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In recent years there has been growing interest in ad-hoc and wireless sensor networks (WSNs) for a variety of indoor applications.
Localization information in these networks is an enabling technology and in some applications it is the main sought after
parameter. The cooperative localization performance of WSNs is constrained by the behavior of the utilized ranging technology
in dense cluttered indoor environments. Recently, ultra-wideband (UWB) Time-of-Arrival (TOA) based ranging has exhibited
potential due to its large bandwidth and high time resolution. The performance of its ranging and cooperative localization
capabilities in dense indoor multipath environments, however, needs to be further investigated. Of main concern is the high
probability of non-line of sight (NLOS) and Direct Path (DP) blockage between sensor nodes which biases the TOA estimation
and degrades the localization performance. In this paper, based on empirical models of UWB TOA-based Outdoor-to-Indoor
(OTI) and Indoor-to-Indoor (ITI) ranging, we derive and analyze cooperative localization bounds for WSNs in different indoor
multipath environments: residential, manufacturing floor, old office and modern office buildings. First, we highlight the need
for cooperative localization in indoor applications. Then we provide comprehensive analysis of the factors affecting localization
accuracy such as network and ranging model parameters.
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1. INTRODUCTION

In recent years, there has been a growing interest in ad
hoc and wireless sensor networks (WSNs) for a variety
of applications. The development of MEMS technology
and the advancement in digital electronics and wireless
communications have made it possible to design small-
size, low-cost, energy-efficient sensor nodes that could
be deployed in different environments and serve various
applications [1]. Localization information in WSNs is an
enabling technology since sensor nodes deployed in an
area, in general, require position information for routing,
energy management, and application-specific tasks such
as temperature, pressure monitoring, and so on [2]. In
certain applications, WSNs are deployed to aid and improve
localization accuracy in environments where the channel
condition poses a challenge to range estimation [3]. In these
environments, cooperative localization provides potential for

numerous applications in the commercial, public safety, and
military sectors [3, 4]. In commercial applications, there is
a need to localize and track inventory items in warehouses,
materials, and equipment in manufacturing floors, elderly
in nursing homes, medical equipment in hospitals, and
objects in residential homes. In public safety and military
applications, indoor localization systems are needed to track
inmates in prisons and navigate policemen, fire fighters, and
soldiers to complete their missions inside buildings [4].

In these indoor cooperative localization applications, a
small number (M) of sensors called anchors are deployed
outside surrounding a building where they obtain their
location information via GPS or are preprogramed during
setup. The N unlocalized sensor nodes are then deployed
inside the building, for example, fire fighters or soldiers
entering a hostile building, who with the help of the M
anchors attempt to obtain their own location information. In
traditional approaches, such as trilateration (triangulation)
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FiGure 1: Indoor cooperative localization application. Squares are
anchor nodes and circles are sensor nodes. Connectivity based on
Fuller models at 500 MHz.

techniques, the exterior anchor nodes usually fail to cover
a large building which makes localization ineffective. In
addition, the problems of indoor multipath and non-line-of-
sight (NLOS) channel conditions further degrade the range
estimates yielding unreliable localization performance [4].
Implementation of the cooperative localization approach, see
Figure 1, extends the coverage of the outside anchors to the
inside nodes and has the ability to enhance localization accu-
racy through the availability of more range measurements
between the sensor nodes.

Effective cooperative localization in indoor WSNs
does, however, hinge on the ranging technology. Among
the emerging techniques, ultra-wideband (UWB) time-of-
arrival-(TOA) based ranging has recently received consid-
erable attention [5-7]. In addition to its high data rate
communications, it has been selected as a viable candidate
for precise ranging and localization. This is mainly due to
its large system bandwidth which offers high resolution and
signaling that allows for centimeter accuracies, low-power
and low-cost implementation [5-8]. The performance of
this technique depends on the availability of the direct-
path (DP) signal between a pair of sensor nodes [9, 10].
In the presence of the DP, that is, short-distance line-
of-sight (LOS) conditions, accurate UWB TOA estimates
in the range of centimeters are feasible due to the high
time-domain resolution [11-14]. The challenge, however,
is UWB ranging in indoor NLOS conditions which can be
characterized as dense multipath environments [9, 10]. In
these conditions, the DP between a pair of nodes can be
blocked with high probability, substantially degrading the
range and localization accuracy. Therefore, there is a need
to analyze the impact of these channel limitations on the
performance of cooperative localization in indoor WSNGs.

