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The current work focuses on the design and implementation of an indoor surveillance application for long-term automated anal-
ysis of human activity, in a video-assisted biomedical monitoring system. Video processing is necessary to overcome noise-related
problems, caused by suboptimal video capturing conditions, due to poor lighting or even complete darkness during overnight
recordings. Modified wavelet-domain spatiotemporal Wiener filtering and motion-detection algorithms are employed to facilitate
video enhancement, motion-activity-based indexing and summarization. Structural aspects for validation of the motion detection
results are also used. The proposed system has been already deployed in monitoring of long-term abdominal sounds, for surveil-
lance automation, motion-artefacts detection and connection with other psychophysiological parameters. However, it can be used
to any video-assisted biomedical monitoring or other surveillance application with similar demands.
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1. INTRODUCTION

Video surveillance is a common task in human biomedical
monitoring applications, especially for prolonged recording
periods, where physical supervision is not feasible [1]. Its uti-
lization usually involves (a) surveillance of human behav-
ior/anxiety in combination with various other psychophys-
iological parameters, (b) continuous monitoring in critical
health-care environments or in cases of subjects that need
special treatment for safety reasons (neonatal, handicaps, el-
derly people, etc.), (c) detection and isolation of movement
artefacts that affect the integrity of the psychophysiologi-
cal data, (d) validation and verification of various health-
related symptoms/events, such as cough, apnoea episodes,
restless leg syndrome, and so forth [1–7]. The majority of the
video-assisted biomedical monitoring systems are engaged
in polysomnography recordings during sleep studies [2–7],
in various neurophysiology and kinesiology-related studies
[8–10], for the extraction of temporal motion strength sig-
nals from video recordings of neonatal seizures [11]. Video

monitoring and analysis allows physicians to evaluate the ex-
act experimental condition under which the biomedical data
were acquired [1]. The method described in this paper was
employed in long-term gastrointestinal motility monitoring
by means of abdominal sounds [1, 12], to offer an alterna-
tive approach in detecting and rejecting motion-produced
sliding noises; it was also very helpful during evaluation of
audio-based automated pattern recognition, which offered
an alternative approach in artefacts detection and removal
[1, 13]. Besides these two technical aspects, the incorporation
of video surveillance was decided in order to be able to cor-
relate the phases of the gastrointestinal bio-acoustic activity
with other physiological parameters previously mentioned,
such as brain-activity, sleep cycles’ alteration, respiratory-
related parameters, or even abnormal behavior caused by
psychological factors [1].

Most of the video-assisted biomedical applications are
dealing with the fact that nonoptimal capturing conditions
are unavoidable, since lighting the scene in the adequate
illumination-levels would produce discomfort to subjects,



2 EURASIP Journal on Advances in Signal Processing

affecting the validity of the experimental psychophysiolog-
ical monitoring procedure [1–7]. In addition, overnight
recordings are conducted in sleep laboratories or in other
biomedical examinations, including our gastrointestinal
motility monitoring application [1, 12]. As a result, low-
light cameras, night vision, and infrared devices are engaged
in most cases, worsening the noise contamination problems
that are usually met in general video monitoring applica-
tions. Therefore, video denoising processing is necessary for
enhancement of the captured image-sequences to improve
perceptual analysis during the examination of the content.

Apart from video enhancement, motion detection and
synchronization of the surveillance data with the acquired
psychophysiological parameters are quite common in most
video-assisted biomedical applications [1, 4, 8–11]. Except
from the enhancement aspects, noise removal is essen-
tial for all the involved video processing stages, such as
compression, motion detection/estimation, object segmen-
tation/characterization, and so forth [1, 14–18]. Another im-
portant issue that needs careful treatment, especially for pro-
longed surveillance periods, is the ability to automate in-
dexing, characterization, and summarization of the captured
audio-visual content, facilitating easy browsing, searching,
and retrieval [1, 19–24]. Video motion detection is one of
the most applicable techniques usually employed to track
changes in the monitored area, offering also the ability to ex-
tract summarization plots and pictures [1, 24–29]. This is the
reason that the MPEG-7 protocol incorporates various mo-
tion descriptors for content management purposes [19–21].

Summing up, the purpose of the current work is to pro-
vide an integrated solution for video enhancement, event de-
tection, and summarization of long-term surveillance con-
tent, which has been acquired under suboptimal capturing
conditions. Spatiotemporal wavelet Wiener filtering denois-
ing techniques are considered in combination with wavelet-
adapted motion detection algorithms, to deal with the de-
mands of video enhancement and efficient content index-
ing/description. These demands are quite common to most
video surveillance systems, regardless the type of their uti-
lization, for example, biomedical monitoring, security sys-
tems, traffic monitoring, human machine interaction, and so
forth. Thus, the proposed methodology can be applied to any
of these areas.

The paper is organized as follows. The problem definition
is described in Section 2. State of research and related meth-
ods are presented in Section 3, providing a quick overview
of contemporary video denoising approaches, motion detec-
tion techniques, and recent strategies in audio-visual con-
tent description/management. The proposed methodology is
analyzed in Section 4. Experimental results are discussed in
Section 5, where evaluation of the proposed methods is car-
ried out in combination with conclusion and future work re-
marks.

2. PROBLEMDEFINITION

Noise contamination is a typical problem to most electronic
communication systems, including surveillance applications.
In most of the cases, video enhancement by means of noise

reduction is necessary in order to improve image quality, in-
crease compression efficiency, and facilitate all video process-
ing stages that may possibly follow [14–18]. For example,
by applying simple order-statistics filters in effort to reduce
noise, an improvement in compression efficiency by a fac-
tor 1.5 to 2 was observed, without the presence of noticeable
compression artefacts [1]. This is explained by the fact that
the presence of noise might be interpreted as excessive and
random motion, deteriorating the compression efficiency of
the related motion-compensation algorithms [14–18, 27].
In addition, erroneous motion estimation (ME), usually ex-
pressed by motion vectors (MVs), may occur [14, 27]. This
has a negative impact on background/foreground segmenta-
tion (BRFR) results, usually involved in surveillance systems
[1, 25, 26, 28].

Video signals can be corrupted by noise during acqui-
sition, recording, digitization, processing, and transmission.
Typical examples of video-noise include CCD-camera noise,
analog channels interferences, magnetic-recording noise,
quantization noise during digitization, and so forth [14–18].
According to [15], in digital cameras the video noise level
may increase because of the higher sensitivity of the new
CCD cameras and the longer exposures. In general, the noise
signal can be modelled as stochastic process, which is ad-
ditive or multiplicative, signal-dependent or independent,
white or colored, according to its spectral properties [15].
Most researchers tend to model the above types of video-
noise sources as independent identically distributed additive
and stationary zero-mean noise, which is the simplest Gaus-
sian additive white noise model described from the following
equation [14–18]:

IX(i, j,n) = IS(i, j,n) + IN (i, j,n), (1)

where IX is the luminance of the noise contaminated image,
IS the noise-free image, IN the 2D noise signal, i, j are the spa-
tial indexes, and n the time-index for the images sequences
(frame number). Equation (1) suggests that only grey-scale
images are considered, since IX , IS, IN refer to the intensi-
ties of the corresponding colorless 2D signals. This model
was also adopted in the current work, mainly due to the fact
that colored video increases the computational load, with-
out increase of the usefulness of the provided information.
Additionally, night vision equipment inherently belongs to
monochromatic video systems, so that greyscale images were
selected to allow similar treatment in both diurnal and noc-
turnal surveillance. However, (1) can be extended to the ap-
propriate color space components to apply on color video
cases. To answer the noise contamination problem, most
video denoising algorithms tend to employ 2D image (spa-
tial) filtering, motion detection, and temporal smoothing.

A consequent problem is the erroneous estimation of
the background image B(i, j,n). The noised versions of both
the intensity and the background images deteriorate the effi-
ciency in the estimation of the foreground objects, usually
extracted via the subtraction of the previously mentioned
signals IX(i, j,n) and B(i, j,n). To deal with the stated prob-
lem, there is a necessity for algorithms that can effectively
accomplish the BRFR segmentation task under the pres-
ence of nonoptimal conditions, previously discussed. Among
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Figure 1: Block diagram of the JWVD-MAD algorithm.

the wanted characteristics of those algorithms is the abil-
ity to accurately extract suitable motion parameters that
could be consequently used for content management pur-
poses [1, 25–28], especially for prolonged monitoring peri-
ods. Thus, motion-detection-based video indexing is quite
useful in surveillance applications, while the interaction with
audio content and other modalities can serve as a powerful
tool towards multimodal event detection segmentation and
summarization [1, 12, 13].

