
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2008, Article ID 780656, 14 pages
doi:10.1155/2008/780656

Research Article
Independent Component Analysis for Magnetic Resonance
Image Analysis

Yen-Chieh Ouyang,1 Hsian-Min Chen,1 Jyh-Wen Chai,2, 3, 4 Cheng-Chieh Chen,1 Clayton Chi-Chang Chen,4, 5

Sek-Kwong Poon,6 Ching-Wen Yang,7 and San-Kan Lee8

1Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan
2Department of Radiology, College of Medicine, China Medical University, Taichung 404, Taiwan
3School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
4Department of Radiology, Taichung Veterans General Hospital, Taichung 407, Taiwan
5Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology,
Taichung 406, Taiwan

6Division of Gastroenterology, Department of Internal Medicine, Center of Clinical Informatics Research Development,
Taichung Veterans General Hospital, Taichung 407, Taiwan

7Computer Center, Taichung Veterans General Hospital, Taichung 407, Taiwan
8Chia-Yi, Veterans Hospital, Chia-Yi 600, Taiwan

Correspondence should be addressed to Clayton Chi-Chang Chen, ccc@mail.vghtc.gov.tw

Received 11 October 2007; Revised 21 December 2007; Accepted 30 December 2007

Recommended by Chein-I Chang

Independent component analysis (ICA) has recently received considerable interest in applications of magnetic resonance (MR)
image analysis. However, unlike its applications to functional magnetic resonance imaging (fMRI) where the number of data
samples is greater than the number of signal sources to be separated, a dilemma encountered in MR image analysis is that the
number of MR images is usually less than the number of signal sources to be blindly separated. As a result, at least two or more
brain tissue substances are forced into a single independent component (IC) in which none of these brain tissue substances can
be discriminated from another. In addition, since the ICA is generally initialized by random initial conditions, the final generated
ICs are different. In order to resolve this issue, this paper presents an approach which implements the over-complete ICA in
conjunction with spatial domain-based classification so as to achieve better classification in each of ICA-demixed ICs. In order
to demonstrate the proposed over-complete ICA, (OC-ICA) experiments are conducted for performance analysis and evaluation.
Results show that the OC-ICA implemented with classification can be very effective, provided the training samples are judiciously
selected.

Copyright © 2008 Yen-Chieh Ouyang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

One of the greatest challenges in magnetic resonance (MR)
image analysis is feature extraction of clinical information to
be used for medical diagnosis. Unlike most medical modal-
ities, the MRI is developed using tissue parameters such as
spin-lattice (T1) and spin-spin (T2) relaxation times and
proton density (PD) to characterize various tissue informa-
tion at the same anatomical area [1]. As a result, the fea-
tures extracted from MR images can be obtained by spatial
domain-based information as well as tissue characterization
information derived from different pulse sequences. There-

fore, an effective feature extraction technique should take ad-
vantage of both types of information.

Over the past years, MR images are processed from two
different perspectives. One is a traditional and general ap-
proach which considers MR images as multidimensional
data so that multivariate analysis can be applied. For ex-
ample, in most applications MR images are processed as 3-
dimenaional (3D) image cube with pixels replaced by voxels
so that image processing techniques such as segmentation,
region growing, classification, and pattern recognition are
readily applied [2, 3]. In particular, a recent classification-
based transform, called eigenimaging filter, has shown
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success in producing a composite image for feature extrac-
tion [4–9]. Nevertheless, the information provided by tissue
characterization resulting from different pulse sequences is
still not fully explored for image analysis. In order to ad-
dress this issue, another approach views MR images as an
image sequence that can be treated as multispectral images
[10–12] where each band image can be considered as an
image acquired by a particular pulse sequence. In light of
multispectral images, the tissue characterization can be ex-
plored via different pulse sequences. Several recent works
based on linear mixture analysis were reported [13–16]. This
paper presents a new approach that combines multispec-
tral analysis with spatial domain-based classification tech-
niques so that multispectral and spatial information can be
fully explored by a statistical independency-based transform,
called independent component analysis (ICA) and feature
extraction-based classification techniques.

ICA has shown great promise in functional magnetic res-
onance imaging (fMRI) which is a method that provides
functional information of MR images in time series as a tem-
poral function [17]. Recently, a new application of ICA in
MR image analysis was investigated by Nakai et al. in [18].
Compared to what has been done for fMRI, ICA applications
to MR images have yet to be explored. A major difference
between fMRI and MR image analysis is the mixing matrix
used in the ICA for blind signal source separation. Since the
samples for fMRI are collected along a temporal sequence,
the number of samples, denoted by L, is usually greater than
the sources to be separated, denoted by p; the ICA used for
fMRI is generally under-complete in the sense that the ICA
deals with under representation of a mixed model. In this
case, the ICA intends to solve an over-determined system
with L > p consisting L equations specified by the number of
samples with signal sources to be separated as p unknowns.
As a result, there was generally no solutions. On the other
hand, the samples used for MR image analysis are actually a
stack of images acquired by different pulse sequences spec-
ified by three magnetic resonance parameters: spin-lattice
(T1) and spin-spin (T2) relaxation times and proton density
(PD). In this case, only three images can be acquired for im-
age analysis. If the number of signal sources to be separated,
p, is greater than the number of different combinations of
pulse sequences, L, the ICA becomes an under-determined
system with L < p where the ICA must deal with an over-
complete representation of a mixed model. In this case, there
are many solutions. As a result, fMRI and MR image analy-
sis are completely different applications and the approaches
developed for one application cannot be directly applied to
another. However, for ICA to be implemented as under-
complete ICA, Nakai et al. assumed that the number of sen-
sors, L, is greater than or equal to the number of sources, p,
where the sensor is an MR imaging system; the number of
sensors corresponds to the combinations of acquisition pa-
rameters echo time (TE) and repetition time (TR), and a sig-
nal source is represented by a tissue cluster characterized by a
unique combination of T1, T2 relaxation times and PD. This
key assumption makes the ICA under-complete with L > p
so that traditional ICA approach can be readily applied. Us-
ing the changes in signal intensity of each tissue cluster re-

flected by combinations of TR and TE before and after the
ICA transform, the contrast resulting from effects of the ICA
can be used to perform image evaluation for a particular tis-
sue such as white matter (WM) and gray matter (GM).

