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interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms,
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be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several
simulations illustrate its wide applicability.
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1. INTRODUCTION

The solid mathematical foundation, wide and successful
applications are making kernel methods very popular. By the
famed kernel trick, many linear methods have been recast in
high dimensional reproducing kernel Hilbert spaces (RKHS)
to yield more powerful nonlinear extensions, including
support vector machines [1], principal component analysis
[2], recursive least squares [3], Hebbian algorithm [4],
Adaline [5], and so forth.

More recently, a kernelized least-mean-square (KLMS)
algorithm was proposed in [6], which implicitly creates
a growing radial basis function network (RBF) with a
learning strategy similar to resource-allocating networks
(RAN) proposed by Platt [7]. As an improvement, kernelized
affine projection algorithms (KAPAs) are presented for the
first time in this paper by reformulating the conventional
affine projection algorithm (APA) [8] in general reproducing
kernel Hilbert spaces (RKHS). The new algorithms are
online, simple, and significantly reduce the gradient noise
compared with the KLMS and thus improve performance.

More interestingly, the KAPA reduces to the kernel
least-mean square (KLMS), sliding-window kernel recursive
least squares (SW-KRLS), kernel adaline, and regularization
networks naturally in special cases. Thus it provides a
unifying model for these existing methods and helps better
understand the basic relations among them and the tradeoff

between complexity and performance. Moreover, it also
advances our understanding on the resource-allocating net-
works. Exploiting the underlying linear structure of RKHS, a
brief discussion on its well-posedness will be conducted.

The organization of the paper is as follows. In Section 2,
the affine projection algorithms are briefly reviewed. Next, in
Section 3, the kernel trick is applied to formulate the non-
linear affine projection algorithms. Other related algorithms
are reviewed as special cases of the KAPA in Section 4. We
detail the implementation of the KAPA in Section 5. Three
experiments are studied in Section 6 to support our theory.
Finally, Section 7 summarizes the conclusions and future
lines of research.

The notation used throughout the paper is summarized
in Table 1.

2. A REVIEWOF THE AFFINE
PROJECTION ALGORITHMS

Let d be a zero-mean scalar-valued random variable, and
let u be a zero-mean L × 1 random variable with a
positive-definite covariance matrix Ru = E

[
uuT

]
. The cross-

covariance vector of d and u is denoted by rdu = E
[
du
]
. The

weight vector w that solves

min
w

E
∣
∣d −wTu

∣
∣2

(1)

is given by wo = R−1
u rdu [8].
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Several methods that approximate w iteratively also exist,
for example, the common gradient method

w(0) = initial guess;

w(i) = w(i− 1) + η
[

rdu − Ruw(i− 1)
]
,

(2)

or the regularized Newton’s recursion

w(0) = initial guess;

w(i) = w(i− 1) + η
(

Ru + εI
)−1[

rdu − Ruw(i− 1)
]
,

(3)

where ε is a small positive regularization factor and η is the
step size specified by the designer.

Stochastic-gradient algorithms replace the covariance
matrix and the cross-covariance vector by local approx-
imations directly from data at each iteration. There are
several ways for obtaining such approximations. The tradeoff
is computation complexity, convergence performance, and
steady-state behavior [8].

Assume that we have access to observations of the
random variables d and u over time

{
d(1),d(2), . . .

}
,

{
u(1), u(2), . . .

}
. (4)

The Least-mean-square (LMS) algorithm simply uses the
instantaneous values for approximations R̂u = u(i)u(i)T and
r̂du = d(i)u(i). The corresponding steepest-descent recursion
(2) and Newton’s recursion (3) become

w(i) = w(i− 1) + ηu(i)
[
d(i)− u(i)Tw(i− 1)

]
;

w(i)=w(i−1)+ηu(i)
[

u(i)Tu(i)+εI
]−1[

d(i)−u(i)Tw(i−1)
]
.

(5)

The affine projection algorithm however employs better
approximations. Specifically, Ru and rdu are replaced by
the instantaneous approximations from the K most recent
regressors and observations. Denoting

U(i) = [u(i− K + 1), . . . , u(i)
]
L×K ,

d(i) = [d(i− K + 1), . . . ,d(i)
]T

,
(6)

one has

R̂u = 1
K

U(i)U(i)T ,

r̂du = 1
K

U(i)d(i).

(7)

Therefore, (2) and (3) become

w(i) = w(i− 1) + ηU(i)
[

d(i)−U(i)Tw(i− 1)
]
, (8)

w(i)=w(i−1)+η
[

U(i)U(i)T +εI
]−1

U(i)
[
d(i)−U(i)Tw(i−1)

]
,

(9)

and (9), by the matrix inversion lemma, is equivalent to [8]

w(i) = w(i− 1) + ηU(i)
[

U(i)TU(i) + εI
]−1

× [d(i)−U(i)Tw(i− 1)
]
.

(10)

Table 1: Notations.

Description Examples

Scalars Small italic letters d

Vectors Small bold letters w, ω, a

Matrices Capital BOLD letters U, Φ

Time or iteration Indices in parentheses u(i), d(i)

Components of vectors
or matrices

Subscript indices a j(i), Gi, j

It is noted that this equivalence lets us deal with the matrix
[

U(i)TU(i)+εI
]

instead of
[

U(i)U(i)T +εI
]

and it plays a very
important role in the derivation of kernel extensions. We call
recursion (8) APA-1 and recursion (10) APA-2.