Evaluation of localization bounds in multihop WSNs
has been examined extensively [15-17], where the focus has
been on analyzing the impact of network parameters such

as the number of anchors, node density, and deployment
topology affecting localization accuracy. These localization
bounds, however, have been analyzed with unbiased ranging
assumptions between sensor nodes. In [18, 19], the impact of
biased TOA range measurements on the accuracy of location
estimates is investigated for cellular network applications.
Their approach assumes NLOS induced errors as small
perturbations, which clearly is not the case in indoor
environments. A comprehensive treatment of the impact
of biases on the wireless geolocation accuracy in NLOS
environments is reported in [20]. Recently, position error
bounds for dense cluttered indoor environments have been
reported in [21, 22] where the impact of the channel
condition on the localization error is further verified in
traditional localization.

In this paper, based on empirical UWB TOA-based
outdoor-to-indoor (OTI) and indoor-to-indoor (ITT) rang-
ing models in different indoor building environments
reported in [23-25], we extend the analysis of localiza-
tion bounds in NLOS environments [20] to cooperative
localization in indoor multihop WSNs. We focus on fire-
fighter or military operation application where we analyze
the fundamental limitations imposed by the indoor dense
cluttered environment. Specifically, we analyze the impact
of the channel-modeling parameters such as ranging cov-
erage, statistics of the ranging error, probability of NLOS,
and probability of DP blockage on localization accuracy.
This modeling framework is necessary since OTI chan-
nel behavior affects anchor-node range estimation while
ITI affects the node-node ranges. We first show that for
the aforementioned indoor localization application, where
traditional multilateration fails, cooperative localization,
besides providing localization for the entire network, has the
potential to further enhance the accuracy. We then evaluate
the factors affecting localization accuracy, namely, network
and channel-modeling parameters in different indoor envi-
ronments: residential, manufacturing floor, old, and modern
office buildings. To the authors knowledge, indoor channel-
ranging model-specific cooperative localization bounds in
WSNs are novel and provide comprehensive insight into
the fundamental limitations facing indoor UWB TOA-based
localization in both traditional and sensor networks.

The organization of the paper is as follows. In Section 2,
we introduce the UWB TOA-based ranging models for
indoor environments. In Section 3, using these models, we
derive the generalized Cramer-Rao lower bound (G-CRLB)
for cooperative localization in indoor multihop WSNs. In
Section 4, we provide results of simulation which highlight
the network and ranging channel-modeling parameters that
affect the localization accuracy. Finally, we conclude the
paper in Section 5.

2. TOA-BASED RANGING IN INDOOR
MULTIPATH ENVIRONMENTS

2.1. Ranging coverage

One of the major factors determining the quality of TOA-
based ranging and localization in indoor environments is
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TasLE 1: UWB pathloss modeling parameters.
. ) Direct path Total signal
Scenario Environment PL,(dB) 500 MHz 3GHz
Y x (dB) Y x (dB) Y x (dB)
Fuller (LOS) 0 3.2 8.9 3.3 7.1 2.4 5.5
Norton (LOS/NLOS) 0 3.5 8.5 4.5 9.1 2.6 3.4
ITI Fuller (NLOS) 10 4.1 8.3 4.5 8.7 3.3 5.8
Schussler (NLOS) 6 3.4 7.9 4.0 8.4 3.0 4.6
AK (NLOS) 7.5 5.4 6.2 5.6 8.5 3.6 6.2
Fuller 14.3 3.4 13.7 3.7 14.1 2.2 7.7
OTI Norton 8.7 3.9 7.8 5.0 10.1 3.3 4.4
Schussler 7.6 4.1 10.5 4.2 11.1 3.2 6.1
AK 10 4.6 8.7 5.1 8.9 3.1 3.2

the ability to detect the DP between a pair of sensor nodes
in dense cluttered multipath conditions. For the indoor
multipath channel, the impulse response is usually modeled
as

Ly

h(t) = > axe’8 (7 — 1), (1)
k=1

where L, is the number of multipath components (MPCs),
and ok, ¢k, and 7, are amplitude, phase, and propagation
delay of the kth path, respectively [26]. When the DP is
detected, «; = app and 1; = Tpp, where app and Tpp denote
the DP amplitude and propagation delay, respectively. The
distance between a pair of nodes is then dpp = v X Tpp,
where v is the speed of signal propagation. In the absence
of the DP, TOA-based ranging can be achieved using the
amplitude and propagation delay of the first nondirect path
(NDP) component given by anpp and 7npp, respectively. This
results in a longer distance estimate given by dxpp = v X Tnpp,
where dnpp > dpp. For a node’s receiver to identify the DP,
the ratio of the strongest MPC to the DP given by [27]

max (| e[}, )

p1 = (2)

| |

must be less than the receiver dynamic range p and the power
of the DP must be greater than the receiver sensitivity x.
These constraints are given by

PL=ps (3a)
Ppp > &, (3b)

where Ppp = 20log,,(lappl). The performance of UWB
TOA-based ranging is then constrained by the maximum
feasible distance, where Ppp can satisfy (3a) and (3b).
This is analogous to the dependence of a communication
system’s performance on the distance relationship of the
total signal energy of all the detectable MPCs, or Pr =