Unfortunately, Nakai et al.’s ICA approach overlooked
an important issue. If we interpret the number of pulse se-
quences used in MR acquisition, denoted by L and tissue sub-
stances such as water, blood, fat, GM, WM, cerebral spinal
fluid (CSF), and muscle, as signal sources to be separated,
denoted by p, the L is actually less than p. As a consequence,
the problem to be solved is an under-determined system with
L < p, where the ICA must deal with an over-complete rep-
resentation of a mixed model. This is completely opposite to
Nakai et al.’s ICA approach as well as most ICA-based ap-
proaches used for fMRI, since there are many solutions for
the over-complete ICA (OC-ICA) as opposed to no solutions
for the under-complete ICA (UC-ICA). Interestingly, using
the OC-ICA for MR image analysis has not been explored.

More specifically, the idea of the OC-ICA can be inter-
preted by a well-known pigeon-hole principle in discrete
mathematics. We assume that a spectral band image such as
an image pulse sequence as a pigeon hole and the brain sub-
stances as pigeons flying into pigeon holes. In light of this
interpretation, L and p represent the number of pigeon holes
and number of brain substances to be classified, respectively,
where one spectral band can be used to accommodate one
brain substance. So, when L < p, it implies that there are
more pigeons than pigeon holes. In this case, at least one pi-
geon must accommodate more than one pigeon. That is, if
there are two or more pigeons accommodated in a pigeon
hole, it indicates that a spectral band cannot be used to dis-
criminate two or more brain substances. This illustrates the
major issue encountered in MR image analysis, and the ICA
to be dealt with is the OC-ICA, where the number of image
pulse sequences used for acquisition is generally smaller than
the number of brain substances of interest.

Additionally, there are two major issues resulting form
the implementation of the ICA needed to be addressed from
MR image analysis. For the ICA to produce independent
components (ICs), an initial condition is required to initial-
ize an ICA algorithm. A general approach is to randomly
generate unit vectors to be used as initial projection vectors
which can converge to a final set of projection vectors to pro-
duce ICs. The problem with such a random approach is that
the final sets of projection vectors produced by two different
sets of random initial projection vectors are generally differ-
ent. As a result, the ICA implemented by the same user in
different times or two different users at the same time will
produce different sets of projection vectors to produce com-
pletely different sets of ICs. Such inconsistency undermines
repeatability of the ICA and makes the ICA unstable. Be-
sides, due to the use of random initial projection vectors the
order that the ICs are generated is completely random and
does not necessarily indicate the significance or importance
of an IC. In other words, an IC generated earlier does not
necessarily imply that it is more important than the one gen-
erated later. Consequently, image evaluation cannot be per-
formed until all ICs are generated. Most importantly, since
the representation of a mixing model used by the ICA is
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over-complete, there are no sufficient ICs to accommodate
brain tissue substances in addition to the WM, GM, and CSF.
Namely, many single ICs can be used to separate more than
one signal source so that there is no unique solution to se-
lect which IC is the best for particular signal source. What
is worse is that due to use of random initial projection vec-
tors brain tissue substances are also forced to be randomly
mixed in different ICs. These two reasons, that is, many so-
lutions for the OC-ICA and the use of random initial projec-
tion vectors, are exactly the cause of inconsistent ICs in final
results. For example, the WM, GM, and CSF may be ran-
domly accommodated in a single IC as will be demonstrated
in our experiments in this paper. Under such a circumstance,
there is no best way to select a single IC to discriminate
these three brain tissue substances one from another. This
inevitable phenomenon is caused by the use of random ini-
tial projection vectors by the ICA and the lack of ICs re-
sulting from the inherent nature in the OC-ICA. In order
to resolve this dilemma, this paper develops a new approach
which implements the OC-ICA in conjunction with classifi-
cation where a feature extraction-based classifier is included
as a post-OC-ICA processing technique to perform classifi-
cation. Two well-known classifiers, Fisher’s linear discrimi-
nant analysis (FLDA) and support vector machine (SVM),
are used for this purpose because they both have been shown
as most effective and promising classification techniques in
pattern recognition. Surprisingly, experimental results show
that with the help of classification, the OC-ICA performs sig-
nificantly better in terms of classification of three major brain
tissue substances: WM, GM, and CSF. Despite that the three-
class classification may appear in different orders resulting
from a random order in which ICs are generated, such a ran-
dom appearing order has very little effect on classification
results. In other words, the results produced by the OC-ICA
with classification are nearly independent of random initial
projection vectors. This advantage is very useful and valuable
since it frees a user from using random initial projection vec-
tors to initialize an ICA algorithm.

