 88

f 05 98 98 94 98 96 96 96 94 90 96 94 92 90

f 06 100 100 99 100 100 100 100 98 96 100 99 98 94

f 07 98 98 96 100 100 100 98 94 94 97 95 92 92

f 08 97 96 94 97 95 97 94 92 90 96 94 92 88

f 09 100 100 98 100 99 100 98 100 96 100 98 99 96

f 10 100 100 98 100 100 100 100 96 94 100 98 92 92

f 11 100 100 100 100 100 100 100 98 96 100 100 98 96

f 12 96 94 92 94 94 95 95 90 88 92 92 90 86

f 13 98 96 92 96 94 94 94 92 88 94 92 90 88

f 14 100 100 98 100 100 100 100 98 94 99 96 96 92

f 15 100 100 100 100 100 100 100 100 97 100 98 98 96

f 16 98 97 95 98 96 98 96 96 92 97 95 95 90

f 17 95 94 92 95 95 95 95 92 88 94 90 90 86

f 18 92 90 88 92 90 90 88 86 82 90 86 86 80

f 19 96 95 90 94 92 92 92 90 86 94 90 84 82

f 20 96 95 92 96 94 95 94 92 88 94 90 90 84

f 21 97 97 97 97 96 97 95 94 92 95 95 94 90

f 22 97 97 95 96 95 95 95 94 90 95 94 92 90

Mean 97 96 94 96 95 96 95 93 90 95 93 92 89

std 3.2 3.8 4.6 3.7 4.2 4.2 4.6 4.3 5.1 4.2 4.7 4.6 5.2

and real images. Reasonably good correspondence maps were
achieved, even for cross-subject images. This technique has
been used for 2D face recognition across pose [29]. How-
ever, like all the other stereo methods, the intensity-invariant
condition is required, which does not hold if the images
are taken under different lighting conditions. For our chal-
lenging face recognition application, the lighting condition
of the test image is unconstraint. Therefore, currently this
stereo method cannot be directly used to build the corre-
spondence between Itest and I f . Further investigations are be-
ing taken for dense stereo with illumination variations com-
pensated.

APPENDIX

Assume that (nx,ny ,nz) and (n′x,n′y ,n′z) are the surface nor-
mals of point p at the frontal pose and the rotated view, re-
spectively. (n′x,n′y ,n′z) is related to (nx,ny ,nz) as

⎡⎢⎣n
′
y

n′y
n′y

⎤⎥⎦ =
⎡⎢⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤⎥⎦
⎡⎢⎣nxny

nz

⎤⎥⎦ , (A.1)

where −θ is the azimuth angle.

By replacing (n′x,n′y ,n′z) in (A.1) with (nz sin θ +
nx cos θ,ny ,nz cos θ − nx sin θ), and assuming that the cor-
respondence between the rotated view and the frontal view
has been built, we have

b′00 =
1√
4π

λ, b′10 =
√

3
4π

λ.∗(nz cos θ − nx sin θ
)
,

b′e11 =
√

3
4π

λ.∗(nz cos θ − nx sin θ
)
, b′o11 =

√
3

4π
λ.∗ny ,

b′20 =
1
2

√
5

4π
λ.∗(2(z cos θ − nx sin θ

)2

− (nz sin θ + nx cos θ
)2 − n2

y

)
,

b′e21 = 3

√
5

12π
λ.∗(nz sin θ+nx cos θ

)∗(nz cos θ−nx sin θ
)
,

b′o21 = 3

√
5

12π
λ.∗ny

(
nz cos θ − nx sin θ

)
,

b′e22 =
3
2

√
5

12π
λ.∗((nz sin θ + nx cos θ

)2 − n2
y

)

b′o22 = 3

√
5

12π
λ.∗(nz sin θ + nx cos θ

)
ny.

(A.2)
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Rearranging, we get

b′00 = b00, b′10 = b10 cos θ − be11 sin θ,

b′e11 = be11 cos θ + b10 sin θ, b′o11 = b11,

b′20 = b20 −
√

3 sin θ cos θbe21 −
√

5
4π

3
2

sin2θ(n2
z − n2

x),

b′e21 = (cos2θ − sin2θ)be21 + 3

√
5

12π
sin θ cos θ(n2

z − n2
x),

b′o21 = bo21 cos θ − bo22 sin θ,

b′e22 = be22 + cos θ sin θ be21 +

√
5

12π
3
2

sin2θ(n2
z − n2

x),

b′o22 = bo22 cos θ + bo21 sin θ.
(A.3)

As shown in (A.3), b′00, b′10, b′e10, b′o11, b′o21 and b′o22 are lin-
ear combinations of basis images at the frontal pose. For b′20,
b′e21 and b′e22, we need to have (n2

z − n2
x) which is not known.

From [4], we know that if the sphere is illuminated by a single
directional source in a direction other than the z direction,
the reflectance obtained would be identical to the kernel, but
shifted in phase. Shifting the phase of a function distributes
its energy between the harmonics of the same order n (vary-
ing m), but the overall energy in each order n is maintained.
The quality of the approximation, therefore, remains the
same. This can be verified by b′210 +b′e2

11 +b′o2
11 = b2

10 +be2
11 +bo2

11

for the order n = 1. Noticing that b′o2
21 + b′o2

22 = bo2
21 + bo2

22, we
still need b′220 + b′e2

21 + b′e2
22 = b2

20 + be2
21 + be2

22 to preserve the
energy for the order n = 2.