L . . .
20log,, (> lakl). In indoor environments, the distance-
dependence of Pr, which determines the limitations of

communication coverage, is usually predicted from experi-
mental pathloss models of the total signal energy in different
environments and scenarios [28—-30]. Similarly, the distance-
dependence behavior of Ppp is important in analyzing the
physical limitations facing UWB TOA-based ranging. The
first comprehensive analysis of the UWB pathloss behavior
of the DP between a pair of nodes has been experimentally
reported in [23]. Following the analysis in [23], for a given
system dynamic range, p, ranging coverage, R, is then
defined as the distance in which the maximum tolerable
average pathloss of the DP is within p. This is represented
by

max {PLpp} = 10ylog,,(R.) < p, (4)

where PLpp is the average pathloss of the DP. The pathloss of
the DP at some distance d, in decibels, is

PLpp(d) = PLyo + PL, + 10y10g10(di) +yx d=d,
0

(5)

where PL is the pathloss at dy = 1 m, 10y log,,(d/dy) is the
average pathloss with reference to dy, PL, is the penetration
loss, y is the pathloss exponent, and y is the lognormal
shadow fading. These parameters vary significantly for ITI
and OTI rangings. The pathloss behavior of the DP is
distance-dependant but because of attenuation and energy
removed by scattering, its intensity decreases more rapidly
with distance compared to the total signal energy [31].
This means that for a typical indoor multipath scattering
environment, ranging coverage is less than communication
coverage or R, < C.. This implies that although it is
still feasible to communicate after R, the performance of
TOA-based ranging is substantially degraded due to large
TOA estimation errors that occur with high probability.
Empirical UWB pathloss models of the DP in different
ranging environments and scenarios are reported in [23] and
provided in Table 1.

In general, ranging coverage in indoor multipath envi-
ronments depends on the channel condition between a pair
of nodes. The channel condition is physically constrained by
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the environment and the scenario. The environment refers
to the type of building such as residential, manufacturing,
or office. The scenario refers to the relative location of
the node-node or anchor-node pair which can be grouped
into the following: ITI, OTI, and roof-to-indoor (RTI).
In ITI ranging, the pathloss behavior varies significantly
between LOS and NLOS channel conditions. In the latter,
ranging coverage is reduced due to penetration loss caused
by the interior wall structures, which results in a higher DP
pathloss exponent. Similarly, OTT and RTI ranging imposes
harsher constraints on the pathloss, due to the DP having
to penetrate the outside walls and roof, respectively, which
means that RIT > ROTT > RRTT [23]. This poses a challenge
specifically for indoor localization in ad hoc and WSN
applications.

2.2. Ranging error

2.2.1. Overview

Before proceeding with derivation of the theoretic limits
of cooperative localization in indoor environments, it is
necessary to address the behavior of UWB TOA-based
ranging errors. In addition to ranging coverage, localization
bounds in indoor multipath channels are further constrained
by the statistics of ranging error. The behavior of ranging
error between a pair of nodes depends on the availability
of the DP and, in the case of its absence, on the statistics of
the blockage. In this paper, we categorize the error based on
the following ranging states. In the presence of the DP, nodes
must be within R, which means that both (3a) and (3b) are
met and the distance estimate is very accurate yielding

C?Dp = de + épp + 2, d< R, (63)
by (w) LOS,

&pp = (6b)
bu(@) + bpg  NLOS,

where b,,(w) is the bias induced by the multipath that
dominates when the DP is present and it is a function of
the system bandwidth w [13, 14]. bpq is the propagation
delay imposed by the NLOS condition and z is zero mean
measurement noise. Similar to wireless communications
terminology, we will use the NLOS term to denote the
absence of a physical LOS between the transmitter and the
receiver and not the absence of the DP. This means that in
NLOS the DP can be detected, albeit attenuated. When a
sensor node is within R, but experiences sudden blockage of
the DP, also known as undetected direct path (UDP) [10],
(3a) is not met and the DP is shadowed by some obstacle
burying its power under the dynamic range of the receiver.
This concept is very similar to deep fading that occurs in
communications where the performance in a certain location
within communication coverage is degraded. This type of
fading in ranging applications occurs when sensor nodes
are separated by obstacles such as metallic doors, multiple
walls, cabinets or even elevators, and metallic studs. In this
situation, the ranging estimate experiences a larger bias error
compared to (6). Emphasizing that ranging is achieved

Outdoors

Indoors

R?TI

Anchor

FiGure 2: OTI/ITI ranging coverage and the associated ranging
error conditions, I: A (LOS), II: # (NLOS-DP), III: § (NLOS-NDP).