2. INDEPENDENT COMPONENT ANALYSIS

The key idea of the ICA assumes that data are linearly mixed
by a set of separate independent sources and these signal
sources can be demixed according to their statistical indepen-
dency measured by mutual information. In order to validate
its approach, an underlying but very crucial assumption is
that at most one source in the mixture model can be allowed
to be a Gaussian source. This is due to the fact that a linear
mixture of Gaussian sources is still a Gaussian source. More
precisely, let x be a mixed signal source vector expressed by

x = As, (1)

where A is an L × p mixing matrix and s is a p-dimensional
signal source vector with p signal sources needed to be sepa-
rated. Two scenarios are of interest in implementing the ICA.
One is the case that the mixing matrix A in (1) has more di-
mensions than it requires for blind signal separation, that is,

L > p. In this scenario, the ICA has few bases (i.e., signal
sources) than the samples provided (i.e., observations in the
observable vector x) and thus referred to as under-complete
ICA which implies that the ICA has under-representative
bases. However, according to system theory, the linear sys-
tem equation described by (1) is actually an over-determined
system, in which case there exits no solution to (1). In order
to resolve this dilemma, a Dimensionality Reduction (DR) is
generally used to reduce dimensionality of the mixing matrix
A from L to p to make (1) is solvable. On the other extreme, if
(1) has fewer samples than the sources to be demixed, that is,
L < p, the ICA is called over-complete, referred to as OC-ICA
which implies that it has over-representative bases to solve
an under-determined system for (1). As a consequence, there
are many solutions to (1) and there is no way to select best
ICs to perform classification. Interestingly, there is very little
work reported about how to cope with the OC-ICA, particu-
larly how to address the issues caused by insufficient ICs and
the use of random initial projection vectors which result in
inconsistent ICs. However, due to the nature of the OC-ICA
only a limited number of ICs is available to be used for sig-
nal source separation. When the number of signal sources is
greater than the number of ICs, some of ICs are forced to ac-
commodate more than one signal source in which case there
is no way to a particular IC to characterize signal sources. Ad-
ditionally, the use of random initial projection vectors also
causes random mixtures of signal sources as well as noise in
each of ICs. Unfortunately, such severe disadvantages have
been overlooked and never been addressed effectively in the
past.

3. OC-ICAWITH CLASSIFICATION

In order to mitigate the issue that more than one signal
source accommodated in a single IC, a feature extraction-
based classification technique is included as a post OC-ICA
processing technique to classify substances of interest. Since
the WM, GM, and CSF are of major interest in MR im-
age classification, three ICs produced by PD, T1, and T2
can be used to accommodate and classify these three sub-
stances. However, because of random initial conditions each
IC may be randomly mixed by different brain tissue sub-
stances. The introduced follow-up classification technique
can remove undesired substances from ICA-generated ICs
while retaining the substances of interest. Although differ-
ent mixtures of the WM, GM, and CSF may appear in differ-
ent orders due to random orders that ICs are generated, the
experiments conducted in this paper show that their classi-
fication results produced by different sets of random initial
projection vectors will be nearly the same.

Two well-known feature extraction-based classification
techniques, Fisher’s linear discriminant analysis and support
vector machine, are developed in this paper to be imple-
mented in conjunction with the OC-ICA as a post OCA-ICA
processing technique. This selection was based on the fact
that these two techniques have been shown very effective in
pattern classification and both are designed by feature extrac-
tion criteria.
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3.1. Fisher’s linear discriminant analysis (FLDA)

The Fisher’s linear discriminant analysis (FLDA) is one of the
most widely used pattern classification techniques in pattern
recognition [19] and was also used for feature extraction [9].
Its strength in pattern classification lies on the criterion used
for optimality, which is called Fisher’s ratio defined by the
ratio of between-class scatter matrix to within-class scatter
matrix.

More specifically, assume that there are n training sam-
ple vectors, {ri}ni=1 for p-class classification, C1, C2, . . . , Cp

with n j being the number of training sample vectors in the
jth class C j . Let µ be the global mean of the entire training
sample vectors, denoted by µ = (1/n)

∑ n
i=1ri, and let µ j be

the mean of the training sample vectors in the jth class C j ,
denoted by µ j = (1/nj)

∑
ri∈Cj

ri. The within-class scatter ma-
trix, S W , between-class scatter matrix S B, and total scatter
matrix are defined in [19] as follows,

SW =
p∑

j=1

S j , where S j =
∑

r∈Cj

(
r− µ j

)(
r− µ j

)T
, (2)

SB =
p∑

j=1

nj
(
µ j − µ

)(
µ j − µ

)T
, (3)

ST =
n∑

i=1

(
ri − µ

)(
ri − µ

)T = SW + SB. (4)

By virtue of (2) and (3), Fisher’s ratio (also known as
Rayleigh’s quotient [19]) is then defined by

xTSBx
xTSWx

over vector x. (5)

The goal of the FLDA is to find a set of feature vectors that
maximize Fisher’s ratio specified by (5). The number of fea-
ture vectors found by Fisher’s ratio is determined by the
number of classes, p, to be classified, which is p−1.

3.2. Support vectormachine (SVM)

In addition to the FLDA, another classification-based dis-
criminant function, called Support Vector Machine (SVM)
[20] can be also used as a post OC-ICA processing technique.
The SVM is designed to find an optimal hyperplane that sep-
arates two classes of data samples as farther as possible by
maximizing the margin of separation between classes and the
hyperplane. It is originally developed as a binary classifier. A
salient difference that the SVM is different from other classi-
fiers is the use of training samples. The SVM uses and incor-
porates only a few so-called confusing data samples, referred
to as slack variables, in its optimization problems to maxi-
mize the margin of separation among these samples. Another
crucial and unique feature that the SVM has is the data space
on which they perform. The SVM makes use of a nonlinear
kernel to map the original data space into a higher dimen-
sional space to resolve the issue of linear inseparability. Since
the details of SVM can be found in many references in [20],
we only briefly review its approach as follows.