In some circumstances, a regularized solution is needed
instead of (1). The regularized LS problem is

min
w

E
∣
∣d −wTu

∣
∣2

+ λ‖w‖2, (11)

where λ is the regularization parameter (not the regulariza-
tion factor ε in Newton’s recursion). The gradient method is

w(i) = w(i− 1) + η
[

rdu −
(
λI + Ru

)
w(i− 1)

]

= (1− ηλ)w(i− 1) + η
[

rdu − Ruw(i− 1)
]
.

(12)

The Newton’s recursion with ε = 0 is

w(i) = w(i− 1) + η
(
λI + Ru

)−1[
rdu − (λI + Ru)w(i− 1)

]

= (1− η)w(i− 1) + η
(
λI + Ru

)−1
rdu.

(13)

If the approximations (7) are used, we have

w(i) = (1− ηλ)w(i− 1) + ηU(i)
[

d(i)−U(i)Tw(i− 1)
]
,

(14)

w(i) = (1− η)w(i− 1) + η
[
λI + U(i)U(i)T

]−1
U(i)d(i).

(15)

which is, by the matrix inversion lemma, equivalent to

w(i) = (1− η)w(i− 1) + ηU(i)
[
λI + U(i)TU(i)

]−1
d(i).

(16)

For simplicity, recursions (14) and (16) are named here
APA-3 and APA-4, respectively.

3. THE KERNEL AFFINE PROJECTION ALGORITHMS

A kernel [9] is a continuous, symmetric, positive-definite
function κ : U × U → R. U is the input domain, a
compact subset of RL. The commonly used kernels include
the Gaussian kernel (17) and the polynomial kernel (18):

κ(u, u′) = exp
(− a‖u− u′‖2), (17)

κ(u, u′) = (uTu′ + 1
)p
. (18)
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The Mercer theorem [9, 10] states that any kernel κ(u, u′)
can be expanded as follows:

κ(u, u′) =
∞∑

i=1

σiφi(u)φi(u′), (19)

where σi and φi are the eigenvalues and the eigenfunctions,
respectively. The eigenvalues are nonnegative.

Therefore, a mapping ϕ can be constructed as

ϕ : U −→ F,

ϕ(u) = [√σ1φ1(u),
√

σ2φ2(u), . . .
]
,

(20)

such that

κ(u, u′) = ϕ(u)Tϕ(u′). (21)

By construction, the dimensionality of F is determined by the
number of strictly positive eigenvalues, which can be infinite
in the Gaussian kernel case.

We utilize this theorem to transform the data u(i) into
the feature space F as ϕ(u(i)) and interpret (21) as the
usual dot product. Denoting ϕ(i) = ϕ(u(i)), we formulate
the affine projection algorithms on the example sequence
{d(1),d(2), . . .} and {ϕ(1),ϕ(2), . . .} to estimate the weight
vector ω that solves

min
ω

E
∣
∣d − ωTϕ(u)

∣
∣2
. (22)

By straightforward manipulation, (8) becomes

ω(i) = ω(i− 1) + ηΦ(i)
[

d(i)−Φ(i)Tω(i− 1)
]
, (23)

and (10) becomes

ω(i) = ω(i− 1) + ηΦ(i)
[
Φ(i)TΦ(i) + εI

]−1

× [d(i)−Φ(i)Tω(i− 1)
]
,

(24)

where Φ(i) = [ϕ(i− K + 1), . . . ,ϕ(i)
]
.

Accordingly, (14) becomes

ω(i) = (1− λη)ω(i− 1) + ηΦ(i)
[

d(i)−Φ(i)Tω(i− 1)
]
,

(25)

and (16) becomes

ω(i) = (1− η)ω(i− 1) + ηΦ(i)
[
Φ(i)TΦ(i) + λI

]−1
d(i).

(26)

For simplicity, we refer to the recursions (23), (24), (25), and
(26) as KAPA-1, KAPA-2, KAPA-3, and KAPA-4, respectively.

3.1. Kernel affine projection algorithm (KAPA-1)

It may be difficult to have direct access to the weights and
the transformed data in feature space, so (23) needs to be

modified. If we set the initial guess ω(0) = 0, the iteration of
(23) will be

ω(0) = 0,

ω(1) = ηd(1)ϕ(1) = a1(1)ϕ(1),

...

ω(i− 1) =
i−1∑

j=1

a j(i− 1)ϕ( j),

Φ(i)Tω(i− 1) =
[ i−1∑

j=1

a j(i− 1)κi−K+1, j , . . . ,

i−1∑

j=1

a j(i− 1)κi−1, j ,
i−1∑

j=1

a j(i− 1)κi, j

]T

,

e(i) = d(i)−Φ(i)Tω(i− 1),

ω(i) = ω(i− 1) + ηΦ(i)e(i)

=
i−1∑

j=1

a j(i− 1)ϕ( j) +
K∑

j=1

ηe j(i)ϕ(i− j + K),

(27)

where κi, j = κ(u(i), u( j)) for simplicity.
Note that during the iteration, the weight vector in the

feature space assumes the following expansion:

ω(i) =
i∑

j=1

a j(i)ϕ( j) ∀i > 0, (28)

that is, the weight at time i is a linear combination of the
previous transformed input. This result may seem simply
a restatement of the representer theorem in [11]. However,
it should be emphasized that this result does not rely on
any explicit minimal norm constraint as required for the
representer theorem. As pointed out in [12], the gradient
search in (28) has an inherent regularization mechanism
which guarantees the solution is in the data subspace under
appropriate initialization. In general, the initialization ω(0)
can introduce whatever apriori information is available,
which can be any linear combination of any transformed data
in order to utilize the kernel trick.