through the first NDP component, the estimate is then given
by

jNDP =dpp +enxpp +2z, d=<R, (7a)

enpp = b(w) + bpg + bp(w), (7b)

where bp(w) is positive additive bias representing the nature
of the blockage, which dominates the error compared to
measurement noise and multipath bias. The dependency of
bp(w) on the bandwidth is highlighted in the fact that higher
bandwidth results in lower energy per MPC which increases
the probability of DP blockage and reduces ranging coverage.
Figure 2 further illustrates the different ranging states within
ranging coverage. Finally, when the user operates outside of
R. neither (3a) nor (3b) is met and large TOA estimation
errors occur with high probability. Formally, these ranging
states can be defined as follows:

G={d=dop|d<R};
G=1{d=dwwr|d<R};
G={d=dxpp | d>R]};
G={d=dpp|d>R]}.

In this paper, we will focus on deriving localization bounds
for WSNs based on the error statistics within the ranging
coverage, that is, {; and (;, since the performance in
is dominated by large measurement noise variations which
means that the significance of (6b) and (7b) diminishes [21].
We further assume that p({4) = 0 since, from our definition
in (4), the DP cannot be detected after the ranging coverage.
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2.2.2. Modeling the ranging error

For a range estimate between node pairs, the bias in (6)
and (7) is unknown but deterministic since we assume the
channel is quasistatic where the nodes and the obstacle are
stationary. For a given building environment, the spatial
behavior of the biases can be assumed random since the
channel condition, that is, scattering and blocking obstacles,
cannot be determined a priori. The biases in each of these
channel conditions can then be treated as a random variable
where their spatial distribution can provide statistical char-
acterization of the severity of the indoor multipath channel.

The ranging error experienced in an indoor environment
can then be modeled by combining the conditions in (6) and
(7) through the following expression [24, 25]:

€=bu(w)+G- (bpa +X - bp(w)), )

where G is a Bernoulli random variable that distinguishes
between the error in LOS and NLOS. That is,

0, LOS,
G= (10)
1, NLOS,

where p(G = 0) = p(LOS) and p(G = 1) = p(NLOS).
Similarly, X is a Bernoulli random variable that models the
occurrence of DP blockage given by

0, {b
X = 11
11) CZa ( )

with p(X = 1) = p({;) denotes the probability of the
occurrence of blockage, while p(X = 0) = p((;) denotes the
probability of detecting a DP.

In order to facilitate the notations for the G-CRLB
derivations, we assign specific variables for each of the
channel conditions in (9), that is,

A G=0,X=0,
e=4n, G=1,X=0, (12)

B G=1,X=1
The probability density functions (PDFs) of these condi-
tions, fi(A), f4(n), and fg(B), have been experimentally
obtained through comprehensive UWB channel measure-

ments for the different ranging environments and scenarios
[24, 25]. For the LOS channel, the error was modeled as a

normal distribution
1— )’
! exp [ _Qmm) ‘I;A) } (13)
2no} 20}

HQ) =

with mean g and standard deviation o) specific to the LOS
multipath induced errors. In NLOS scenarios, when the DP
is present, the amount of propagation delay and multipath
due to obstructing objects, such as wooden walls, causes the
biases to be more positive. Accordingly, the ranging error

in this condition was modeled with a normal distribution
similar to (13) but with higher mean and variance

2

1 (1 — )

() = —=ex [—. (14)
f'l n (27_[0_% p 20,%

Finally, in the absence of the DP, the error was best modeled

by the lognormal distribution since only positive errors are

possible in this condition [24, 25]. The PDF is given by

1 (mﬂ—wf}
®) - ex[—z, (15)
W= 8 e P17 29

where yg and og are the mean and standard deviations of the
ranging error logarithm.

The probability of DP blockage, p(X = 1), and the
parameters of the normalized ranging error PDFs were
reported in [24, 25] and are reproduced in Tables 2—4.
The UWB ranging coverage and error models will provide
a realistic platform in which to analyze the G-CRLB and
the localization accuracy in different indoor multipath
environments.

3. INDOOR COOPERATIVE LOCALIZATION BOUNDS
3.1. Problem formulation

Based on the ranging models of Section 2, we derive the
G-CRLB for cooperative localization in indoor WSNs. The
scenario we consider is as follows. M anchor nodes are
placed outside surrounding the building with coordinates
given by 04 = (xm, ym)T, where m € [-M,0] and T is
the transpose operation. These anchors are GPS-equipped
where they have knowledge of their position. We assume
that they are synchronized and that their position errors
are negligible (or even calibrated). The problem then is to
localize N sensor nodes with unknown coordinates that are
randomly scattered in the indoor environment, see Figure 1.
The coordinates of the nodes to be estimated are given by
0 = (x4, yn)T, where n € [1,N]. A 2-dimensional analysis
will be provided, as extension to 3 dimensions is rather
straightforward. Furthermore, connectivity between node-
node and anchor-node is assumed if the range measurements
are within ITI and OTI ranging coverages, R and RO™!,
respectively. Estimates beyond the ranging coverage will not
be considered connected.