The SVM was originally developed by Vapnik based
on statistical learning theory [21]. Consider a two-category
classification problem with a given set of training data
{(ri,di)}ni=1, where {ri}ni=1 are n samples with their associated
binary decisions {di}ni=1 which are specified by either +1 or
−1. Assume that an SVM is specified by a linear discriminate
function given by g(r) = wTr + b, where w is a weight vector
and b is a bias. More specifically, given a set of training data,
{(ri,di)}ni=1, an SVM finds a weight vector w and bias b that
satisfy

di =
{

+1 if wTri + b ≥ 0,

−1 if wTri + b < 0,
(6)

and maximize the margin of separation defined by distance
between a hyperplane and closest data samples. In particular,
(6) can be rederived by incorporating its binary decision into
discriminant function as follows:

di
(
wTri + b

) ≥ 1 for 1 ≤ i ≤ n. (7)

For a linear separable problem, the SVM attempts to po-
sition a class boundary so that the margin from the nearest
example is maximized. According to (7), the distance ρ be-
tween a sample vector r and its projected vector on the hy-
perplane g(r) = w T r + b = 0 is specified by ρ = g(r)/‖w‖
with w being the normal vector of the hyperplane. Since g(r)
takes only +1 or −1, the distance ρ is then defined by

ρ =
{

1/‖w‖ if di = +1,

−1/‖w‖ if di = −1.
(8)

Using (8), we define the margin of separation between two
classes, denoted by ρ, as ρ = 2/‖w‖. By virtue of (6)–(8), the
SVM is to find an optimal weight vector w minimizing

Φ(w) = (1/2)wTw = (1/2)‖w‖2 (9)

subject to constraints specified by (7).
An optimal solution to the above optimization problem

is given by

wSVM =
n∑

i=1

αSVM
i diri,

1 = ds =
(
wSVM

)T
rs + b =⇒ b = 1− (wSVM

)T
rs,

(10)

with r s is a support vector on the hyperplane with its deci-
sion ds = +1.

Figure 1 illustrates the concept of the SVM where two
classes of data sample vectors determined by (6) are denoted
by Ω+ and Ω− consisting of “open circles” and “crosses”, re-
spectively, and the vectors satisfying the equality of (7) are
called support vectors.

The SVM discussed above was developed to separate two
classes which are linearly separable. That is, the data sample
vectors in two classes can be separated by a distance greater
than ρ from the hyperplane shown in Figure 1. However, in
many applications, such desired situation may not occur.
In other words, some data sample vectors fall in the region
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Support vectors

Optimal hyperplane
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Ω−

ρ

ρ

Figure 1: Illustration of SVM.

within the distance less than ρ from the hyperplane or even
on the wrong side of the hyperplane. These data sample vec-
tors can be considered to be either bad or confusing data
sample vectors and they cannot be linearly separated. In this
case, the SVM developed for linear separable problems out-
lined by (6)–(10) must be rederived to take care of such con-
fusing data sample vectors. In doing so, a new set of positive
parameters, denoted by {ξi}ni=1 and referred to as slack vari-
ables, must be introduced to measure the deviation of a data
sample vector from the ideal condition of linear separability,
in which case ξi < 0. However, if 0 ≤ ξi ≤ 1, the ith data
sample vector x i falls in within the region with distance less
than margin of separation but on the correct side of the deci-
sion surface specified by the hyperplane. On the other hand,
if ξi > 1, the ith data sample vector x i falls on the wrong
side of its decision surface. In light of the mathematical in-
terpretation, these issues can be addressed by the following
inequalities:

di
(
wTri + b

) ≥ 1− ξi, for 1 ≤ i ≤ n,

ξi ≥ 0, for 1 ≤ i ≤ n.
(11)

By incorporating (11) into the object function, Φ(w) in
(9) can be modified as

Φ(w) = (1/2)wTw + C
n∑

i=1

ξi, with C > 0. (12)

By means of (11)-(12), a linear nonseparable problem can
be solved by the SVM (for more details about the SVM, see
[20]).

4. EXPERIMENTS

Two sets of experiments were conducted to substantiate the
utility of our proposed OC-ICA with classification in MR im-
age analysis and to demonstrate its advantages over the tra-
ditional ICA. One is MR brain synthetic images available on

website [22] and the other is real MR brain images obtained
in the Taichung Veterans General Hospital.

4.1. Synthetic brian image experiments

The synthetic images to be used for experiments in this
section were the axial T1, T2, and proton density MR
brain images (with 5-mm section thickness, 0% noise,
and 0% intensity nonuniformity) resulting from the MR
imaging simulator of McGill University, Montreal, Canada
(http://www.bic.mni.mcgill.ca/brainweb). The image vol-
ume provided separates volumes of tissue classes, such as
CSF, GM, WM, bone, fatness, and background. The use of
these web MR brain images is to allow researchers to re-
produce our experiments for verification. Figures 2(a)–2(c)
show three MR brain images with specifications provided
in [22] where Figure 2(a) is acquired by the proton density
modality with slice thickness = 5 mm, noise = 0%, INU (in-
tensity nonuniformity) = 0%, Figure 2(b) is acquired by the
T1 modality with slice thickness = 5 mm, noise = 0%, INU
= 0%, and Figure 2(c) is acquired by the T2 modality with
slice thickness = 5 mm, noise = 0%, INU = 0%. Figure 3 pro-
vides the ground truth which is also available on website [22]
for brain tissue substances in the images in Figure 2. This
ground truth will be used to verify the results obtained for
our experiments.