3. RELATED RESEARCH AND THE SELECTED
APPROACHES

A quick overview of the research background in video de-
noising, video-motion detection, and audio-visual content
management is needed before the proposed techniques are
further analyzed. This paragraph mainly focuses on the
methods that are utilised in the current work.

3.1. Video denoising overview

Based on the remarks of the previous paragraph, most
video denoising/enhancement algorithms implement tem-
poral, spatial, and spatiotemporal filtering, to take advantage
of the corresponding redundancy (similarities), usually met
in natural video sequences [14–18]. The estimation of the
noise variance σ2

N (n) is necessary in order to deploy spatial
filtering techniques for noise suppression. Structural char-
acteristics of the image morphology are also considered to
avoid creating blurring at image edges [15, 16, 18]. Tempo-
ral smoothing, on the other hand, tends to produce motion-
artefacts (blurring), when it is applied to moving regions.
To face these difficulties, temporal smoothing is usually

applied along with the estimated pixel-motion-trajectories
[14, 18, 28].

As already stated in Section 2, the noise contamina-
tion problem is unavoidable in most electronic communi-
cation systems, including video applications. The unwanted
effects of the video-noise presence have been already dis-
cussed and analyzed in most video denoising references
[14–18]. Focusing on the demands of the current human-
activity video-surveillance system, noise worsens the quality
of the acquired images, produces erroneous estimations of
the motion-activity parameters, and deteriorates the video
compression efficiency. Video denoising, as it happens with
all single-sided signal restoration techniques [14, 30, 31], try
to estimate the noise statistical attributes from the available
noise-contaminated signal, in order to apply spatiotempo-
ral filtering. In addition, autonoise estimation methods have
been proposed to facilitate unsupervised image and video de-
noising [14–18, 31–35]. Wiener filter, which minimizes the
mean-square error between the original clean signal and the
estimated one obtained during the reconstruction procedure,
is the basis for the current denoising approach. Thus, extend-
ing the 1D processing case [30], the Wiener filtering opera-
tion in the frequency-space domain is described by the fol-
lowing equation [14, 31, 35]:

FS∼
(
ωi,ωj

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[

1− cWF·
PN∼

(
ωi,ωj

)

PX
(
ωi,ωj

)

]

·FX
(
ωi,ωj

)
,

if cWF·
PN∼

(
ωi,ωj

)

PX
(
ωi,ωj

) ≤ 1,

0, otherwise,
(2)

where FX(ωi,ωj)/FS(ωi,ωj)/FN (ωi,ωj) are the Fourier trans-
forms of the noised IX(i, j)/clean IS(i, j)/noise IN (i, j)
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Figure 2: Qualitative analysis of denoising results: (a)-(b) noised frames, (c)-(d) reconstructed frames.

images, and PX(ωi,ωj)/PS(ωi,ωj)/PN (ωi,ωj) are the corre-
sponding power spectrum estimates. Equation (2) describes
the so-called 2D parametric Wiener filter, where the cWF pa-
rameter is used to control the amount of noise suppression
and it may be omitted in the simplest case of classical Wiener
filter (cWF = 1) [30, 31]. The “∼” symbol, which is used in
the FS∼(ωi,ωj), PN∼(ωi,ωj) components of (2) denotes that
the corresponding signals are estimations of the original ones
(clean image spectrum FS and noise power PN ), since the lat-
ter are not available. It is obvious that the estimated noise-
free image IS∼(i, j) can be obtained via inverse Fourier trans-
form of the processed spectrum FS∼(ωi,ωj).

Besides Fourier components, any other spectral anal-
ysis tool can be used in (2), including filter banks,
subband decomposition, and wavelets. In the last case,
the FX(ωi,ωj)/FS(ωi,ωj)/FN (ωi,ωj) components of (1)
are replaced with the wavelet coefficients JX (l;AD)(wli,wl j)/
JS(l;AD)(wli,wl j)/JN (l;AD)(wli,wl j), where l denotes the decom-
position level (l = 1, 2, . . . LW ) and AD is the approxi-
mation/details index: AD = “Low-Low”, “Low-High”, “High-
Low”, “High-High” = {LL, LH, HL, HH}. The new power esti-
mates PX (l;AD)(wli,wl j)/PS(l;AD)(wli,wl j)/PN (l;AD)(wli,wl j) are
now referred to the “wavelet images” usually obtained via 2D
discrete wavelet transform (DWT) and 2D wavelet packets
(following the “subsampling by 2” rule at every wavelet de-
composition node l), or even undecimated wavelet transform
(UWT) [16–18, 32]. Wavelet shrinkage is deployed accord-
ing to (3), while the noise-free image is estimated by apply-

ing inverse wavelet transform (IWT) to the processed coeffi-
cients:

JS∼
(
wi,wj

) =

⎧
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⎪⎪⎪⎪⎪⎪⎪⎩

[
1− cWF·

PN∼
(
wi,wj

)

PX
(
wi,wj

)
]
·JX
(
wi,wj

)
,

if cWF·
PN∼

(
wi,wj

)

PX
(
wi,wj

) ≤ 1

0, otherwise,

∀(l; AD)

(3)

omitting the corresponding indicators (l; AD) for the sake of
simplicity. This is to be followed throughout the rest of the
paper for all the wavelet-based quantities, unless otherwise
stated.

The above image processing equations may be also used
for video Wiener denoising. As stated, the simplest approach
to video denoising is to employ image filtering to every frame
n of the video sequences. Thus, (2) and (3) may be used
for the case of video spatial filtering, by replacing argu-
ments (ωi,ωj) and (wi,wj) with (ωi,ωj ,n) and (wi,wj ,n),
for each (l; AD), respectively. This approach, however, does
not take into consideration similarities between successive
frames (temporal smoothing). On the other hand, we may
consider that all the frequency/wavelet image components
(pixels) of (2) and (3) are 1D curves versus time, so that 1D
Wiener filtering could be applied to every single one of them
(temporal-only smoothing: n is the only independent vari-
able in the arguments of the previous equations) [14, 31].
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Figure 3: Qualitative analysis of motion detection results: (a)-(b) motion images extracted with the TD-BRFR method, (c)-(d) motion
images extracted with the WD-BRFR method, (e)-(f) motion images extracted with the JWVD-MAD algorithm.

The appearance of motion artefacts in the case of moving
pixels is a common disadvantage of these techniques, already
discussed. There have been researchers in past works that
have evaluated the order of operations (spatial and tempo-
ral filtering) that provides optimal de-noising [14, 18], while
various motion compensation strategies have been proposed
to reduce motion artefacts during temporal smoothing [14,
16, 18, 35]. Taking these facts into account, 1D and 2D
wavelet domain Wiener filtering algorithms can be effectively
combined to provide improved video denoising solutions.
The so-called empirical Wiener filter [36] is another related
issue concerning a strategy that was also adopted in the cur-
rent work.

3.2. Videomotion detection overview

Video motion detection plays a very important role in
surveillance systems. In contrast to motion estimation tech-
niques that try to compute MVs in order to find all the mo-
tion attributes, motion detection algorithms try to classify
image-pixels to moving and nonmoving ones, so that they
are usually computationally faster and easier to implement
[22, 27]. There is an interaction between motion detection
and motion estimation methods. In motion-compensated
compressed video, MVs may be utilized to offer motion de-
tection results. On the other hand, motion detection can be
deployed as a preprocessing stage to facilitate motion esti-

mation and to improve compression efficiency, an approach
that is closer to the strategy adopted in the current work.
Thus, considering the case that no MVs are available, mo-
tion detection is usually implemented via time differencing
comparisons, optical flow techniques and background sub-
traction methods [25, 26]. We will focus on the last subcate-
gory presenting the BRFR segmentation methods developed
by Collins et al. [25] and Töreyin et al. [26], since they were
used as the basis for the modified joint wavelet video denois-
ing and motion activity detection (JWVD-MAD) algorithm,
proposed in the current paper.