The range estimate between the ith and jth sensor nodes
can then be given by

d,’j =d. + zij, (16)

where d;; is biased by one of the ranging conditions given in
(12) or
Aij,  LOS,
di’j = dij + 9 7ij» NLOS/DP,
Bij» NLOS/NDP,

d,‘j SRC (17)
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TABLE 2: Probability of {; and {, in NLOS environments.
. . 500 MHz 3GHz
Scenario Environment
% (, % (> % % (>
Fuller 10 90 2 98
ITI Norton 96 4 83 17
Schussler 89 11 87 13
AK 39 61 32 68
Fuller 42 58 39 61
OTI Norton 57 43 24 76
Schussler 77 23 60 40
AK 40 60 22 78

TABLE 3: Gaussian distribution modeling parameters of the normalized ranging error. Subscripts denote the source of the ranging error.

Scenario Environment 500 MHz 3GHz
HUm Om Um Om
Fuller (LOS) 0 0.028 0 0.006
Norton (LOS) 0 0.022 0 0.007
ITI Hm,pd Om,pd Hm,pd Om,pd
Fuller (NLOS) 0.058 0.028 0.003 0.01
Schussler (NLOS) 0.029 0.047 0.014 0.016
AK (NLOS) 0.023 0.020 0.009 0.004
Fuller 0.015 0.017 0.002 0.011
OTI Norton 0.019 0.029 0.002 0.015
Schussler 0.041 0.045 0.011 0.013
AK 0.034 0.023 0.012 0.004

and z;; is the zero mean measurement noise between the
sensors. d;; is the actual distance between the sensor nodes
and it is given by

d,‘j =\/(x,-ij)2+(y,‘fyj)2, (18)
where x and y are the x- and y-coordinates, respectively.
In the general case, an indoor WSN will be connected
through R biased range measurements. Each r € [1, R] range
measurement from node i to node j can be represented by
r<(i, j). The range measurements are then stacked into a
vector d = (dy,...,dr)T, where d = d + & + z and the
corresponding bias vector is € = (ej,...,er)7. € can be
further decomposed into three subsets: L LOS, P NLOS/DP,
and Q NLOS/NDP, or

A=),

(I11,...,T’]p)T, (19)

11:
B=(Bi....pa)",

where R = L + P + Q. We further assume that it is
possible to distinguish between these different ranging
conditions through NLOS and DP blockage identification
algorithms [32, 33]. Note that, even in LOS, our modeling

assumption maintains the existence of bias due to multipath.
This is usually neglected in LOS analysis, since single-path
propagation is assumed [20]. The statistics of the multipath
biases, obtained from measurements, are incorporated into
the analysis to provide a realistic evaluation of the problem.

3.2. Thegeneralized Cramer-Rao lower bound

The unknown vector of parameters to be estimated is
obtained by combining the coordinates of the unknown
nodes positions with the bias vector or by

Ba) "
(20)

0= (xl)yl)“-)-xNayN)Al)---,AL)’/Il)"')r]P)ﬂl)"'

The CRLB provides a lower bound on the variance of any
unbiased estimate of the unknown parameters [34]. In the
case the estimates are biased, it is possible to obtain the G-
CRLB given that the statistics of the biases are available a
priori [20, 34]. The empirical PDFs of A, 1, and 8, or i(A),
Sfa(n), and fg(p), respectively, were introduced in Section 2
and their distance-normalized parameters are presented in
Tables 3-4.
The G-CRLB is then given by [34]

E[(0-0)(0-0)"]=7", (21)
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TABLE 4: Lognormal distribution modeling parameters of the normalized ranging error. Subscripts denote the source of the ranging error.

Scenario Environment S00 MHz 3 GHz

Wm,pd,B Om,pd,B Um,pd,B Om,pd,B

Norton (NLOS) -3.13 0.62 —4.29 0.45

ITI Fuller (NLOS) —1.68 0.88 -1.90 1.13

Schussler (NLOS) -1.59 0.49 -2.72 0.53

AK (NLOS) -2.17 0.45 -2.89 0.81

Fuller —2.33 0.75 -2.99 1.17

OTI Norton -2.78 0.65 —3.82 0.52

Schussler -2.03 0.58 -3.16 0.45

AK -2.32 0.51 -3.11 0.77

where E[-] is the expectation operation and J is the
information matrix that consists of two parts,

J=Jo+]Jp. (22)
Jo is the Fisher information matrix (FIM) which represents
the data and Jp represents the a priori information that

reflects the statistics of the biases. Specifically, the data FIM
can be obtained by evaluating