By (28), the updating on the weight vector reduces to the
updating on the expansion coefficients

ak(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η

(

d(i)−
i−1∑

j=1

a j(i− 1)κi, j

)

, k = i,

ak(i− 1) + η

(

d(k)−
i−1∑

j=1

a j(i− 1)κk, j

)

,

i− K + 1 ≤ k ≤ i− 1,

ak(i− 1), 1 ≤ k < i− K + 1.

(29)
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Initialization:
learning step η
a1(1) = ηd(1)
while {u(i),d(i)} available do

%allocate a new unit
ai(i− 1) = 0
for k = max(1, i− K + 1) to i do

%evaluate outputs of the current network

y(i, k) =
i−1∑

j=1

a j(i− 1)κk, j

%compute errors
e(i, k) = d(k)− y(i, k)

%update the min(i,K) most recent units
ak(i) = ak(i− 1) + ηe(i, k)

end for
if i > K then

%keep the remaining
for k = 1 to i− K do
ak(i) = ak(i− 1)

end for
end if

end while

Algorithm 1: Kernel affine projection algorithm (KAPA-1).

Since ei+1−k(i) = d(k) −
i−1∑

j=1
a j(i − 1)κk, j is the prediction

error of data {u(k),d(k)} by the network ω(i − 1), the
interpretation of (29) is straightforward: allocate a new unit
with coefficient ηe1(i) and update the coefficients for the
other K − 1 most recent units by ηei+1−k(i) for i − K + 1 ≤
k ≤ i− 1.

The pseudocode for KAPA-1 is listed in Algorithm 1.

3.2. Normalized KAPA (KAPA-2)

Similarly, the regularized Newton’s recursion (24) can be
factorized into the following steps:

ω(i− 1) =
i−1∑

j=1

a j(i− 1)ϕ( j),

e(i) = d(i)−Φ(i)Tω(i− 1),

G(i) = Φ(i)TΦ(i),

ω(i) = ω(i− 1) + ηΦ(i)
[

G(i) + εI
]−1

e(i).

(30)

In practice, we do not have access to the transformed weight
ω or any transformed data, so the update has to be on the
expansion coefficient a like in KAPA-1. The whole recursion
is similar to the KAPA-1 except that the error is normalized

by a K × K matrix
[

G(i) + εI
]−1

.

3.3. Leaky KAPA (KAPA-3)

The feature space may be infinite dimensional depending on
the chosen kernel, which may cause the cost function (22) to

be ill posed in the conventional empirical risk minimization
(ERM) sense [13]. The common practice is to constrain the
solution norm:

min
ω

E
∣∣d − ωTϕ(u)

∣∣2
+ λ
∥∥ω
∥∥2
. (31)

As we have already shown in (25), the leaky KAPA is

ω(i) = (1− λη)ω(i− 1) + ηΦ(i)
[

d(i)−Φ(i)Tω(i− 1)
]
.

(32)

Again, the iteration will be on the expansion coefficient a,
which is similar to the KAPA-1:

ak(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η

(

d(i)−
i−1∑

j=1

a j(i− 1)κi, j

)

, k = i,

(1− λη)ak(i− 1) + η

(

d(k)−
i−1∑

j=1

a j(i− 1)κk, j

)

,

i− K + 1 ≤ k ≤ i− 1,

(1− λη)ak(i− 1), 1 ≤ k < i− K + 1.
(33)

The only difference is that KAPA-3 has a scaling factor (1 −
λη) multiplying the previous weight, which is usually less
than 1, and it imposes a forgetting mechanism so that the
training data in the far past are scaled down exponentially.
Furthermore, since the network size is growing over training,
any transformed data can be pruned from the expansion
easily if its coefficient is smaller than some prespecified
threshold. For large data sets, the growing nature of this fam-
ily of algorithms poses a big problem for implementations,
therefore, network size control is very important. We will
discuss this issue more in the sparsification section.

3.4. Leaky KAPAwith Newton’s recursion (KAPA-4)

As before, the KAPA-4 (26) reduces to

ak(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηd(i), k = i,

(1− η)ak(i− 1) + ηd(k),

i− K + 1 ≤ k ≤ i− 1,

(1− η)ak(i− 1), 1 ≤ k < i− K + 1.

(34)

Among these four algorithms, the first three require the error
information to update the network which is computationally
expensive. Therefore, the different update rule in KAPA-4
has a huge significance in terms of computation since it only
needs a K × K matrix inversion, which, by using the sliding-
window trick, only requires O(K2) operations [14].

We summarize the four KAPA update equations in
Table 2 for convenience.
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Table 2: Comparison of four KAPA update rules.

Algorithm Update equation

KAPA-1 ω(i) = ω(i− 1) + ηΦ(i)[d(i)−Φ(i)Tω(i− 1)]

KAPA-2
ω(i) = ω(i− 1) + ηΦ(i)[Φ(i)TΦ(i) + εI]−1[d(i)−
Φ(i)Tω(i− 1)]

KAPA-3 ω(i) = (1−λη)ω(i−1)+ηΦ(i)[d(i)−Φ(i)Tω(i−1)]

KAPA-4 ω(i) = (1−η)ω(i−1)+ηΦ(i)[Φ(i)TΦ(i)+λI]−1d(i)

4. A TAXONOMY FOR RELATED ALGORITHMS

4.1. Kernel least-mean-square algorithm
(KAPA-1,K = 1)

If K = 1, KAPA-1 reduces to the following kernel least-mean-
square algorithm (KLMS) introduced in [6]:

ω(i) = ω(i− 1) + ηϕ(i)
[
d(i)− ϕ(i)Tω(i− 1)

]
. (35)

It is not difficult to verify that the weight vector assumes
the following expansion:

ω(i) =
i∑

j=1

e( j)ϕ( j), (36)

where e( j) = d( j)− ω( j − 1)Tϕ( j) is the apriori error.
It is seen that the KLMS allocates a new unit when a new

training data comes in with the input u(i) as the center and
the prediction error as the coefficient (scaled by the step size).
In other words, once the unit is allocated, the coefficient
is fixed. It mimics the resource-allocating step in the RAN
algorithm whereas it neglects the adaptation step. In this
sense, the KAPA algorithms, that allocate a new unit for the
present input and also adapt the other K − 1 most recent
allocated units, are closer to the original RAN.

The normalized version of the KLMS is as follows
(NKLMS):

ω(i) = ω(i− 1) +
ηϕ(i)
ε + κi,i

[
d(i)− ϕ(i)Tω(i− 1)

]
, (37)

Notice that for translation invariant kernels, that is, κi,i =
const, the KLMS is automatically normalized. Sometimes we
use KLMS-1 and KLMS-2 to distinguish the two.

4.2. Norma (KAPA-3,K = 1)

Similarly, the KAPA-3 (25) reduces to the Norma algorithm
introduced by Kivinen in [15]:

ω(i) = (1− ηλ)ω(i− 1) + ηϕ(i)
[
d(i)− ϕ(i)Tω(i− 1)

]
.

(38)

4.3. Kernel Adaline (KAPA-1,K = N)

Assume that the size of the training data is finite N . If we set
K = N , then the update rule of the KAPA-1 becomes

ω(i) = ω(i− 1) + ηΦ
[

d−ΦTω(i− 1)
]
, (39)

where the full data matrices are

Φ = [ϕ(1), . . . ,ϕ(N)
]
, d = [d(1), . . . ,d(N)

]
. (40)

It is easy to check that the weight vector also assumes the
following expansion:

ω(i) =
N∑

j=1

a j(i)ϕ( j), (41)

and the updating on the expansion coefficients is

a j(i) = a j(i− 1) + η
[
d( j)− ϕ( j)Tω(i− 1)

]
. (42)

This is nothing but the kernel adaline introduced in
[5]. Notice the fact that the kernel adaline is not an online
method.

4.4. Recursively adapted radial basis function
networks (KAPA-3, ηλ = 1,K = N)

Assume the size of the training data is N as above. If we set
ηλ = 1 and K = N , the update rule of KAPA-3 becomes

ω(i) = ηΦ
[

d−ΦTω(i− 1)
]
, (43)

which is the recursively adapted RBF (RA-RBF) network
introduced in [16]. This is a very intriguing algorithm using
the “global” error directly to compose the new network. By
contrast, the KLMS-1 uses the apriori errors to compose the
network.

4.5. Sliding-window Kernel RLS (KAPA-4, η = 1)

In KAPA-4, if we set η = 1, we have

ω(i) = Φ(i)
[
Φ(i)TΦ(i) + λI

]−1
d(i), (44)

which is the sliding-window kernel RLS (SW-KRLS) intro-
duced in [14]. The inverse operation of the sliding-window
Gram matrix can be simplified to O(K2).

4.6. Regularization networks (KAPA-4, η = 1,K = N)

We assume there are only N training data and K = N .
Equation (26) becomes directly

ω(i) = Φ
[
ΦTΦ + λI

]−1
d, (45)

which is the regularization network (RegNet) [13].
We summarize all the related algorithms in Table 3 for

convenience.

5. KAPA IMPLEMENTATION

In this section, we will discuss the implementation of the
KAPA algorithms in detail.
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Table 3: List of related algorithms.

Algorithm Update equation Relation to KAPA

KLMS ω(i) = ω(i− 1) + ηϕ(i)[d(i)− ϕ(i)Tω(i− 1)] KAPA-1, K = 1

NKLMS ω(i) = ω(i− 1) +
ηϕ(i)

(ε + κi,i)
[d(i)− ϕ(i)Tω(i− 1)] KAPA-2, K = 1

Norma ω(i) = (1− ηλ)ω(i− 1) + ηϕ(i)[d(i)− ϕ(i)Tω(i− 1)] KAPA-3, K = 1

Kernel Adaline ω(i) = ω(i− 1) + ηΦ[d−ΦTω(i− 1)] KAPA-1, K = N

RA-RBF ω(i) = ηΦ[d−ΦTω(i− 1)] KAPA-3, ηλ = 1, K = N

SW-KRLS ω(i) = Φ(i)[Φ(i)TΦ(i) + λI]−1d(i) KAPA-4, η = 1

RegNet ω(i) = Φ[ΦTΦ + λI]
−1

d KAPA-4, η = 1, K = N

5.1. Error reusing

As we see in KAPA-1, KAPA-2, and KAPA-3, the most time-
consuming part of the computation is to obtain the error
information. For example, suppose ω(i − 1) = ∑i−1

j=1a j(i −
1)ϕ( j). We need to calculate e(i, k) = d(k) − ω(i− 1)Tϕ(k)
(i − K + 1 ≤ k ≤ i) to compute ω(i), which consists of
(i−1)K kernel evaluations. As i increases, this dominates the
computation time. In this sense, the computation complexity
of the KAPA is K times of the KLMS. However, after a careful
manipulation, we can shrink the complexity gap between
KAPA and the KLMS.