Let G = 3
√

5/12π sin2θ(n2
z − n2

x) and also let H =
3
√

5/12π sin θ cos θ(n2
z − n2

x), we have

b′20 = b20 −
√

3 sin θ cos θ be21 −
√

3
2
G,

b′e21 =
(
cos2θ − sin2θ

)
be21 + H ,

b′e22 = be22 + cos θ sin θ be21 +
1
2
G.

(A.4)

Then

b′220 + b′e2
21 + b′e2

22

= b2
20 + be2

21 + be2
22 +

3G2

4
− 2
√

3 sin θ cos θ b20b
e
21

−√3 b20G + 3 sin θ cos θG + H2 + 2
(
cos2θ − sin2θ

)
be21H

+
G2

4
+ 2 sin θ cos θ be22b

e
21 + be22G + sin θ cos θG

= b2
20 + be2

21 + be2
22 + G2 + 4 sin θ cos θ be21G

+
(
be22 −

√
3b20

)(
G + 2 sin θ cos θbe21

)
+ H2

+2
(
cos2θ − sin2θ

)
be21H.

(A.5)

Having b′220 + b′e2
21 + b′e2

22 = b2
20 + be2

21 + be2
22 and H =

G(cos θ/ sin θ), we get

G2 + 2 sin θ cos θ be21G

+
(
be22 −

√
3 b20

)(
G sin2θ + 2 sin θ cos θ be21

) = 0,
(A.6)

and then (G + 2 sin θ cos θbe21)(G + sin2θ(be22 −
√

3b20)) = 0.

Two possible roots of the polynomial are G =
−2 sin θ cos θbe21 or G = −sin2θ(be22 −

√
3b20). Substituting

G = −2 sin θ cos θbe21 into (A.4) gives b′20 = b20, b′e21 = −be21,
b′e22 = be22, which is apparently incorrect. Therefore, we have
G = −sin2θ(be22−

√
3b20) and H = − cos θ sin θ(be22−

√
3b20).

Substituting them in (A.4), we get

b′20 = b20 −
√

3 sin θ cos θ be21 +

√
3

2
sin2θ

(
be22 −

√
3b20

)
,

b′e21 =
(
cos2θ − sin2θ

)
be21 − cos θ sin θ

(
be22 −

√
3b20

)
,

b′e22 = be22 + cos θ sin θ be21 −
1
2

sin2θ
(
be22 −

√
3b20

)
.

(A.7)

Using (A.3) and (A.7), we can write the basis images at the
rotated pose in the matrix form of the basis images at the
frontal pose, as shown in (3).

Assuming that there is an elevation angle −β after the
azimuth angle −θ and denoting by (n′′x ,n′′y ,n′′z ) the surface
normal for the new rotated view, we have⎡⎢⎣n′′xn′′y

n′′z

⎤⎥⎦ =
⎡⎢⎣1 0 0

0 cosβ − sinβ
0 sinβ cosβ

⎤⎥⎦
⎡⎢⎣n′xn′y
n′z

⎤⎥⎦ . (A.8)

Repeating the above derivation easily leads to the linear equa-
tions in (4) which relates the basis images at the new rotated
pose to the basis images at the old rotated pose.

Next, we show that the proved proposition is consistent
with the general rotation matrix of spherical harmonics. If
we use a ZYZ formulation for the general rotation, we have
Rθ,ω,β = Rz(ω)Ry(θ)Rz(β), the dependence of Dl on ω and β

is simple,Dl
m,m′(θ,ω,β) = dlm,m′(θ)eimωeim

′β where dl is a ma-
trix that defines how a spherical harmonic transforms under
rotation about the Y-axis. We can further decompose it into
a rotation of 90◦ about the X-axis, a general rotation θ about
the Z-axis followed finally by a rotation of −90◦ about the
X-axis [30]. Since

X∓90 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0 ±1 0 0 0 0 0 0
0 ∓1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 ±1 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1/2 0 −√3/2
0 0 0 0 ∓1 0 0 0 0
0 0 0 0 0 0 −√3/2 0 1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A.9)

Zθ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 cos θ 0 sin θ 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 −sin θ 0 cos θ 0 0 0 0 0
0 0 0 0 cos 2θ 0 0 0 sin 2θ
0 0 0 0 0 cos θ 0 sin θ 0
0 0 0 0 0 0 1 0 0
0 0 0 0 1 −sin θ 0 cos θ 0
0 0 0 0 −sin 2θ 0 0 0 cos 2θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A.10)
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it is easy to show that RY (θ) is exactly the same as shown in
(3) by taking the above equations into RY (θ) = X−90ZθX+90

and reorganizing the order of the spherical harmonics Yl,m.
Since (4) is derived similarly as (3), the rotation around the
x-axis can be proved to be the same as (4). This can also be
verified by taking the rotation angle β = ∓90◦ into (4) which
gives the same X∓90◦ as shown above.
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