Collins et al. [25] developed a time-domain BRFR clas-
sification method (TD-BRFR) using exponential moving av-
erage techniques (ExpMA):

B(i, j,n+1)=

⎧
⎪⎪⎨

⎪⎪⎩

am·B(i, j,n) +
(
1− am

)·I(i, j,n),

if the (i, j) pixel is nonmoving,

B(i, j,n), otherwise,
(4)

where the i, j indexes determine the images’ spatial coordi-
nates, the n,n+1 indexes determine the video frame number,
am is the “motion-constant” utilized in the ExpMA BRFR
procedure, B(i, j,n) is the estimated background image at
frame n, and I(i, j,n) is the image intensity (greyscale im-
age) at frame n, which is considered to be noise free. In order
to be able to execute operations inside (4), the motion-pixel
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Figure 5: Motion activity curve and video motion detection results
via the VDSS method (Tevent = 40): the green-color curves represent
the automatically detected events.

masks MP(i, j,n) are estimated at every frame n [1, 25, 26]:

MP(i, j,n) = ∣∣I(i, j,n)− I(i, j,n− 1)
∣∣ > T(i, j,n). (5)

The threshold parameter T(i, j,n) is also adapted itera-
tively via the ExpMA procedure described in the following
equation:

T(i, j,n + 1)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

am·T(i, j,n)+
(
1− am

)·cm·
∣
∣I(i, j,n)− B(i, j,n)

∣
∣,

if the (i, j) pixel is nonmoving,

T(i, j,n), otherwise,
(6)

where the “motion comparison” parameter cm (cm > 1) is
used to control the motion detection sensitivity (the greater
the cm value, the lower the motion detection sensitivity).
Equations (4), (5), and (6) are executed consequently, with
the initial condition B(i, j, 1) = I(i, j, 1). Additionally, the
threshold parameter needs to be empirically defined at a con-
stant value Tconst during procedure initiation: T(i, j, 1) = T0,
for all i, j. The motion binary images MB(i, j,n) are finally
computed as follows:

MB(i, j,n) = ∣∣I(i, j,n)− B(i, j,n− 1)
∣
∣ > T(i, j,n). (7)

Töreyin et al. [26] proposed a wavelet domain BRFR seg-
mentation (WD-BRFR), taking advantage of the available
image wavelet coefficients J(wi,wj ,n). Thus, (4)–(7) may
be employed in the wavelet domain by replacing image in-
tensities I(i, j,n) with the coefficients J(wi,wj ,n). Wavelet
background images D(wi,wj ,n) are then estimated in-
stead of B(i, j,n), while subband binary motion images
MWB(wi,wj ,n) are calculated at the involved wavelet scales.
A rescaling procedure is necessary to extract the final binary
motion image MB(i, j,n), taking into account the subsam-
pling grid employed during wavelet transform [26]. Specifi-
cally, the involved 2D motion coefficients MWB(wi,wj ,n) are
projected to the corresponding M(i, j,n) motion matrices,
and the final binary motion image MB is generated via an
OR Boolean function,

M(i, j,n)=M
([

2lwi : 2lwi +2l −1
]
,
[
2lwj : 2lwj +2l −1

]
,n
)

=MWB
(
wi,wj ,n

)

i = [0,NH − 1], j = [0,NV − 1
]
,

wi =
[

0,
NH

2l
− 1
]

, wj =
[

0,
NV

2l
− 1
]

MB(i, j,n) = OR
{
M(i, j,n)

}
, ∀(l; AD).

(8)

Töreyin et al. [26] also suggested a second level for motion
detection refinement, by lowering the thresholding criteria
at pixels neighbouring to motion regions, taking structural
aspects into account for object detection. Besides BRFR seg-
mentation, no other wavelet processing was engaged, since
both the images I(i, j,n) and the corresponding wavelet co-
efficients J(wi,wj ,n) were considered to be noise free [26].

3.3. Audio-visual contentmanagement approaches

A common task in most audio-visual surveillance demand-
ing applications is the implementation of effective content
management tools in order to facilitate easy video brows-
ing, indexing, searching, and retrieval. Within this context,
various techniques have been developed for image similar-
ity comparisons, video characterization, and abstraction via
highlighting image sequences. In general we may distinguish
two basic strategies: color information and motion-based pa-
rameters [19–21].
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Color-based techniques tend to give better results, but
they are more computationally demanding when compared
to the motion-based approaches. Video motion techniques
feature easier implementation and are preferred in surveil-
lance applications, where color changes are difficult to follow
[24, 25, 27]. Another advantage is that motion features can
be implemented to colorless video and night vision image
sequences.

Motion parameters are easily extracted from the MVs,
available in MPEG streams or similar motion-compensated,
compressed videos. A representative example is the MPEG-
7 motion activity descriptor that uses statistical attributes
of MVs (variance, spatial/temporal distribution) in order to
describe the motion pace of video sequences. In the case
that MVs are not available, motion estimation is usually em-
ployed via block matching algorithms. However, there are
many cases (including surveillance applications) where mo-
tion detection is preferred (over motion estimation) and
MVs are not applied, due to the easier implementation of the
related algorithms. Thus, extending the analysis presented
previously, binary motion images may be further utilized to
extract 1D “motion-intensity curves” in order to facilitate
video indexing and characterization [1, 22]. It is obvious that
video sequences with intensive motion would result to a great
number of moving points (MB(i, j,n) = 1), while complete
absence of moving pixels would be observed in the case of
motionless video sequences.

4. THE PROPOSED JWVD-MADMETHODOLOGY

The proposed methodology aims to provide an integrated
framework for surveillance video enhancement, event de-
tection, and abstracting. Specifically, wavelet-domain mo-
tion detection is employed, as in the case of [26], us-
ing the iterative ExpMA scheme initially proposed in [25].
The main difference is that the current method is ap-
plied prior to final compression, considering the pres-
ence of additive contamination noise. In addition, we in-
troduce the “active background” concept, since the still
images, considered as background, are stabilized to new
“backgrounds” once the detected movement is completed.
Within this context, a dynamic BRFR segmentation proce-
dure (WD-D-BRFR) is initialized each time a motion event
is terminated. A block diagram describing all the process-
ing phases of the proposed methodology is presented in
Figure 1.

The BRFR segmentation algorithms presented in the pre-
vious paragraph [25, 26] did not take into account video
degradation issues due to the presence of noise. Thus,
I(i, j,n) and J(wi,wj ,n) of (4)–(6) need to be replaced with
the IS(i, j,n) and JS(wi,wj ,n). However, these original noise-
free signals are not available due to noise contamination
problem and the noised versions IX(i, j,n) and JX(wi,wj ,n)
should be used instead. The current method proposes the use
of the denoised signals IS∼(i, j,n) and JS∼(wi,wj ,n), where, as
already mentioned, the “∼” symbol expresses the fact that the
noise-free estimated signals are not identical to the original
ones. This indexing approach is also used for the estimated

noise signals in the space or the wavelet domain: IN∼(i, j,n)
and JN∼(wi,wj ,n), respectively.

4.1. Video denoising bymeans of spatiotemporal
wavelet filtering (VD-STWF)

The first step in the proposed JWVD-MAD methodology is
the deployment of wavelet filtering in order to obtain the
noise-free estimations of the available signals. Since both
temporal filtering and spatial filtering are engaged in succes-
sion, there are differences between the various noise/signal
estimations denoted by “∼”. To deal with this “notation dif-
ficulty” we decided to define the number of filtering pro-
cedures employed for a specific estimation, next to the “∼”
symbol. For example, the IN∼1(i, j,n) parameter indicates
that the current noise estimation has been produced via
a single denoising process (i.e., spatial filtering), while the
IN∼2(i, j,n) value is estimated after the insertion of a sec-
ond denoising process (i.e., temporal smoothing). In any
case, both temporal smoothing and spatial filtering are im-
plemented directly in the wavelet domain, to take advan-
tage of the wavelet-based video denoising advantages [16–
18]. Thus, the WD-BRFR approach, initially proposed by
Töreyin et al. [26] will be followed, allowing direct use of the
processed wavelet coefficients JS∼(wi,wj ,n), without the ne-
cessity of applying IWT (if no other processing is involved).
This is also beneficial in the case that a wavelet compression
algorithm is followed.