In order to implement supervised FLDA and SVM, four
classes were considered, WM, GM CSF, and image back-
ground (BKG), for classification. For each class, 20 training
samples were marked by dark points in the GM, CSF, WM
images and bright points in the BKG image in Figure 4. These
samples were selected according to prior knowledge provided
in Figure 3 where the outside of brain skull was considered as
the BKG.

Since the FastICA uses random initial projection vec-
tors, the final results of ICs are generally different. In order
to demonstrate this phenomenon, the FastICA was imple-
mented three times for the three MR brain images in Figure 2
and their results are shown in Figures 5(a), 6(a), and 7(a) as
three scenarios where the three ICs in these three scenarios
are not only different but also appear in different orders. The
three ICs in each scenario were then stacked one atop another
to form a new 3-IC stacked image cube used for FLDA clas-
sification with results shown in Figures 5(b), 6(b), and 7(b),
and SVM classification with results shown in Figures 5(c),
6(c), and 7(c).

According to the above three scenarios in Figures 5–7,
the three ICs in each scenario were mixed differently by three
major substances, WM, GM, and CSF. For example, the IC1
in Figure 5(a) was badly mixed by the three substances and
IC1 in Figure 6(a) was heavily mixed by the GM and CSF.
Scenario 3 in Figure 7(a) was the best scenario which could
separate the GM, WM, and CSF reasonably well. To resolve
these two issues, the FLDA and SVM were applied to 3-
IC stacked image cubes formed by the three ICs in Figures
5(a), 6(a), and 7(a) of the three scenarios and their results
are shown in Figures 5(b) and 5(c), 6(b) and 6(c), and 7(b)
and 7(c). Surprisingly, the FLDA and SVM significantly im-
proved classification results where WM, GM, and CSF were
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(a) PD (b) T1 (c) T2

Figure 2: Three MR brain images.

Background CSF GM WM

(a)

Fat Muscle/skin Skin Skull

(b)

Glial matter Connective

(c)

Figure 3: Ground truth of brain tissue substances for images in Figure 2.
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GM CSF WM BKG

Figure 4: Selection of training samples for each of the four classes: WM, GM, CSF, and BKG.

successfully classified in three inconsistent ICs regardless of
their appearing orders. It should be noted that we only used
20 training samples shown in Figure 4 for the three sub-
stances, WM, GM, and CSF plus the image background.

Finally, comparing the FLDA and SVM alone was also
applied to the image cube formed by the three MR images
in Figure 2 without an ICA transform where the same sets
of training samples used for the above experiments were
also used in this case. In particular, the SVM was imple-
mented using three different kernel:, linear, polynomial, and
radial-based functions (RBFs). Figures 8(a) and 8(b) show
the FLDA and SVM-classification results of the GM, WM,
and CSF where the FLDA classification results seemed to be
better than those produced by the SVM with different ker-
nels. Nevertheless, the results in Figure 8 were still not as
good as the results in Figures 5(b) and 5(c), 6(b) and 6(c),
and 7(b) and 7(c).

The above three experiments clearly demonstrated the
advantages and benefits of the ICA in conjunction with a fea-
ture extraction-based classifier such as FLDA and SVM which
can remedy the drawbacks resulting from the use of random
initial projection vectors as well as insufficient numbers of
MR images.

As a final comment, a remark on the SVM is noteworthy.
One disadvantage of using the SVM is to select appropriate
parameters to make it effective. Figure 9 shows an example
produced by the SVM alone using a different set parameters,
cost = 0.0313 and gamma = 4, as opposed to the parameter
set, cost = 1 and gamma = 0.5, used in Figure 8(b).

Comparing Figure 9 to Figure 8(b), we immediately
found that the results in Figure 9 improved significantly over
the results in Figure 8(b). This example simply demonstrated
that like the ICA, which suffers from instability caused by
random initial conditions, the SVM also suffers from a draw-
back that is appropriate selection of parameters. Neverthe-
less, according to our experiments, if the ICA is jointly im-
plemented with SVM, this issue can be largely alleviated. In
other words, including the ICA as a preprocessing, the sensi-
tivity to parameters used by the SVM can be greatly reduced.
It should be noted that in all experiments conducted in this
paper the parameters used for the SVM were fixed at cost =

0.0313 and gamma = 4 throughout implementations includ-
ing the SVM implemented in conjunction with the ICA.

4.2. Quantitative analysis

One great advantage of using the web images is to allow us to
conduct quantitative analysis for proposed techniques. Ac-
cording to Figure 3, there are also other brain tissue sub-
stances such as skin, fat, glial matter, and background that
also constitute different classes. However, from a clinical
point of view, only the GM, WM, and CSF are of major in-
terest. Therefore, the MRI quantitative analysis performed in
this section was conducted based on contrast enhancement
of these three brain tissues in the same way that was done in
[18]. In this case, all tissues other than the GM, WM, and CSF
were considered as a single class labeled by the background
(BKG). However, it should be noted that only the GM and
WM were considered and the CSF was not included for anal-
ysis in [18]. The difficulty of analyzing the CSF in [18] may
have resulted from the inability of UC-ICA in dealing with
insufficient MR band images.