Assume that we store all the K errors e(i− 1, k) = d(k)−
ω(i− 2)Tϕ(k) for i − K ≤ k ≤ i − 1 from the previous
iteration. At the present iteration, we have

e(i, k) = d(k)− ϕ(k)Tω(i− 1)

= d(k)− ϕ(k)T
[
ω(i− 2) + η

i−1∑

j=i−K
e(i− 1, j)ϕ( j)

]

= [d(k)− ϕ(k)Tω(i− 2)
]

+ η
i−1∑

j=i−K
e(i− 1, j)κj,k

= e(i− 1, k) +
i−1∑

j=i−K
ηe(i− 1, j)κj,k.

(46)

Since e(i − 1, i) has not been computed yet, we have to
calculate e(i, i) by i − 1 times kernel evaluation anyway.
Overall the computation complexity of the KAPA-1 is O(i +
K2), which is O(K2) more than the KLMS.

5.2. Sliding-window grammatrix inversion

In KAPA-2 and KAPA-4, another computation difficulty is
to invert a K × K matrix, which normally requires O(K3).
However, in the KAPA, the data matrix Φ(i) has a sliding
window structure, therefore, a trick can be used to speed up
the computation. The trick is based on the matrix inversion
formula and was introduced in [14]. We outline the basic

calculation steps here. Suppose the sliding matrices share the
same sub-matrix D:

G(i− 1) + λI =
⎡

⎣
a bT

b D

⎤

⎦ , G(i) + λI =
⎡

⎣
D h

hT g

⎤

⎦ ,

(47)

and we know from the previous iteration that

(
G(i− 1) + λI

)−1 =
⎡

⎣
e fT

f H

⎤

⎦ . (48)

First, we need to calculate the inverse of D as

D−1 = H− ffT/e. (49)

Then, we can update the inverse of the new Gram matrix as

(
G(i) + λI

)−1 =
⎡

⎣
D−1 + (D−1h)(D−1h)Ts −(D−1h)s

−(D−1h)Ts s

⎤

⎦

(50)

with s = (g − hTD−1h)−1. s−1 is the Schur complement of
D in (G(i) + λI), which actually measures the distance of the
new data to the other K − 1 most recent data in the feature
space. The overall complexity is O(K2).

5.3. Sparsification

A sparse model is desired because it reduces the complexity
in terms of computation and memory, and it usually yields
better generalization [3]. On the other hand, in the context of
adaptive filtering, training data may just be available sequen-
tially, that is, one at a time. As we see in the formulation of
KAPA, the network size increases linearly with the number
of training data, which may pose a big problem for the KAPA
algorithms to be applied in online applications. The sparse
model idea is inspired by Vapnik’s support vector machines.
It is also introduced in [7] with the novelty criterion and
extensively studied in [3] under approximate linear depen-
dency (ALD). There are many other ways to achieve sparse-
ness that require the creation of a basis dictionary and storage
of the corresponding coefficients. Suppose the present dictio-

nary is D(i) = {c j}m(i)
j=1 , where c j is the jth center and m(i)
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is the cardinality. When a new data pair {u(i+ 1),d(i+ 1)} is
presented, a decision is made immediately whether u(i + 1)
should be added into the dictionary as a center.

The novelty criterion introduced by Platt is relatively
simple. First, it calculates the distance of u(i+1) to the present
dictionary dis1 = minc j∈D(i)‖u(i + 1) − c j‖. If it is smaller
than some preset threshold, say δ1, u(i+ 1) will not be added
into the dictionary. Otherwise, the method computes the
prediction error e(i+1, i+1) = d(i+1)−ϕ(i + 1)Tω(i). Only
if the prediction error is larger than another preset threshold,
say δ2, u(i + 1) will be accepted as a new center.

The ALD test introduced in [3] is more computationally
involved. It tests the following cost dis2 = min∀b‖ϕ(u(i +
1)) − ∑c j∈D(i)b jϕ(c j)‖ which indicates the distance of the
new input to the linear span of the present dictionary in the
feature space. It turns out that dis2 is the Schur complement
of the Gram matrix of the present dictionary. As we saw in
the previous section, this result can be used to get the new
Gram matrix inverse if u(i+1) is accepted into the dictionary.
Therefore, this method is more suitable for the KAPA-2 and
KAPA-4 because of efficiency. This link is very interesting
since it reveals that the ALD test actually guarantees the
invertibility of the new Gram matrix.

In the sparse model, if the new data is determined to be
“novel,” the K − 1 most recent data points in the dictionary
are used to form the data matrix Φ(i) together with the new
data. Therefore, a new unit is allocated and the update is on
the K − 1 most recent units in the dictionary. If the new data
is determined to be not “novel,” it is simply discarded in this
paper, but a different strategy can be employed to utilize the
information like in [3, 7].

The important consequences of the sparsification proce-
dure are as follows.

(1) If the input domain U is a compact set, the cardinality
of the dictionary is always finite and upper bounded. This
statement is not hard to prove using the finite covering
theorem of the compact set and the fact that elements in
the dictionary are δ-separable [3]. Here is the brief idea:
suppose spheres with diameter δ are used to cover U and
the optimal covering number is N . Then, because any two
centers in the dictionary can not be in the same sphere,
the total number of the centers will be no greater than N
regardless of the distribution and temporal structure of u.
Of course, this is a worst case upper bound. In the case of
finite training data, the network size will be finite anyway.
This is true in applications like channel equalization, where
the training sequence is part of each transmission frame.
In a stationary environment, the network converges quickly
and the threshold on prediction errors plays its part to
constrain the network size. We will validate this claim in the
simulation section. In a nonstationary environment, more
sophisticated pruning methods should be used to constrain
the network size. Simple strategies include pruning the oldest
unit in the dictionary [14], pruning randomly [17], and
pruning the unit with the least coefficient or similar [18, 19].
Another alternative approach is to solve the problem in
the primal space [20, 21] directly by using the low rank
approximation methods such as Nyström method [22],

Table 4: Performance comparison in MG time series prediction.