Let us turn our attention to the block diagram of
Figure 1. It is obvious that spatial filtering precedes tempo-
ral smoothing, with the last one to be implemented after
motion detection for artefacts (blurring) avoidance. How-
ever, temporal similarities are also exploited during the es-
timation of the noise power coefficients PN (wi,wj ,n). Con-
sidering that noise energy characteristics do not change very
rapidly, noise history can be used for the refinement of the
wavelet thresholding rules. Wavelet image denoising is ad-
ditionally applied for noise estimation at the current frame
(n). In general, any 2D wavelet autothresholding method
can be employed to this preprocessing step of the empir-
ical Wiener filter [36]. The soft-thresholding version us-
ing the parametric threshold of “ThN = km·σN” was fi-
nally selected (by introducing the multiplicative factor km),
since it proved to best combine efficiency with reduced
complexity.

There are applications [36] where empirical Wiener fil-
tering has been implemented in the wavelet domain for video
denoising purposes. However, the approach followed in this
paper is quite different from the method proposed in [36],
where autothresholding results are used to estimate SNR
in order to reconfigure Wiener filter for a second wavelet
processing scheme. In the current work, we avoid to per-
form IWT by using the exact wavelet topology in both de-
noising stages (autowavelet shrinkage via soft thresholding
and wavelet Wiener filtering). In addition, we introduce the
wavelet noise power that has been extracted during the pre-
vious frame denoising, to refine the final noise levels that
would be involved in the Wiener filtering. An ExpMA iter-
ative procedure has been selected for the noise estimation
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Figure 6: Quantitative analysis of denoising results: (a) original (noise-free) video frame, (b) noise-contaminated image, (c) JWVD-MAD
denoised frame, (d) PSNR curves.

process, since it proved very efficient in 1D processing [30],
as well as because the whole motion detection process utilizes
ExpMA structures:

|JN∼2
(
wi,wj ,n

)

= aN·JN∼1
(
wi,wj ,n

)
+
(
1− aN

)·JN∼4
(
wi,wj ,n− 1

)
,

(9)

where aN is the corresponding ExpMA constant (0 <
aN < 1), also called memory term [30], JN∼4(wi,wj ,n −
1) is the previous-frame noise estimation (extracted af-
ter the (n − 1)-frame denoising has been completed) and
JN∼1(wi,wj ,n) is the noise extracted during the first-level
denoising of the empirical Wiener filter. The factor km
might be different at various scales, so we use the generic
expression km for all (l; AD)|DWT. In fact, we selected to
use a unique multiplicative factor for all the detail coef-
ficients km for all (l; AD)|DWT /=(Lw; LL), except from the

k(Lw;LL)
m factor that was adopted for the approximation

subimage:

JN∼1
(
wi,wj ,n

) = JX
(
wi,wj ,n

)− JS∼1
(
wi,wj ,n

)

JS∼1
(
wi,wj ,n

)

= JX
(
wi,wj ,n

)

∣∣JX
(
wi,wj ,n

)∣∣·max
{[∣∣JX

(
wi,wj ,n

)∣∣− ThN
]
, 0
}

ThN = km·σN ,

σN =
Median

(
J (1;HH)
X

(
w1i,w1 j ,n

))

0.6745
, ∀(l; AD)

∣
∣

DWT

(10)

The refined noise estimation JN∼2(wi,wj ,n) is then intro-
duced to the parametric wavelet Wiener filter (3) and the
WD-EWF is completed providing the new estimations for
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signal and noise wavelet coefficients:

JS∼2
(
wi,wj ,n

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

1−cWF·
PN∼2

(
wi,wj ,n

)

PX
(
wi,wj ,n

)

]

·JX
(
wi,wj ,n

)
,

if cWF·
PN∼2

(
wi,wj ,n

)

PX
(
wi,wj ,n

) ≤ 1,

0, otherwise

JN∼3
(
wi,wj ,n

)

= JX
(
wi,wj ,n

)− JS∼2
(
wi,wj ,n

)
, ∀(l; AD)

∣
∣

DWT.
(11)

The motion detection procedure is then applied using the
noise-free coefficients JS∼2(wi,wj ,n) and the (n − 1)-frame
coefficients JS∼3(wi,wj ,n − 1), extracted from the complete
spatiotemporal filtering in the exact previous step (the re-
fined motion-detection equations are analyzed in the next
paragraph). A final task is the implementation of tem-
poral filtering to take advantage of the image similarities
between successive frames (especially at motionless loca-
tions). Thus, iterative temporal smoothing is employed via a
“weighted” ExpMA procedure. Subband moving point ma-
trices MWP(wi,wj ,n), provided by motion detection analy-
sis as follows in (14) are utilized to avoid blurring at motion
edges:

JS∼3
(
wi,wj ,n

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

aTF·JS∼2
(
wi,wj ,n

)
+
(
1− aTF

)·JS∼3
(
wi,wj ,n

)
,

if M(l;AD)
WP

(
wi,wj ,n

) = 0,

∀(l; AD)|DWT

JS∼2
(
wi,wj ,n

)
, otherwise,

(12)

where aTF is the “temporal filtering” constant of the corre-
sponding ExpMA procedure. The above settlement is quite
common to many temporal-filtering-based video denoising
algorithms [17, 37], with various modifications encountered
ccording to the involved motion detection/estimation pa-
rameters. The noise estimations are also refined following
the outcome of (12) and the JN∼4(wi,wj ,n) components
are extracted similarly to the JN∼1 and JN∼3 matrices (10),
(11). Both JS∼3(wi,wj ,n) and JN∼4(wi,wj ,n) signals would
be further utilized at the next iteration (processing at (n + 1)
frame).

4.2. Dynamic background-foreground segmentation
for videomotion activity analysis

Having estimated the noise-free signal components JS∼2(n)
and JS∼3(n − 1), the motion-activity-detection task is per-
formed using the wavelet-adapted ExpMA procedures, sug-

gested by Töreyin et al. [26]:

D
(
wi,wj ,n + 1

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

am·D
(
wi,wj ,n

)
+
(
1− am

)·JS∼2
(
wi,wj ,n

)
,

if
(
wi,wj ,n

)
is moving

D
(
wi,wj ,n

)
, otherwise

∀(l; AD)
∣∣

DWT,
(13)

MWP
(
wi,wj ,n

) = ∣∣JS∼2
(
wi,wj ,n

)− JS∼3
(
wi,wj ,n− 1

)∣∣

> TW
(
wi,wj ,n

)
, ∀(l; AD)

∣∣
DWT,

(14)

TW
(
wi,wj ,n + 1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

am·TW
(
wi,wj ,n

)

+
(
1−am

)·cm·
∣
∣JS∼2

(
wi,wj ,n

)−D(wi,wj ,n
)∣∣,

if
(
wi,wj ,n

)
is moving

TW
(
wi,wj ,n

)
, otherwise

∀(l; AD)
∣∣

DWT

(15)

MWB
(
wi,wj ,n

) = ∣∣JS∼2
(
wi,wj ,n

)−D
(
wi,wj ,n

)∣∣

> TW
(
wi,wj ,n

)
, ∀(l; AD)

∣
∣

DWT.
(16)

The “wavelet motion subimages” MWB(wi,wj ,n) are com-
puted according to the original methodology (7), by compar-
ing intensity coefficients with estimated backgrounds (16).
However, there are two basic novelties that are introduced
in the proposed algorithm, in order to face the noise-caused
problems, as well as to satisfy the dynamic BRFR demands,
previously mentioned. As already stated, the presence of
noise, leads to the erroneous detection of many “isolated
moving pixels”. Besides denoising, we decided to incorpo-
rate “structural decision rules” similar to those proposed
for video denoising [15, 18]. Specifically, a moving point
(wli,wl j ,n) is considered as “valid movement”, only if it
belongs to a broader moving region (structure/object); if
not, it must be indicated as “false movement” caused by
the noise originated differences. In other words, there have
to be an adequate number of neighboring active (moving)
points, referred as supporting points. This rule was pri-
marily proposed for the validation of the moving pixels
MWP(wi,wj ,n), calculated via (13), and it is applied to all
the involved wavelet subimages. Additionally, it was proved
to be helpful for the refinement of the motion subimages
MWB(wi,wj ,n), estimated as the difference between the back-
ground and the frame-intensity (16). The “supporting mov-
ing point” threshold was configured based on empirical ob-
servation and was adjusted to TSMP = 3. Once the subim-
ages MWP(wi,wj ,n) and MWB(wi,wj ,n) are refined, an up-
scaling is necessary to construct the original motion images
MP(i, j,n) and MB(i, j,n). We followed the upscale by 2 rules
proposed in [26], where each moving point at level l is trans-
formed to 2l × 2l area in the original image dimensions.
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Figure 7: Quantitative analysis of motion detection results: (a)-(b) motion images extracted with the TD-BRFR method, (c)-(d) motion
images extracted with the WD-BRFR method, (e)-(f) motion images extracted with the JWVD-MAD algorithm.