T
Jo =Ea[aaelnf(€1 16) - (a%lnf(?iw)) ] (23)

where f (d | ) is the joint PDF of the range measurement
vector d = (c?l,. .. ,JR)T conditioned on 6. Since the
measurement noise is usually assumed zero mean Gaussian,
the joint PDF can be given by

~ 1 A

F@)0) o exp{ - @-d)A@- d')T}, (24)

where A is the inverse of the measurements covariance
matrix or A" = E[(d - d)(d — d)T] and d’ is the
biased vector of the range measurements. Assuming that the
measurements are uncorrelated, A is then diagonal with the
elements given by A = diag (o ?%,...,0.2). Since f(d16)is
a function of d’ which is in turn a function of 0, Jg can be
obtained by the application of the chain rule or by

o (38 (s 0) (i) |
(5

(25a)

Jo = H-Ja-HT, (25b)

where Jg is the FIM but conditioned on d” and it is given by

T
Ja :Ed,[;’d,lnf(d 1d) - (ai, In f(d| d')) ] (26)

The H matrix contains information regarding the geometry
of the WSN connectivity and the condition of the biased

range measurements. As a result, it can be decomposed into
the three ranging conditions A, 7, and f given by

H

I,
0
0

HY H) H}

1 1
H'7 HB

0o o0
I, ©
0 I

(27)

and itisa (2 X N+R) X R matrix. The submatrix components
are then given by

od, od,,
- 0x,, 0x, (282)
Y oy, od; |’ ‘
Yn Yn
o, od,
H” o o (28b)
o, o, |
e D
oy g,
- ox, 0x,, (280)
B ’ U > ¢
9dg, 9ds,
OYn OYn

for n € [1,N], and their respective dimensions are (2 X L),

(2 X P), and (2 X Q). I, I;, and I are the identity matrices
of order L, B, and Q, respectively. Elements of (28) will be
nonzero when a range measurement is connected to node
(x4, y,,)T and zero otherwise. For example, if node 1 with
coordinates (xj, 1 )T is connected to node 2 with coordinates
(x2, y2)T by the LOS range dy = \/(xl —x)t+ (n — yz)2 +
A1, then the respective element in (28a) is

od; XX
o | [V -0+ - ) .
ady | Y=y ’ (29)

9y Vi —x%)"+ (- )’
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Similarly, Jg- can be decomposed according to the ranging
conditions, where

Ay O
Jo=|0 A, 0 (30)
0 0 Ag
is an R X R matrix. Specifically, Ay = diag(az’f,...,azf ,
A, = diag(o;?,...,0,%), and Ag = diag(az‘lz,...,az‘(f.

In this paper, our focus is on analyzing the impact of the
biases due to multipath and DP blockage and, in reality, the
measurement noise time variations in these different ranging
conditions might not differ significantly for a high system
dynamic range [35]. As a result, we will assume equal noise
variance, that is, Ay = A, = Ag. Jg can then be obtained by
substituting (27) and (30) into (25b) or

H, H) H} H} H) Hj\'
.N . .N AL 0 0 . . .N
N N
S R EE R R M
A 0 0 Ag A
0 I, 0 0 I, 0
0 0 I 0 0 Ig
r I'  HjA H)A, HpAg
- r’ ' HjA HyA, HpAg
= T T >
A\ (H}) AHY) A0 0
T T
A, (H)) S AENT 0 oA, 0
T T
A[g(H};) . Aﬁ(Hg]) 0 0 Ap
(31)

where T denotes HjAy(H))" + Hy A, (H})" + H};Aﬁ(Hll;)T,
I" denotes Hj Ay (HY)” + H A, (HY)T + H};Aﬁ(Hﬁr )T, T de-
notes HY Ax(H))" + H) A, (H))" + H{ Ag(Hp)", and T"”
denotes HY Ay(H))™ + HY A, (H))" + HY Ag(H})". J is a
(2X N +R) x (2% N + R) matrix.

Jp, which contains the a priori statistics of the biases in
(12), can be obtained by

) ) T
IP=E[801HP8(£)- (@mpm) ] (32)

and can be decomposed into the respective ranging condi-
tions:

00 0 O
00O 0 O

]P* 0 0 Qﬂ 0 > (33)
00 0 Q

where Jp has the same order as Jg. Since the biases caused
by scattering and DP blockage are dependant on the indoor
architecture and the range estimates between different node
pairs, the elements of (33) can be assumed independent.