In order to perform quantitative analysis, a quantifica-
tion measure, called Tanimoto Index (TI) defined for multi-
spectral MR images in [23, 24] as

TI = |A ∩ B|
|A ∪ B| , (13)

can be used for this purpose, where A and B are two data sets
and |X| is the size of a set X. According to (13), TI = 0 implies
that both data sets, A and B, are completely different and TI =
1 indicates that both data sets, A and B, are the same set. Ta-
bles 1 tabulates quantification results of GM, WM, and CSF
using ICA in conjunction with classifiers FLDA and SVM in
Figures 5–7, and Table 2 tabulates quantification results of
GM, WM, and CSF using classifiers FLDA and SVM alone in
Figure 8, where TI was the criterion specified by (13).

The “rf” in Tables 1-2 indicates the intensity nonunifor-
mitydefined in [22]. It should be noted that the quantitative
results of using ICA alone are not included because the ICA
produced real values for its ICs which require an appropri-
ate thresholding technique for quantification. A comparison
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Table 1: Quantification results of GM, WM, and CSF using ICA in conjunction with classifiers FLDA and SVM.

TI
ICA + FLDA ICA + SVM (RBF kernel) ICA + SVM (linear kernel) ICA + SVM (poly kernel)

CSF GM WM CSF GM WM CSF GM WM CSF GM WM

Noise0 rf0 0.446 0.652 0.775 0.450 0.643 0.771 0.448 0.649 0.755 0.414 0.643 0.771

Noise1 rf0 0.437 0.638 0.755 0.440 0.622 0.751 0.433 0.634 0.737 0.406 0.638 0.753

Noise3 rf0 0.427 0.576 0.691 0.423 0.600 0.686 0.371 0.520 0.619 0.380 0.568 0.675

Noise5 rf0 0.412 0.507 0.601 0.442 0.562 0.628 0.379 0.386 0.523 0.367 0.544 0.616

Noise1 rf20 0.429 0.605 0.736 0.436 0.638 0.656 0.367 0.615 0.730 0.394 0.604 0.744

Noise3 rf20 0.451 0.534 0.693 0.384 0.573 0.553 0.299 0.518 0.536 0.398 0.560 0.678

Noise5 rf20 0.427 0.520 0.587 0.398 0.610 0.599 0.368 0.445 0.458 0.360 0.504 0.573

Table 2: Quantification results of GM, WM, and CSF using classifiers FLDA and SVM.

TI
FLDA SVM (RBF kernel) SVM (linear kernel) SVM (poly kernel)

CSF GM WM CSF GM WM CSF GM WM CSF GM WM

Noise0 rf0 0.469 0.648 0.739 0.077 0.281 0.337 0.368 0.722 0.648 0.275 0.540 0.599

Noise1 rf0 0.490 0.602 0.742 0.033 0.054 0.261 0.372 0.728 0.656 0.448 0.516 0.629

Noise3 rf0 0.454 0.619 0.713 0.009 0.012 0.026 0.325 0.519 0.617 0.315 0.361 0.427

Noise5 rf0 0.480 0.579 0.648 0.076 0.007 0.009 0.290 0.461 0.531 0.360 0.150 0.384

Noise1 rf20 0.482 0.607 0.718 0.022 0.020 0.256 0.387 0.623 0.730 0.358 0.491 0.603

Noise3 rf20 0.458 0.602 0.692 0.005 0.239 0.022 0.260 0.555 0.619 0.364 0.339 0.456

Noise5 rf20 0.446 0.582 0.690 0.053 0.160 0.276 0.502 0.408 0.442 0.455 0.266 0.337

between the results of Tables 1 and 2 immediately shows
that the ICA + SVM significantly outperformed SVM alone.
It is also interesting to note that there was not much im-
provement if the FLDA + ICA outperformed the FLDA
alone. For example, in the cases of Noise0rf0, Noise1rf0,
and Noise1rf20, ICA + FLDA performed better than FLDA
and was otherwise for the cases of Noise3rf0, Noise5rf0,
Noise3rf20, and Noise5rf20. This is mainly due to the fact
that the FLDA and SVM are two different types of classi-
fiers. While the SVM requires only a few training samples, re-
ferred to as support vectors to perform effectively, the FLDA
relies on a relatively large set of training samples to consti-
tute reliable statistics for the FLDA to perform well. Since
there were not sufficient samples (only 20 training samples
in Figure 4 were used) to be used for training, it is expected
that the FLDA would not help much in classification which
was demonstrated in Tables 1 and 2.

4.3. Real MR brian image experiments

In this section, we further demonstrate the utility of the ICA
with a feature extraction-based classification to perform post
OC-ICA processing in real experiments. The real MR brain
images were actually acquired from one normal volunteer by
a whole body 1.5-T MR system (Sonata, Siemens, Erlangen,
Germany). The routine brain MR protocol consisted of axial
spin echo T1 weighted images (T1WI; TR/TE = 400/9 ms),
T2 weighted images (T2WI; TR/TE = 4000/91 ms), and PD
images (TR/TE = 4000/10 ms). Other imaging parameters in-
cluded for this study were slice thickness = 6 mm, matrix =

256×256, FOV = 24 cm, and NEX = 2. To reduce head move-
ment, sponge pads were placed on both sides of a patient’s
head in the head coil during examination. Figure 10 shows
the obtained three MR brain images.