This rule can be easily applied for the case of Haar wavelets
[26], or for any other mother wavelet, if periodic extension
is employed. Alternatively, it is feasible to form all the equiv-
alent motion images and to restrict their dimension to the
one of the original image. An additional difference from the
WD-BRFR method [26] is that all the involved DWT image
coefficients are used (all the detail coefficients plus the ap-
proximation coefficients at the lowest level l = LW , in con-
trast to [26] where only the lowest decomposition level coef-
ficients are used).

The second modification deals with the fact that dynamic
BRFR segmentation is necessary. Human activity monitor-
ing has specific particularities when compared to classical
video surveillance cases, such as traffic monitoring or secu-
rity systems. Thus, only a portion of the original background
is actually revealed, while parts of the human subjects be-
long to stationary background for specific periods of time. If
a movement occurs, this dynamic background may change,
so that it is necessary to reestimate a more appropriate back-
ground image. Considering that neither background images
nor thresholds are updated when pixels are moving, the sim-
plest solution to the adaptive BRFR task is to reinitiate the
WD-BRFR procedure, once a significant movement has been
completed. In this way, background is estimated from scratch
using the intensities of nonmoving frames. The only unset-
tled issue is the implementation of a decision system to indi-
cate the restarting operation.

A simple metric to quantify the motion detection is to
sum-up all the binary values MP(i, j,n) or MWP(wi,wj ,n), in

order to calculate the motion intensity mint(n), by means of
total number of moving points per frame [1]:

mint;P(n) =
NH−1∑

i=0

NV−1∑

j=0

MP(i, j,n)

≈
∑

(l;AD)

∑

wi

∑

wj

MWP
(
wi,wj ,n

)
,

(17)

where the P subscript is used to index that the specific oper-
ant applies to the moving pixels array MP(i, j,n). The B sub-
script is alternatively used for the motion images MB(i, j,n).
“1D motion signals” can be effectively deployed to facilitate
motion-based video summarization and abstraction. It is im-
portant to mention that the motion intensity parameter de-
scribed in (8) is completely different from the “MPEG-7 mo-
tion intensity parameter,” which has been established via ex-
perimental procedures considering perceptual aspects of the
human vision [19–21]. To avoid confusion, we will use the
“motion equivalent surface” (mSE) index instead, which is
equal to the square root of mint. The mSE has the advantage
that features smoother changes, and it also has a physical in-
terpretation that is easier to follow showing the “equivalent
moving area.”

The mSE;P parameter was employed for process reinitia-
tion according to the following basic steps.

(a) Significant event motion is indicated as soon as the
mSE;P(n) value exceeds an empirical defined thresh-
old Tevent (values of Tevent between 15–50 worked
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efficiently in the 720 × 576 images of our application).
An additional constrain is that the previous mSE;P(n−
1) value should be lower than the present.

(b) A Boolean flag FL is activated once a significant mo-
tion event is detected.

(c) When the mSE;P(n) falls below the threshold (and it is
in decreasing order: mSE;P(n− 1) > mSE;P(n)), the mo-
tion event completes and the WD-D-BRFR algorithm
reinitiates. The flag FL is also deactivated for future
events detection.

(d) Finally, time constrains are introduced to automati-
cally reinitiate the WD-D-BRFR process if the FL pa-
rameter remains idle for a long period of time (i.e.,
>200 frames).

Thus, the detection of a new video event (vE) at frame n and
the reinitiation decisions are updated in combination with
the FL sequence according to the following Boolean formu-
las:

FLON(n) = {FL(n)
}

AND
{
mSE;P(n) > Tevent

}

AND
{
mSE;P(n) > mSE;P(n− 1)

}

FLOFF(n) = {FL(n)
}

AND
{
mSE;P(n) < Tevent

}

AND
{
mSE;P(n) < mSE;P(n− 1)

}

FL(n + 1) = 〈{FL(n)
}

AND
{

FLON(n)
}〉

OR
〈{

FL(n)
}

AND
{

FLOFF(n)
}〉

,

(18)

where the FLON/FLOFF parametes indicates the detec-
tion/completion of a new video event, respectively, while
the FLOFF condition also triggers process reinitiation. How-
ever, the estimation of the exact start-stop timing informa-
tion needs further refinement (the corresponding analysis
is presented in the next paragraph). Considering that back-
ground/threshold updates are suspended when moving pix-
els are detected, it is easy to understand that the WT-D-BRFR
reinitiation does not cause instability or similar other prob-
lems to the BRFR segmentation procedure.

4.3. Multimodal event detection, segmentation, and
summarization (MEDSS)

The outcomes of the JWVD-MAD algorithm are further uti-
lized as inputs to a “multimodal event detection segmenta-
tion and summarization” (MEDSS) methodology, to facil-
itate content indexing and abstraction. Specifically, the ex-
tracted motion parameters mSE;P(n)/mSE;B(n) and the flag
sequences FL(n) are fed to a video event detection, seg-
mentation, and summarization (VDSS) system. VDSS de-
termines the total number (NVE) of the detected video
events vE and their exact starting (vE;IN)/ending (vE;OUT) lo-
cations. In addition, sound processing is performed to all
the audio-surveillance and bioacoustic recordings available.
In this way, “automated audio-detection segmentation and
indexing” (AADSI) is conducted in order to estimate the
corresponding sound and bioacoustic events (sE and bE,
resp.). A counterpart AADSI methodology has been devel-
oped, taking advantage of the multiresolution scanning ap-
proach of the long-term wavelet-based detection, segmenta-
tion, and summarization (LT-WDSS) algorithm [1, 12, 38].
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Figure 8: Motion activity curve (black curve) and video motion
detection results (green color) automatically extracted via the VDSS
method (Tevent = 40): experimental procedure with artificial noise-
contamination (σ2

N = 100) using sign-language videos.

Besides the determination of the sound/bioacoustics events,
energy-comparisons between the tracks of the multichan-
nel recordings are performed for topographic analysis pur-
poses, while spectrographic colormaps and power envelope
curves are employed for summarization purposes [1, 12, 38].
Since the AADSI methodology is well presented in the re-
lated [1, 12, 38], we will focus our attention to the VDSS
method, as well as the interaction between the three content
types (video, sound, and bioacoustic events).

It is clear that the motion intensity sequence mSE;B(n)
provides an overview of the video motion changes via 1D
plots. In addition, the flag on/off timing estimated during
the WD-D-BRFR process is useful in detecting video events.
Specifically, the flag-on/flag-off points are extended until the
mSE;B(n) curves meet a local minimum, so that a video event
is localized (still frame overheads might be also included),

vE;IN = n : min
{
mSE;B(n) : mSE;B(n− 1) ≥ mSE;B(n)

< mSE;B(n + 1)
}

, n ≤ arg
n

(
FLON

)

vE;OUT = n : min
{
mSE;B(n) : mSE;B(n− 1) > mSE;B(n)

≤ mSE;B(n + 1)
}

, n ≥ arg
n

(
FLOUT

)
.

(19)

Optionally, the energy of the “inside flags” mSE;B(n) may
also be compared with predefined thresholds, in order to
avoid registering many small and random movements as sig-
nificant events. Similarly, two or more detected events in
row may be concatenated (based on their temporal distance
and the demands of each application), avoiding unnecessary
splitting of self-contained video episodes.