With this assumption the elements of (33) are Q) =
diag(91’2,...,9[2), Q, = diag(sz,...,ng), and Qp =
diag (9;%,...,95%), where 9,2 is given by

2
9;2 = —E[%lnps, (87):|, r € [LR]. (34)

From Section2, A and 5 were modeled with Gaussian
distributions which means that 9?2 is the variance in the strict
sense. f3, however, is lognormally distributed, see (15), and
evaluation of (34) is nontrivial but it can be shown to be

1
9(;2 _ exp[72/4q+20q2] X (14—%2), q € [1,Q],
(35)

where p and o are the mean and standard deviations of the
ranging error logarithm. The G-CRLB for the N sensor nodes
can then be obtained by computing [J™!]un)x(xn) from
(22) which is the first (2 X N) X (2 x N) diagonal submatrix
of [J7'].

4., SIMULATION RESULTS
4.1. Setup

The simulation setup is based on the application of fire fight-
ers or soldiers requiring localization in indoor environments.
M anchors are distributed evenly around the building where
they are placed 1 m away from the exterior wall, see Figure 1.
N sensor nodes are then uniformly distributed inside the
building. Connectivity is assumed between node-node and
anchor-node if the respective TOA range measurements
are within ITI and OTI ranging coverage, R\ and RO™!,
respectively. The simulations were carried out for four differ-
ent building environments: Fuller-modern office, Schussler-
residential, Norton-manufacturing floor, and Atwater Kent
(AK) old office. All these buildings are in Worcester, Mass.
The UWB modeling parameters of these buildings were
reported in [23-25] for two system bandwidths 500 MHz
and 3GHz and they are reproduced in Tables 1-4. The
dynamic range of the system, p, is set to 90dB and this
parameter controls the ranging coverage and the number of
internode range measurements in the WSN. For example,
at 500 MHz bandwidth and 90 dB dynamic range, R will
correspond roughly to 15-30 m depending on the LOS or
NLOS condition and building environment. Similarly, RCOTI
will be around 5-10m depending on the building type.
We set the measurement noise o, equal to 20 mm. For
most simulations, unless otherwise stated, the probability
of NLOS, p(G = 1), was set to 0.5. The probability of
blockage, p(X = 1) = p((2), however, was obtained from
the measurement results in Table 2. The ranging conditions
and the WSN internode connectivity are ultimately governed
by the random variables G and X; see (9).

The models in Tables 3 and 4 are based on normalized
ranging error ¥ = ¢/d. In order to compute Jp, the
denormalized distributions, f.(e), must first be obtained,
where ¢ € {A,,B}. Thus for a given distance, d, the
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denormalized distribution for one of the ranging conditions
in (12) can be obtained by f.(¢) = [ f, (e/d)]/d.

For the analysis of the simulations, we compute the
average RMS of the location error of each WSN topology.
The RMSE is computed by

\/tr([lfl](sz)x(sz)) B \/Zf\ilf’% +03,
N N N

RMSE = ,  (36)

where tr(-) is the trace operation, o7 and 0}1, are the diagonal
elements of the ith diagonal submatrix of [J7!] . (2xn)-
The average RMSE is obtained by averaging (36) over the

total number of topologies and simulations.

4.2. Traditional versus cooperative localization

In traditional triangulation, only node-anchor range mea-
surements are used and reliable 2-dimensional location
information can only be obtained if a node is covered by
at least 3 anchors. In the outdoor-indoor application, for
a fixed ROT!, the dimension of the building will dictate the
fraction of nodes that can be localized. Calculation of G-
CRLB in traditional localization uses the same formulation
in Section 3 but only node-anchor range measurements are
used. In order to verify the necessity and effectiveness of
cooperative localization, we carried out 5000 Monte Carlo
simulations with 100 different topologies and 50 simulations
per topology for different D/RO™ values. 500 MHz Fuller
models were used with 4 anchors and 40 sensor nodes. We
also assumed a square building that is (D,D)”. Figure 3
provides the results of this simulation where the percentage
of unlocalized nodes is plotted as a function of D/ROT.
Figure 4 shows the average RMSE results. As expected, start-
ing around D/R®™ = 1, 10% of the nodes are unlocalized in
traditional localization. As the size of the building increases,
more nodes lose direct coverage to at least 3 of the outside
anchors. By D/ROT = 1.8, triangulation is no longer pos-
sible. In comparison, cooperative localization is effective
and provides position estimates for all the nodes. Moreover,
Figure 4 shows that cooperative localization substantially
outperforms the traditional counterpart. This means that for
fire fighter/military applications, localization in indoor envi-
ronments, especially in large buildings, cannot be achieved
with triangulation alone. Cooperative localization will not
only extend the coverage of the outside anchors to the inside
nodes but it will enhance localization accuracy substantially
as well. Further, for large building scenarios D/RO™ > 2,
more sensor nodes (i.e., greater node density) need to be
deployed to maintain sufficient connectivity for effective
cooperative localization.