To implement supervised FLDA and SVM, four classes
were considered, WM, GM, CSF, and image background
(BKG), for classification. For each class, 20 training samples
were marked by dark points in the GM, CSF, WM images and
bright points in the BKG image in Figure 11. These samples
were selected according to prior knowledge provided by ex-
perienced radiologists where the outside of brain skull was
considered as the BKG.

Following the same experiments conducted in Section
4.1, three scenarios were also produced by the FastICA us-
ing three different sets of random initial projection vectors
for images in Figure 10. The three FastICA-generated ICs for
each scenario are shown in Figures 12(a), 13(a), and 14(a).
Interestingly, unlike the synthetic brain images considered in
the previous section, the ICs in these three scenarios looked
pretty much the same except their appearing orders. It is also
worth noting that IC2 in Figure 12(a), IC1 in Figure 13(a),
and IC2 in Figure 14(a) were heavily mixed by the GM and
CSF. The FLDA and SVM were also applied to 3-IC stacked
image cubes formed by the three sets of ICs produced by Fig-
ures 12(a), 13(a), and 14(a) in these three scenarios. Their
classification results for WM, GM, and CSF are also shown
in Figures 12(b) and 12(c), 13(b) and 13(c), and 14(b) and
14(c) where both classifiers used the same 20 training sam-
ples selected for each of three substances and background in
Figure 11 for experiments. According to the FLDA and SVM
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IC1 IC2 IC3

(a) Three FastICA-generated ICs

GM WM CSF

(b) FLDA-classification results

Linear kernel

Polynomial kernel

RBF kernel
GM WM CSF

(c) SVM-classified ICs

Figure 5: Scenario 1.

classified results, the WM, GM, and CSF were also success-
fully classified in each scenario.

Finally, the FLDA and SVM-classification results without
using ICA are also included for comparison and results are
shown in Figures 15(a)-15(b). Like experiments conducted
for web synthetic brain images, the SVM was also imple-

IC1 IC2 IC3

(a) Three FastICA-generated ICs

GM WM CSF

(b) FLDA-classification results

Linear kernel

Polynomial kernel

RBF kernel
GM WM CSF

(c) SVM-classified ICs

Figure 6: Scenario 2.

mented with three different kernels: linear, polynomial, and
radial-based functions (RBFs).

According to Figures 15(a)-15(b), using the FLDA and
SVM alone without the ICA clearly performed poorly.
Specifically, the results obtained by the RBF kernel were com-
pletely unrecognizable due to an inappropriate selection of
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IC1 IC2 IC3

(a) Three FastICA-generated ICs

GM WM CSF

(b) FLDA-classification results

Linear kernel

Polynomial kernel

RBF kernel
GM WM CSF

(c) SVM-classified ICs

Figure 7: Scenario 3.

parameters. Like Figure 9, if a different set of parameters, cost
= 0.5 and gamma = 4, was used for the SVM with RBF ker-
nel, the resulting classification shown in Figure 16 was sig-
nificantly improved compared to the results in Figure 15(b)
which used the parameters, cost = 1 and gamma = 0.5. Once

WM GM CSF

(a) FLDA classification results

SVM (linear kernel)

SVM (polynomial kernel)

SVM (RBF kernel)
WM GM CSF

(b) SVM classification results

Figure 8: Classification results produced by FLDA and SVM classi-
fications.

again, this example further demonstrated instability of the
SVM caused by its used parameters.

As a concluding remark, the experiments conducted in
this section provide clear evidence that none of ICA, FLDA,
SVM alone performed well, while their combinations, ICA-
FLDA and ICA-SVM, performed significantly better.

5. DISCUSSIONS AND SUGGESTIONS

The ICA is a versatile technique and has shown great suc-
cess in many applications. However, it also presents a po-
tential danger if this technique is blindly used without
knowing its constraints and limitations. This paper provides
such an example where a direct application of the ICA to
MR image analysis without taking precaution may produce
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unsuccessful results. It is generally known that no more than
three diagnostic pulse sequences are usually used to acquire
MR images. In this case, we are limited to only three spectral
band images for MR multispectral analysis and the ICA to
be dealt with is actually over-complete ICA (OC-ICA) as op-
posed to under-complete ICA commonly used in the fMRI.
Therefore, assuming that the number of sensors is greater
than or equal to the number of sources to be separated, as
Nakai et al. did in [18] to make the ICA under-complete, is
not realistic. The experiments conducted in the previous sec-
tions clearly demonstrated serious flaws resulting from the
lack of band images and the use of random initial projection
vectors by an ICA algorithm. Surprisingly, these interesting
issues are very important for the OC-ICA to be used as an
MR multispectral image analysis technique, but have never
been addressed and explored in the past. To the authors’
best knowledge, this paper is believed to be the first work
to investigate the utility of the OC-ICA in MR multispec-
tral image analysis. The proposed OC-ICA coupled with a
feature extraction-based classification technique as post OC-
ICA processing has yielded two major advantages. It makes
use of the ICA to linearly transform three band MR im-
ages into three statistically independent component images
so that these three ICA-generated independent components
(ICs) can be stacked one atop another to form a new im-
age cube which is spectrally and statistically independent in
ICs. As a result, brain tissue substances that appeared in these
three component images are supposed to be statistically in-
dependent or least dependent from a statistical point of view
and can be classified separately and individually to avoid po-
tential confusion that may be caused by correlation among
these substances when MR images processed an image cube
as a whole without an ICA transform. The clear evidence of
this advantage was witnessed in our experiments. This ap-
proach is quite different from the commonly used principal
components analysis (PCA) transform [25] which can only
decorrelate second-order statistics that generally character-
ize image background rather than brain tissues which are
most likely to be captured by high-order statistics. Since there
are no sufficient band images to accommodate many differ-
ent brain tissue substances, a single ICA-generated IC may
contain more than one substance. In order to resolve this
problem, a feature extraction-based classification technique
is then applied to perform image analysis. This approach
is also different from feature space-based techniques such
as eigenimaging filter [4–9], FLDA, [19] and SVM [20, 21]
which directly perform feature extraction for image analysis
without using any preprocessing such as ICA transform. An
advantage of our approach is to break up MR image anal-
ysis into two stage processes: the ICA in the first stage to
separate distinct objects into ICs in the sense of statistical
independency, then followed by a feature extraction-based
classification technique in the second stage to perform target
substance discrimination compared to previous approaches
which extract features directly from MR images in one-shot
operation. This was demonstrated in our experiments where
the WM, GM, and CSF are generally captured in three sep-
arate ICs by the FastICA in the first stage. Since other sub-
stances may be also mixed with these three brain tissue sub-