After video event detection has been completed, high-
lighting images (HLI) are also extracted for video summa-
rization purposes. We have decided to extract 3 highlighting
frames for every video episode. The first HLIIN(vE) and last
frames HLIOUT(vE) of each detected event provide image in-
stances just before and after the specific episode. The internal
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Figure 9: Sensitivity analysis of the three BRFR segmentation methods (TD-BRFR, WD-BRFR, JWVD-MAD), using computer generated
image sequences (a box graphic scrolling diagonally across the scene). The mean values (plus/minus the standard deviation for the JWVD-
MAD case) of the pixel-based accuracy (Acc) metric versus the am parameter are plotted (the remaining BRFR parameters are set to cm = 5;
TSMP = 1, for the JWVD-MAD) for four different noise-contaminated test videos: (a) slow passing low contrast (SPLC), (b) slow passing
high contrast (SPHC), (c) fast passing low contrast (FPLC), (d) fast passing high contrast (FPHC).

frame HLIINT(vE) that features the highest motion activity is
additionally selected, in order to be able to synopsize the “ac-
tion” of the episode:

HLIIN
(
vE
) = IDWT2D

{
JS∼3

(
wi,wj ,nIN

)}
,

nIN = arg
n

(
vE;IN

)

HLIINT
(
vE
) = IDWT2D

{
JS∼3

(
wi,wj ,nINT

)}
,

nINT = arg max
nIN≤n≤nOUT

(
mSE;B

)

HLIOUT
(
vE
) = IDWT2D

{
JS∼3

(
wi,wj ,nOUT

)}
,

nOUT = arg
n

(
vE;OUT

)

(20)

avoiding to execute inverse 2D-DWT (IDWT2D), except for
the highlighting images cases. A full set of binary motion im-
ages {BMI} = {MB(i, j,n)} is also extracted for every one
of the detected events to synopsize the “human activity,” of-
fering the advantage of fast browsing and easy manipulation
due to the 1-bit resolution (binary arrays).

Another important issue concerns multimodal interac-
tion between the three content types, namely, video surveil-
lance, sound surveillance, and bioacoustic monitoring. These
sound, video, and bioacoustic events might occupy complete
different time periods of the experimental/surveillance pro-

cedure, but there are also many cases that events are acti-
vated simultaneously for more than one content type, so that
a multimedia event mE is formed. The Boolean expression
suggesting the registration of a multimedia event mE is given
in the formula below, while refinement of the event’s timing
is also necessary:

mE : ∃μ, λ={v←→vE, s←→sE, b←→bE,
}⇐⇒[tμ;IN, tμ;OUT

]

∩ [tλ;IN, tλ;OUT
]
/=Ø,

tIN
(
mE
) = min

{
tV ;IN

(
vE
)
, tS;IN

(
sE
)
, tB;IN

(
bE
)}

tOUT
(
mE
) = max

{
tV ;OUT

(
vE
)
, tS;OUT

(
sE
)
, tB;OUT

(
bE
)}

,
(21)

where tIN/tOUT is the time-equivalent starting/ending loca-
tion of the multimedia event mE, tV ;IN/tV ;OUT, tS;IN/tS;OUT

and tB;IN/tB;OUT are the corresponding timing (start/end lo-
cations) of the coincident video vE, sound sE, and bioacoustic
bE events.

In the case of multimedia events, further multimodal
analysis is enabled to facilitate the long-term inspection
process. As stated, bioacoustic events provide informa-
tion about the human behavior (gastrointestinal motility
in our case [12]), such as activity presence or absence,
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energy/frequency/duration characteristics, and so forth, that
could be further utilized for diagnostic purposes [1, 12–14].
However, misclassified bioacoustic bE events might be reg-
istered due to the presence of human body movements and
sliding noises, as well as due to intense dialogues between the
subjects and the nursing/medical staff. It is clear that move-
ment artefacts can be more easily recognized by combin-
ing audio and video detection results [1, 12, 13]. Similarly,
energy-based comparisons and cross-correlation metrics be-
tween sE and bE would allow to detect the presence of ambi-
ent noise or any other sound sources that could affect the in-
tegrity of the bioacoustic recordings or even the human psy-
chophysiological response. For instance, this modality would
help to decide whether a strong bioacoustic signal has been
recorded from the surveillance mics, or interference to the
bioacoustic acquisition system has been occurred due to in-
tense ambient noise [1, 12, 13]. Additionally, the usefulness
of the video surveillance information, such as human body
position, degree of anxiety, cough, apnoea, and other visual
indicated signs, is also related to the evaluation or even the
assisted diagnosis of various pathophysiological factors con-
nected with abdominal, cardiac, and lung sounds (related ex-
amples and references have been provided in Section 1). A
characteristic example, where the proposed methodology is
currently used, is the evolution of the “human response to
noise” study [39], where (a) audio monitoring provides use-
ful information about the experimental conditions, (b) bioa-
coustic recordings (such as heart, respiratory, and abdominal
sounds) are used as measures to evaluate human psychophys-
iological response, while (c) video surveillance permit con-
tinuous monitoring of the experimental conditions, as well
as the human reaction be means of body movements and fa-
cial expressions.

The multimodal analysis results are further utilized to ex-
tract textual comments and structural annotation (e.g., val-
idation of audio pattern classification results [1, 13], alarm
indicators related with the integrity of the acquired data, mo-
tion activity rates characterizing human behavior, interpre-
tation of human anxiety, etc.). For example, if coincidence
of all audio, video, and bioacoustic events is observed at a
specific time-instance, this is likely to be connected with in-
tensive movements and sliding noises. Similarly, if intensive
ambient noise is present, events will be detected for the au-
dio monitoring signals, while the initiation of uncorrelated
bioacoustic events and the detection of surveillance video
events, would probably indicate human controlled reaction
or sympathetic arousal. In the case that only “small” video
events are detected, a sensible interpretation would be that
small human body motion are observed without generating
sliding noise (e.g., head/face movements), while the pres-
ence of bioacoustic-only events ensures the validity of the
acquired biomedical data. Besides the above marginal con-
ditions, intermediate states are more often observed, where
various combinations of the three signal entities are encoun-
tered in different intensities and duration/repetition cycles.
The incorporation of expert systems [1, 13] as well as various
other tools for content characterization, semantic annotation
and structural classification, and their integration to all the
three sources of audio-visual information can be very helpful

towards efficient content description and management [13].
In fact, the data structures with the semiautomated extracted
information of the MEDSS approach are currently employed
to train more sophisticated pattern recognition systems for
content classification and characterization. In any case, we
have decided to use different data structures and files to
store the content description information, than to incorpo-
rate them to the original recordings, following the “bits about
the bits” philosophy of the MPEG-7 protocol [1, 19–21]. A
related work, where the multimodal content interaction and
the MPEG-7 schemas, that are employed to hold content de-
scriptions, are currently under preparation.

5. EXPERIMENTAL RESULTS ANDDISCUSSION

The proposed methodology was tested on video-assisted
bioacoustic monitoring applications, aiming to provide new
potentials in noninvasive diagnosis of gastrointestinal motil-
ity dysfunctions [1, 12–14]. The recordings took place on
the premises of the Papageorgiou General District Hospi-
tal in Thessaloniki. Semiprofessional digital-8 camcorders
where used, allowing video data transfer directly in digital
format to a PC via DV protocol (IEEE-1394). Thus, video
sequences were coded as DVPAL files with resolution 720 ×
576 (NH = 576, NV = 720). A dual camera system was used,
providing wide and zoom view of the subjects under bioa-
coustic monitoring, while night vision was engaged during
overnight recordings, which was selected in the majority of
the experiments [1]. As already stated, color discarding was
decided during preprocessing for homogeneity purposes (be-
tween diurnal and nocturnal recordings), as well as color in-
formation is not necessary for both the automated and man-
ual inspection processes. A dual-microphone sound surveil-
lance system was employed, with use of the cameras’ mics
[1]. A seven-channel human bioacoustic monitoring system
was also engaged [1, 12]. All the implementations were de-
veloped in the LabVIEW 7.1TM software environment, us-
ing the add-on signal processing toolset in combination with
“avi”/IMAQ-vision libraries.