Algorithm Parameters Test mean square error

LMS η = 0.04 0.0208± 0.0009

KLMS η = 0.02 0.0052± 0.00022

SW-KRLS K = 50, λ = 0.1 0.0052± 0.00026

KAPA-1 η = 0.03, K = 10 0.0048± 0.00023

KAPA-2 η = 0.03, K = 10, ε = 0.1 0.0040± 0.00028

KRLS λ = 0.1 0.0027± 0.00009

incomplete Cholesky factorization [23], and kernel principal
component analysis [2]. It should be pointed out that the
scalability issue is at the core of the kernel methods and so
all the kernel methods need to deal with it in one way or
the other. Indeed, the sequential nature of the KAPA enables
active learning [24, 25] on huge data sets which is impossible
in batch mode algorithms like regularization networks. The
discussion on active learning with the KAPA is out of the
scope of this paper and will be part of the future work.

(2) Based on (1), we can prove that the solution norms of
KLMS-1 and KAPA-1 are upper bounded [12].

The significance of (1) is of practical interest because it
states that the system complexity is controlled by the novelty
criterion parameters, and designers can estimate a worst case
upper bound. The significance of (2) is of theoretical interest
because it guarantees the well-posedness of the algorithms.
The well-posedness of the KAPA-3 and KAPA-4 is mostly
ensured by the regularization term, see [13, 14] for details.

6. SIMULATIONS

6.1. Time series prediction

The first example is the short-term prediction of the Mackey-
Glass (MG) chaotic time series [26, 27]. It is generated from
the following time delay ordinary differential equation:

dx(t)
dt

= −bx(t) +
ax(t − τ)

1 + x(t − τ)10 , (51)

with b = 0.1, a = 0.2, and τ = 30. The time series
is discretized at a sampling period of 6 seconds. The time

embedding is 7, that is, u(i) = [x(i−7), x(i−6), . . . , x(i−1)
]T

are used as the input to predict the present one x(i) which is
the desired response here. A segment of 500 samples is used
as the training data and another 100 points as the test data (in
the testing phase, the filter is fixed). All the data is corrupted
by Gaussian noise with zero mean and 0.001 variance.

We compare the prediction performance of KLMS,
KAPA-1, KAPA-2, KRLS, and a linear combiner trained with
LMS. A Gaussian kernel with kernel parameter a = 1 in (17)
is chosen for all the kernel-based algorithms. One hundred
Monte Carlo simulations are run with different realizations
of noise. The results are summarized in Table 4. Figure 1 is
the learning curves for the LMS, KLMS-1, KAPA-1, KAPA-
2 (K = 10), and KRLS, respectively. As expected, the KAPA
outperforms the KLMS.

As we can see in Table 4, the performance of the KAPA-
2 is substantially better than the KLMS. All the results in
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Iteration
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Figure 1: The learning curves of the LMS, KLMS, KAPA-1 (K =
10), KAPA-2 (K = 10), SW-KRLS (K = 50), and KRLS.

Table 5: Complexity comparison at iteration i.

Algorithm Computation Memory

LMS O(L) O(L)

KLMS O(i) O(i)

SW-KRLS O(K2) O(K2)

KAPA-1 O(i + K2) O(i + K)

KAPA-2 O(i + K2) O(i + K2)

KAPA-4 O(K2) O(i + K2)

KRLS O(i2) O(i2)

the tables are in the form of “average ± standard deviation.”
Table 5 summarizes the computational complexity of these
algorithms. The KLMS and KAPA effectively reduce the com-
putational complexity and memory storage when compared
with the KRLS. KAPA-3 and sliding-window KRLS are also
tested on this problem. It is observed that the performance of
the KAPA-3 is similar to KAPA-1 when the forgetting term is
very close to 1 as expected, and the results are severely biased
when the forgetting term is reduced further. The reason can
be found in [12]. The performance of the sliding-window
KRLS is included in Figure 1 and Table 4 with K = 50. It is
observed that KAPA-4 (including the sliding-window KRLS)
does not perform well with small K (< 50).

Next, we test how the novelty criterion affects the
performance. A segment of 1000 samples is used as the
training data and another 100 as the test data. All the data
is corrupted by Gaussian noise with zero mean and 0.001
variance. The thresholds in the novelty criterion are set as
δ1 = 0.02 and δ2 = 0.06. The learning curves are shown
in Figure 2 and the results are summarized in Table 6. It is
seen that the complexity can be reduced dramatically with
the novelty criterion with slight performance degeneration.

Iteration

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

10−4

10−2

10−0

10−3

10−2

10−1

10−3

10−2

10−1

M
SE

KLMS

KAPA-2

KAPA-1

Non-sparse
Sparse

Figure 2: The learning curves of the KLMS-1, KAPA-1 (K = 10),
and KAPA-2 (K = 10) with and without sparsification.

Here, SKLMS and SKAPA denote the sparse KLMS and the
sparse KAPA, respectively.