WM GM CSF

Figure 9: Classification results produced by SVM classification us-
ing RBF kernel.

PD image T2WI T1WI

Figure 10: Real images.

stances in different ICs, a feature extraction technique-based
classification such as FLDA or SVM is then implemented in
the second stage to segment our desired WM, GM, and CSF
from other brain tissue substances. The experimental results
demonstrated that such a two-stage process outperformed
the use of the ICA or feature extraction-based classification
alone.

A final comment on training samples is noteworthy. The
training samples used in our experiments were supervised
and selected by radiologists. In image processing, we gener-
ally do not have ideas about images to be processed. In this
case, unsupervised classification is usually desirable. How-
ever, this may not be the case for MR image analysis due to
the following reasons. One is that the images to be processed
are brain MR images in which case the brain anatomy can be
always used as prior knowledge and also as a base to select
reasonably good training samples since the locations of the
desired brain substances, GM, WM, CSF, can be identified a
priori. Another reason is that our techniques are basically de-
veloped for the use by radiologists who have been trained to
be familiar with brain anatomy. Therefore, using such prior
knowledge to select training samples seems very logical and
natural because this can be done by radiologists themselves.
A third reason is that we also have explored and conducted
experiments using some unsupervised methods such as ISO-
DATA. The results were rather poor and below an acceptance
level. In this case, there is little value to include these results.
This is mainly due to the fact that the brain has so many un-
known substances in addition to 10 substances identified in
Figure 3. It is nearly impossible to determine a reliable num-
ber of classes of interest which is a key issue in unsuper-
vised classification. Besides, once the class number is deter-
mined, another challenging task is to find its respective train-
ing samples. This will be well beyond the scope of this paper.
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GM CSF WM BKG

Figure 11: Selection of training samples for each of the four classes WM, GM, CSF and BKG.

IC1 IC2 IC3

(a) Three FastICA-generated ICs

WM GM CSF

(b) FLDA-classified ICs

Linear kernel

Polynomial kernel

RBF kernel
WM GM CSF

(c) SVM-classified ICs

Figure 12: Scenario 1.

IC1 IC2 IC3

(a) Three FastICA-generated ICs

GM WM CSF

(b) FLDA-classified ICs

Linear kernel

Polynomial kernel

RBF kernel
GM WM CSF

(c) SVM-classified ICs

Figure 13: Scenario 2.
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IC1 IC2 IC3

(a) Three FastICA-generated ICs

CSF GM WM

(b) FLDA-classified ICs

Linear kernel

Polynomial kernel

RBF kernel
CSF GM WM

(c) SVM-classified ICs

Figure 14: Scenario 3.

Nevertheless, our proposed technique is somewhat in-
between supervised and unsupervised classification. In other
words, it uses ICA as an unsupervised technique to separate
brain substances into three independent components. It is
then followed by a supervised classifier either FLDA or SVM
which performs classification with GM, WM, and CSF des-
ignated as desired targets to be classified, while considering
all other substances as background that can be suppressed by
the classifier. Accordingly, we believe that our proposed tech-
nique is the best compromise between using supervised clas-
sification alone such as FLDA and SVM, and unsupervised
technique alone such as ICA.

WM GM CSF

(a) FLDA classification results

Linear kernel

Polynomial kernel

RBF kernel
WM GM CSF

(b) SVM classification results

Figure 15: Classification results produced by FLDA and SVM.

WM GM CSF

Figure 16: Classification results produced by SVM classification us-
ing RBF kernel.

6. CONCLUSIONS

This paper explores an application of the over-complete ICA
(OC-ICA) to MR image analysis and investigates two major
issues arising in the OC-ICA. One is due to a limited num-
ber of MR image sequences so that more than one substance
of interest may be mixed and accommodated in a single IC.
Another is caused by the use of random initial projection
vectors. Both result in inconsistent independent components
(ICs). In order to cope with these dilemmas, two feature
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extraction-based classification techniques, Fisher’s discrim-
inant analysis (FLDA) and support vector machine (SVM),
are introduced to be implemented in conjunction with the
ICA as post OC-ICA processing to classify substances of in-
terest. As a result, despite that the inherent nature of OC-ICA
produces inconsistent ICs, the follow-up classification is able
to remedy this drawback. Most importantly, the experiments
show that none of feature extraction-based classification and
ICA alone can perform well, but their combination can sig-
nificantly improve their performance in classification.
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