5.1. Qualitative analysis

Original recordings with durations ranging between one and
six hours were employed throughout the setup and calibra-
tion process of the developed JWVD-MAD method and are
also used for the qualitative analysis that follows. Based on
empirical observation, as well as on quantitative validation
procedures described, the JWVD-MAD method was imple-
mented selecting 2-level (LW = 2) DWT and it was ad-
justed using the parameters cWF = 2.5, am = 0.99, cm =
6, T0 = 50, k(l;AD)

m = 1.5 (except from k(lw;LL)
m = 0.15),

aN = 0.95, and aTF = 0.8. Besides empirical observations
on natural biomedical video recordings, various validation
procedures were implemented for the final adjustment of the
above parameters. Thus, good quality video sequences, fea-
turing similar technical characteristics with our content (720
× 576, DVPAL) was selected and artificially contaminated
with noise, in order to be used for method evaluation. Specif-
ically, sign-language videos were selected, since they are also
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Figure 10: Sensitivity analysis of the three BRFR segmentation methods (TD-BRFR, WD-BRFR, JWVD-MAD), using computer generated
image sequences (a box graphic scrolling diagonally across the scene). The mean values (plus/minus the standard deviation for the JWVD-
MAD case) of the pixel-based accuracy (Acc) metric versus the cm parameter are plotted (the remaining BRFR parameters are set to am = 0.95;
TSMP = 1, for the JWVD-MAD) for four different noise-contaminated test videos: (a) slow passing low contrast (SPLC), (b) slow passing
high contrast (SPHC), (c) fast passing low contrast (FPLC), (d) fast passing high contrast (FPHC).

describing human activity where the proposed methodology
could be applied to facilitate motion detection, segmenta-
tion, and content indexing. Most of the parameters related to
video denoising where coordinated based on the peak signal-
to-noise ratio (PSNR) [14, 15, 31], under the presence of
Gaussian additive noise with known characteristics (noise
variances σ2

N between 100–200 were tested).
As already stated, qualitative analysis was based on the

available human surveillance recordings, and it was very
helpful during the entire setup of the method. In general, we
had to evaluate three different aspects: video denoising per-
formance, motion detection efficiency, and event-detection
accuracy. Figure 2 presents two denoising examples with se-
vere noise contamination problem. Based on these results
we may claim that video denoising is quite satisfactory un-
der these extreme conditions (the noise variance was esti-
mated quite above 100). Even more important is the fact
that motion detection results were quite satisfactory under
these circumstances. Figure 3 provides comparisons between
the motion images extracted with the proposed JWVD-MAD
approach and the TD-BRFR, WD-BRFR methods proposed
in [25, 26], respectively. These examples, and all the motion
detection comparisons that follow, were extracted using the
reference methods to small-time periods, without the neces-

sity to reinitiate process, since they do not meet the dynamic
BRFR conditions already discussed. Joint evaluation with the
baseline algorithms were conducted for two reasons: (a) in
order to demonstrate the improvements made with the new
methodology, and (b) for performance comparisons, since
they all are general algorithms proposed for video motion
detection. Returning to the analysis of Figure 3, it is obvi-
ous that the erroneous estimated moving pixels (randomly
distributed-isolated dots) are by far less in our approach,
than in the other two methods. The denoising procedure as
well as the structural motion detection aspects and the “sup-
porting neighboring pixel” hypothesis are the basic reason
of the observed improvements. These above results are also
explained from the motion intensity curves in Figure 4. It
is obvious that JWVD-MAD curves are by far less noisy in
such conditions (a noise variance around σ2

N = 150 was es-
timated), where even the smooth, manually tagged, “head-
turn” event is detected as significant activity. Although the
experiments were conducted to short-term recordings, the
motion curves provided by the TD-BRFR and WD-BRFR
techniques seem to be more and more random as the frame
number increases, issue that validates the dynamic process
initiation procedure that was followed in our case. Another
motion-activity curve is presented in Figure 5, along with the
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video detection/segmentation “flagging.” It is obvious that
the proposed VDSS analysis is very helpful in detecting hu-
man activity and movement artifacts in long-term monitor-
ing periods.

5.2. Quantitative analysis

Quantitative analysis was performed on the basis of noiseless
video recording that was artificially noise-contaminated for
comparison purposes. Greek sign-language videos acquired
at ideal TV studio conditions were used for this purpose.
Figure 6 provides comparison between initial, noised, and
JWVD-MAD reconstructed video frames that were contam-
inated with additive Gaussian noise (σN = 15). The PSNR
parameter was estimated near to 35 dB, which is a quite good
result for the current noising conditions. Figure 7 presents
the estimated motion images for the given noise conditions.
It is obvious that the method manages to effectively detect
motion regions, successfully suppressing the noise effects.
Figure 8 provides video detection/segmentation results based
on the related VDSS methodology. Closely spaced events can
be successfully isolated even with the presence of significant
noise, as long as the appropriate timing parameters are se-
lected to determine the desired resolution. Besides these ex-
amples, various subjective tests for the evaluation of the de-
tection/segmentation efficiency were performed, resulting in
an efficiency of above 90% of both the number and the lo-
cation of correctly located events (considering that a dis-
tance less than two seconds between the manual and auto-
mated starting/ending points is classified as a true positive
detection). Specifically, various sign-language words were se-
lected and randomly distributed to different time locations,
in video recordings that were contaminated with noise. Stu-
dents of the Laboratory of Electroacoustics and TV Systems
were engaged to manually locate the video episodes inside
limited duration recordings (i.e., 5 minutes). The location
results and the related number of detected events were com-
pared to the automated results of the JWVD-MAD algorithm
and the VDSS method. Finally, denoising results and com-
parisons with standard video sequences and classical denois-
ing approaches were also tried.

5.3. Influence of the JWVD-MAD parameters and
sensitivity analysis

The difficulty that someone might face when using the
JWVD-MAD algorithm and the subsequent VDSS technique
is connected to the fact that many parameters have to be
configured manually. However, a more careful examination
would reveal that the parametric nature of both the previ-
ously stated methods tend to offer more advantages rather
than disadvantages. For instance, the parameters can be con-
figured for optimal performance according to the demands
of a certain application, offering the ability of utilization
to many surveillance-related fields, including various hu-
man activity analysis approaches. Thus, the only issue that
remains unsettled is connected with the procedures that
should be followed in order to achieve optimal configuration.
As already stated, empirical observation on natural video-

surveillance recordings were employed in combination with
various metric in order to configure the filter parameters.
Additionally, sensitivity analysis was necessary in order to
demonstrate the influence of each parameter to the response
of the JWVD-MAD algorithm. In general, we may distin-
guish two types of parameters: (a) the first category includes

aN , k(l;AD)
m , cWF, and aTF that control the video denoising pro-

cess, while (b) the am, cm, T0, TSMP, and Tevent parameters are
related to the BRFR segmentation and the subsequent mo-
tion and video event detection processes. We will focus our
attention to the second category, the motion detection pa-
rameters, since they play a more significant role to the human
activity analysis procedure. As discussed earlier, the denois-
ing parameters were configured with the use of artificially
noise-contaminated videos and metrics like the peak signal-
to-noise ratio (PSNR) and the mean-square error (MSE) of
the restoration process, procedure that is quite common in
most signal denoising evaluation approaches [1, 15–18, 30].
A corresponding paper that is particularly focused on the
performance and evaluation of the video denoising method
is currently under preparation. Thus, the selected values of

cWF = 2.5, k(l;AD)
m = 1.5 (except from k(lw;LL)

m = 0.15),
aN = 0.95, and aTF = 0.8 will be considered for the analy-
sis that follows.

Performance evaluation of tracking and surveillance re-
sults is very important in most video monitoring/surveil-
lance applications [40]. In those cases, the “ground truth”
of the BRFR segmentation is necessary, while various ap-
proaches are followed to perform this task. For instance,
video data-bases where manual object detection tagging has
applied may be used, while comparison with the results
of well-accepted video tracking methods is also very com-
mon [40]. Another option is to generate synthetic image se-
quences (computer graphics) where the ground truth of the
BRFR segmentation is easily obtained. Although the evalua-
tion process might be biased due to the fact that the BRFR
algorithms are tuned to the specific, unrealistic, surveillance
content [40], sensitivity analysis is still very useful since it
shows how the parameters influence the motion-detection
accuracy. Another unsettled issue is related to the choice of
the appropriate metric to demonstrate the detection perfor-
mance. In general we may distinguish the pixel-based and
the object-based metrics, where various perceptual tasks are
usually involved [40]. Considering the first case, the simplest
pixel-based metric is the accuracy (Acc) that expresses the
percentage of the correctly classified pixels as moving and
nonmoving [40]:

Acc = Ntp + Ntn

Npixels
·100, (22)

where Ntp/Ntn is the number of the correctly classified mov-
ing/nonmoving pixels and Npixels the total number of pixels
(equals the image resolution product).