Several comments follow: although formally being adap-
tive filters, these algorithms can be viewed as efficient
alternatives to batch mode RBF networks; therefore, it is
practical to freeze their weights during the test phase.
Moreover, when compared with other nonlinear filters such
as RBF’s, we divide the data in training and testing as
normally done in neural networks. Of course, it is also
feasible to use the apriori prediction error as a performance
indicator like in conventional adaptive filtering literature.

6.2. Noise cancellation

Another important problem in signal processing is noise
cancellation in which an unknown interference has to be
removed based on some reference measurement. The basic
structure of a noise cancellation system is shown in Figure 3.
The primary signal is s(i) and its noisy measurement d(i)
acts as the desired signal of the system. n(i) is a white
noise process which is unknown, and u(i) is its reference
measurement, that is, a distorted version of the noise process
through some distortion function, which is unknown in
general. Here, u(i) is the input of the adaptive filter. The
objective is to use u(i) as the input to the filter and to obtain,
as the filter output, an estimate of the noise source n(i).
Therefore, the noise can be subtracted from d(i) to improve
the signal-noise ratio.

In this example, the noise source is assumed white,
uniformly distributed between [−0.5, 0.5]. The interference
distortion function is assumed to be

u(i) = n(i)− 0.2u(i− 1)− u(i− 1)n(i− 1)

+ 0.1n(i− 1) + 0.4u(i− 2).
(52)
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Table 6: Performance comparison in MG time series prediction on novelty criterion.

Algorithm Parameters Test mean square error Dictionary size

KLMS-1 η = 0.02 0.0015± 0.00012 1000

SKLMS-1 η = 0.02 0.0021± 0.00017 220

KAPA-1 η = 0.03 0.0012± 0.00014 1000

SKAPA-1 η = 0.03 0.0017± 0.00016 209

KAPA-2 η = 0.03, ε = 0.1 0.0007± 0.00010 1000

SKAPA-2 η = 0.03, ε = 0.1 0.0011± 0.00016 195

Noise source

Primary signal

Interference distortion
function: H(•)

Primary signal

Adaptive
filter

n(i)
s(i)

n(i)

u(i)

d(i)

y(i)

+

+
−

Figure 3: The basic structure of the noise cancellation system.

As we see, the distortion function has infinite impulsive
response, which, on the other hand, means it is impossible to
recover n(i) from a finite time delay embedding of u(i). We
rewrite the distortion function as

n(i) = u(i) + 0.2u(i− 1)− 0.4u(i− 2)

+
(
u(i− 1)− 0.1

)
n(i− 1).

(53)

Therefore, the present value of the noise source n(i) depends
not only on the reference noise measure

[
u(i),u(i− 1),u(i−

2)
]
, but also on the previous value n(i − 1), which in turn

depends on
[
u(i − 1),u(i − 2),u(i − 3)

]
, and so on. It

means we need a very long time embedding (infinite long
theoretically) in order to recover n(i) accurately. However,
the recursive nature of the adaptive system provides a feasible
alternative, that is, we feedback the output of the filter
n̂(i − 1), which is the estimate of n(i − 1), to estimate the
present one, pretending n̂(i− 1) is the true value of n(i− 1).
Therefore, the input of the adaptive filter can be in the form
of
[
u(i),u(i − 1),u(i − 2), n̂(i − 1)

]
. It can be seen that

the system is inherently recurrent. In the linear case with
a DARMA model, it is studied under output error methods
[28]. However, it will be nontrivial to generalize the results
concerning convergence and stability to nonlinear cases, and
we will address it in the future work.

We assume the primary signal s(i) = 0 during the
training phase. And the system simply tries to reconstruct
the noise source from the reference measure. We use a linear
filter trained with the normalized LMS, two nonlinear filters
trained with the SKLMS-1, and the SKAPA-2 (K = 10),
respectively. 2000 training samples are used and 400 Monte
Carlo simulations are run to get the ensemble learning
curves as shown in Figure 4. The step size and regularization
parameter for the NLMS are 0.2 and 0.005. The step sizes
for SKLMS-1 and SKAPA-2 are 0.5 and 0.2, respectively.

Iteration
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0.03
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SKAPA-2

Figure 4: Ensemble learning curves of NLMS, SKLMS-1, and
SKAPA-2 (K = 10) in noise cancellation.

Table 7: Noise reduction comparison in noise cancellation.

Algorithm Network size NR(dB)

NLMS N/A 9.40

SKLMS-1 581 16.97

SKAPA-2 507 22.99

The Gaussian kernel is used for both KLMS and KAPA
with kernel parameter a = 1. The tolerance parameters
for KLMS and KAPA are δ1 = 0.15 and δ2 = 0.01,
and the noise reduction factor (NR), which is defined as
10log10{E

[
n2(i)

]
/E[n(i)− y(i)]2}, is listed in Table 7. The

performance improvement of SKAPA-2 is obvious when
compared with SKLMS-1.

6.3. Nonlinear channel equalization

In this example, we consider a nonlinear channel equaliza-
tion problem, where the nonlinear channel is modeled by
a nonlinear Wiener model. The nonlinear Wiener model
consists of a serial connection of a linear filter and a
memoryless nonlinearity (See Figure 5). This kind of model
has been used to model digital satellite communication
channels [29] and digital magnetic recording channels [30].
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Linear channel H(z) Nonlinearity f
s(i) x(i)

n(i)

r(i)

+

+

Figure 5: Basic structure of the nonlinear channel.