Based on the above remarks, we decided to generate a
grayscale-gradient rectangular box (188 by 140 pixels) as an
object that enters and leaves an empty (black) background
scene, using two different speeds (fast and slow passing,
FP/SP; 1.5 and 3 seconds duration, resp.). In addition, we
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Figure 11: Sensitivity analysis of the JWVD-MAD algorithm, using computer generated image sequences (a box graphic scrolling diagonally
across the scene). The mean values (plus/minus the standard deviation) of the pixel-based accuracy (Acc) metric versus the TSMP parameter
are plotted (the remaining BRFR parameters are set to am = 0.95; cm = 5) for four different noise-contaminated test videos: (a) slow passing
low contrast (SPLC), (b) slow passing high contrast (SPHC), (c) fast passing low contrast (FPLC), (d) fast passing high contrast (FPHC).

decided to test two different contrast levels for the rectan-
gular object (high and low contrast, HC/LC; their dynamic
range ratio equals to 2 : 1), suggesting two different dynamic
ranges for the corresponding image sequences. The ground-
truth motion images were easily extracted for the combina-
tion of the above states, so that four video sequences (SPLC,
SPHC, FPLC, FPHC) where used as a basis for the compar-
isons.

Although sensitivity analysis was not performed in the
original works of Collins et al. [25] and Töreyin et al. [26],
the role of parameters am and cm is clear: the first controls
the pace of the adaptation speed by means of the averag-
ing length (background image refinement, thresholds up-
date, etc.), while the second controls the detection sensitiv-
ity. Nevertheless, we decided to involve these two parameters
to our sensitivity analysis for the sake of completeness. The
behavior of these two parameters was one of the reasons that
we decided to construct the four test videos (SPLC, SPHC,
FPLC, FPHC), with the previously mentioned characteris-
tics. The nature of the synthesized videos has many similari-
ties with the traffic surveillance sequences used in the origi-
nal works [25, 26], so that there is no need for dynamic BRFR
segmentation. Thus, the use of the parameter Tevent does not
apply in the current experiment. In addition the TD-BRFR

and WD-BRFR approaches of the original works [25, 26] can
be used without the necessity for process reinitiation. Having
these remarks in mind, motion detection accuracy was esti-
mated for all the three methods (TD-BRFR, WD-BRFR, and
JWVD-MAD), with various values of the parameters am, cm,
TSMP employing artificial noise-contamination (σ2

N = 100)
to all the four test sequences (SPLC, SPHC, FPLC, FPHC).
The sensitivity analysis results are presented in Figures 9 to
11.

We may observe that all the three BRFR methods tend
to give better results as the parameter am tends to 1
(Figure 9) case that corresponds to longer averaging. Based
on Figure 10, the cm parameter has different effect for each
method: small values tend to give better results for the TD-
BRFR case, while larger values work better in the WD-BRFR
approach. Values between cm = 4 to cm = 6 were proven most
suitable for the JWVD-MAD method. In general, accuracy
tends to be more stable in a broader range of cm values for
our method compared to the baseline algorithms. Figure 11
proves that the incorporation of the TSMP parameter provides
a significant improvement of the detection, with values of
TSMP between 2 and 3 giving the best results. It is also ob-
vious that the JWVD-MAD accuracy is enhanced compared
to the baseline TD-BRFR and WD-BRFR methods. Although



C. A. Dimoulas et al. 17

300

250

200

150

100

50

0

m
SE

;B

0 50 100 150 200 250 300 350 400 450

Frame number
GT
VDSS
mSE

(a)

300

250

200

150

100

50

0

m
SE

;B

0 50 100 150 200 250 300 350 400 450

Frame number
GT
VDSS
mSE

(b)

300

250

200

150

100

50

0

m
SE

;B

0 50 100 150 200 250 300 350 400 450

Frame number
GT
VDSS
mSE

(c)

300

250

200

150

100

50

0

m
SE

;B

0 50 100 150 200 250 300 350 400 450

Frame number
GT
VDSS
mSE

(d)

300

250

200

150

100

50

0

m
SE

;B

0 50 100 150 200 250 300 350 400 450

Frame number
GT
VDSS
mSE

(e)

300

250

200

150

100

50

0

m
SE

;B

0 50 100 150 200 250 300 350 400 450

Frame number
GT
VDSS
mSE

(f)

Figure 12: Motion-based video detection results using the VDSS method with various parameters of Tevent, TSMP (the remaining JWVD-
MAD parameters were adjusted to am = 0.99, cm = 6); (the blue curve presents the mSE;B parameter, the red the automated detec-
tion/segmentation results and the green indicates the ground truth-GT results): (a) Tevent = 20, TSMP = 0, (b) Tevent = 50, TSMP = 0,
(c) Tevent = 20, TSMP = 3, (d) Tevent = 50, TSMP = 3, (e) Tevent = 20, TSMP = 6, (f) Tevent = 50, TSMP = 6.
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the improvements in accuracy seems very small (∼1%), it is
important to understand that this percentage quantity cor-
responds to 4147 classified (or misclassified) pixels, which is
almost equal to one quarter of the object surface.

In addition to the above results, a second sensitivity
analysis procedure was also necessary in order to moni-
tor the influence of the JWVD-MAD parameters to the
video detection and segmentation process. Artificially noise-
contaminated Greek sign-language videos were again used
(because of their closer resemblance to our natural record-
ing compared to the synthesized videos, as well as the abil-
ity to fully control noise contamination properties). The mo-
tion detection and segmentation ground truth was obtained
via manual tagging to the initial, noise-free image sequences.
Figure 12 presents the motion detection results for various
values of the TSMP and Tevent parameters together with the
manual segmentation of the test image sequences. We may
observe that TSMP plays a very significant role in the detection
procedure, since erroneous motion estimation may lead to
misdetection and wrong segmentation results (Figures 12(a),
12(b)). A possible option to avoid the estimation of exagger-
ated motion would be to further increase the values of TSMP

parameter (Figures 12(e), 12(f); TSMP = 6). However, this
leads to the extraction of erroneous binary motion images.
Thus, the best solution is to balance the TSMP parameter (Fig-
ures 12(c), 12(d); TSMP = 3), combined with a suitable Tevent

selection. Small Tevent values lead to quite “jerky” behavior of
the motion curves (Figures 12(a), 12(c), 12(e); Tevent = 20),
while values around Tevent = 50 tend to provide more sta-
ble results (Figures 12(b), 12(d), 12(f)). Another issue that
needs further discussion is that most of the events are closely
spaced, fact that is not quite common in natural biomedical
monitoring videos. Within this context, the fast-pace sign-
language videos were used in the basis of somehow a worst
case scenario. In any case, we may observe that very small
distances between the extracted time boundaries of the auto-
mated event detection and the ground truth results are pro-
duced.

5.4. Conclusion and future work

This paper focuses on the implementation of the “joint
wavelet video denoising and motion activity detection”
methodology, proposed for video enhancement, event de-
tection, and summarization purposes. The purpose of the
JWVD-MAD algorithm is twofold. Firstly, it targets noise re-
duction to facilitate the human monitoring/inspection pro-
cedure. Secondly, it aims to improve the efficiency/accuracy
of the consecutive processing steps, namely, video compres-
sion and motion detection. Motion-based video surveillance
techniques were modified to the specific needs of human ac-
tivity monitoring. As a result, the “wavelet-domain dynamic
background/foreground segmentation” procedure was de-
veloped in combination with the “wavelet-domain empiri-
cal Wiener filtering” video denoising technique. The com-
putational efficiency of the proposed work relies on the fact
that a single methodology accomplishes the two different
tasks: video enhancement and motion detection, with the
advantage of reduced computational load when compared

to motion-vector-based motion estimation approaches. The
method was tested in a video-assisted biomedical monitoring
application and it was proved to efficiently work under poor
lighting conditions and significant noise problems. Based on
the qualitative and quantitative analysis results, the proposed
methodology is expected to be easily extendible to similar
video surveillance tasks, as well as in demanding denoising
and multimedia content management applications. Future
work involves extension and full automation of the dynamic
BRFR reinitiation process, improvements towards more effi-
cient video denoising and development of video compression
algorithms. Video denoising comparisons of the proposed
methodology with classical algorithms using standard test-
ing sequences are in preparation for publication. In the se-
mantic characterization domain, an MPEG-7 schema for the
accommodation of biomedical-assisting audiovisual content
is currently under development. Further implementation in-
cludes extensions to psychophysiological monitoring areas
(i.e., task-performance analysis) and general human activity
applications.
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