The problem setting is as follows: a binary signal
{s(1), s(2), . . . , s(N)} is fed into the nonlinear channel. At the
receiver end of the channel, the signal is further corrupted
by additive i.i.d. Gaussian noise and is then observed
as {r(1), r(2), . . . , r(N)}. The aim of channel equalization
(CE) is to construct an inverse filter that reproduces the
original signal with as low an error rate as possible. It is
easy to formulate CE as a regression problem, with input-
output examples {(r(t + D), r(t + D − 1), . . . , r(t + D − l +
1)), s(t)}, where l is the time embedding length, and D is the
equalization time lag.

In this experiment, the nonlinear channel model is
defined by x(t) = s(t)+0.5s(t−1), r(t) = x(t)−0.9x(t)2+n(t),
where n(t) is the white Gaussian noise with a variance of
σ2. We compare the performance of the LMS1, the APA1,
the SKLMS1, the SKAPA1 (K = 10), and the SKAPA2
(K = 10). The Gaussian kernel with a = 0.1 is used in
the SKLMS and SKAPA selected with cross validation. l = 3
and D = 2 in the equalizer. The noise variance is fixed here
σ = 0.1. The learning curve is plotted in Figure 6. The MSE
is calculated between the continuous output (before taking
the hard decision) and the desired signal. For the SKLMS1,
SKAPA1, and SKAPA2, the novelty criterion is employed
with δ1 = 0.07, δ2 = 0.08. The incremental growth of the
network is also plotted in Figure 7 over the training. It can be
seen that at the beginning, the network sizes increase quickly,
but after convergence, the network sizes increase slowly. And
in fact, we can stop adding new centers after convergence by
cross-validation by noticing that the MSE does not change
after convergence.

Next, different noise variances are set. To make the
comparison fair, we tune the novelty criterion parameters
to make the network size almost the same (around 100)
in each scenario by cross validation. For each setting, 20
Monte Carlo simulations are run with different training data
and different testing data. The size of the training data is
1000 and the size of the testing data is 105. The filters are
fixed during the testing phase. The results are presented
in Figure 8. The normalized signal-noise ratio (SNR) is
defined as 10log10(1/σ2). It is clearly shown that the SKAPA-
2 outperforms the SKLMS-1 substantially in terms of the bit
error rate (BER). The linear methods never really work in
this simulation regardless of the SNR. The improvement of
the SKAPA-1 on the SKLMS-1 is marginal but it exhibits a
smaller variance. The variability in the curves is mostly due
to the variance from the stochastic training.

In the last simulation, we test the tracking ability of the
proposed methods by introducing an abrupt change during
training. The training data is 1500. For the first 500 data, the
channel model is kept the same as before, but for the last 1000
data, the nonlinearity of the channel is switched to r(t) =
−x(t) + 0.9x(t)2 + n(t). The ensemble learning curves from
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Figure 6: The learning curves of the LMS1, APA1, SKLMS1,
SKAPA1, and SKAPA2 in the nonlinear channel equalization (σ =
0.1).
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Figure 7: Network size over training in the nonlinear channel
equalization.

100 Monte Carlo simulations are plotted in Figure 9, and the
dynamic change of the network size is plotted in Figure 10.
It is seen that the SKAPA-2 outperforms other methods with
its fast tracking speed. It is also noted that the network sizes
increase right after the change to the channel model.

7. DISCUSSION AND CONCLUSION

This paper proposes the KAPA algorithm family which is
intrinsically a stochastic gradient methodology to solve the
Least Squares problem in RKHS. It is a follow-up study of the
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Figure 8: Performance comparison with different SNR in the
nonlinear channel equalization.
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Figure 9: Ensemble learning curves in the nonlinear channel
equalization with an abrupt change at iteration 5000.

recently introduced KLMS. Since the KAPA update equation
can be written as inner products, KAPA can be efficiently
computed in the input space. The good approximation
ability of the KAPA stems from the fact that the transformed
data ϕ(u) includes possibly infinite different features of the
original data. In the framework of stochastic projection, the
space spanned by ϕ(u) is so large that the projection error
of the desired signal could be very small [31], as is well
known from Cover’s theorem [32]. This capability includes
modeling of nonlinear systems, which is the main reason
why the KAPA can achieve good performance in the Mackey-
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Figure 10: Network size over training in the nonlinear channel
equalization with an abrupt change at iteration 500.

Glass system prediction, adaptive noise cancellation, and
nonlinear channel equalization.

Comparing with the KLMS, KRLS, and regularization
networks (batch mode training), KAPA gives yet another way
of calculating the coefficients for shallow RBF like neural
networks. The performance of the KAPA is somewhere
between the KLMS and KRLS, which is specified by the
window length K . Therefore, it not only provides a further
theoretical understanding of RBF like neural networks, but
it also brings much flexibility for application design with the
constraints on performance and computation resources.

Three examples are studied in the paper, namely,
time series prediction, nonlinear channel equalization, and
nonlinear noise cancellation. In all examples, the KAPA
demonstrates superior performance when compared with
the KLMS, which is expected from the classic adaptive
filtering theory.

As pointed out, the study of the KLMS and KAPA
has a close relation with the resource-allocating networks,
but in the framework of RKHS, any Mercer kernel can be
used instead of restricting the architecture to the Gaussian
kernel. An important avenue for further research is how
to choose the optimal kernel for a specific problem. A
lot of work [33–35] has been done in the context of
classical machine learning, which is usually derived in a strict
optimization manner. Notice that with stochastic gradient
methods, the solution obtained is not strictly the optimal
solution, therefore, further investigation is warranted. As we
mentioned before, how to control the network size is still a
big issue, which needs further study.
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