4.3. Network parameters

In this subsection, we evaluate the impact of network
parameters on localization accuracy. In the first experiment,
we investigate the impact of node density. For the simulation,
we fixed the number of anchors to 4 and the dimension
of the building to D = 25m and increased the number
of nodes, that is, node density which is defined by S =

Fuller, anchors: 4, nodes: 40, BW: 500 MHz
100 T e e S — T o—O

90
80
70
60
50

40

Unlocalized nodes (%)

30 b
20
10

D/ROT!

—6— Traditional localization
—&— Cooperative localization

FIGURE 3: Percentage of unlocalized sensor nodes as a function of
D/ROM.,

Fuller, anchors: 4, nodes: 40, BW: 500 MHz
0.35 T ———— ——— T

0.3 r

RMSE (m)

D/ROM

—o— Traditional localization
—8— Cooperative localization

FIGUre 4: Traditional triangulation versus cooperative localization
performance.

N/D?. 5000 Monte Carlo simulations were carried out (50
different topologies and 100 simulations per topology). The
latter is needed, since the ranging conditions and WSN
connectivity are governed by Bernoulli random variables G
and X. Figure 5 shows the simulated results for 500 MHz
modeling parameters. Office buildings, AK and Fuller,
exhibit the worst performance especially in sparse densities.
Norton, a manufacturing floor, shows the best localization
accuracy among the different buildings. This is expected
since the manufacturing building interior is an open-space
with cluttered machineries and metallic beams which is
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Anchors: 4, dimension: (25 m, 25m), BW: 500 MHz Node density: 0.03 node/m?, dimension: (30 m, 30 m),
0.8 BW: 500 MHz
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FIGURE 5: Localization performances as a function of node density
in different indoor environments using 500 MHz models.

reflected in the ranging coverage and error models. Further,
the localizaiton bounds clearly indicate that the performance
is dependant on ranging coverages, R'" and RO™!, probability
of DP blockage, p(X = 1), and the respective error dis-
tributions f.(¢); see Tables 1-4. Although AK has a lower
ITI p(X = 1) than Fuller, the performance in the former is
worse due to shorter ITI ranging coverage. This can be seen
by the difference in the pathloss exponents in Table 1. Shorter
RIT means less internode range information and thus higher
localization error.

Another important observation that can be concluded
from this simulation is that the disadvantages of the
indoor channel condition, ranging coverage, and error can
be minimized by increasing node density. For instance,
at 0.1 node/m?, the difference in localization performance
between the buildings diminishes significantly.

The impact of anchors on the localization accuracy is
investigated in Figure 6. In this experiment, 5000 simulations
were carried out with D = 30m, S = 0.03 node/m?, and
the number of anchors was varied from 4 to 16 (anchors
per side varies from 1 to 4). The results show that the effect
of increasing the number of anchors is higher in the office
buildings compared to the residential and manufacturing
floor. This means that building environments with harsher
indoor multipath channels (lower RI™' and higher p(G = 1)
and p(X = 1)) require more anchors around the building
for a fixed amount of sensor nodes to achieve similar
localization performance as environments with “lighter”
multipath channels. Finally, comparing both Figures 5 and
6, it is apparent that node density has a higher impact on the
localization accuracy compared to the number of anchors. A
similar observation was reported in [16] where localization
error exhibited less sensitivity to the number of anchors.

FIGURE 6: Localization performances as a function of number of
anchors in different indoor environments using 500 MHz models.

4.4. Ranging model parameters

In this subsection, we investigate the impact of the ranging
model parameters: system dynamic range, p, p(G = 1),
and p(X = 1) for 500 MHz and 3 GHz system bandwidths.
First, we evaluate the localization bounds for different
values of p which control both the RI™ and RO™. In this
experiment, the number of anchors is 4, S = 0.04 node/m?
and the building dimension is D = 30m. We ran 5000
Monte Carlo simulations (100 topologies and 50 simulations
per topology). Figure 7 shows the simulated localization
results as a function of dynamic range for different building
environments and ranging models. The behavior of office
buildings at 500 MHz is in general worse than residential and
manufacturing buildings. However, at 3 GHz, the difference
diminishes. Another interesting observation is that the
impact of increasing the dynamic range eventually saturates.
This means that after a certain dynamic range value all the
nodes are connected to each other and no further gain can be
achieved. The performance in buildings with higher ranging
coverage tends to saturate earlier as seen when comparing AK
with Norton or Schussler buildings.

The second experiment focuses on the impact of the
probability of NLOS on the localization bounds where we
varied p(G = 1) experienced by the ITI ranges from 0 to 1.
This does not affect OTI since it is always considered NLOS.
p(X = 1), however, was obtained from Table 2 and the
respective ranging error distribution parameters from Tables
3 and 4. We ran 5000 Monte Carlo simulations (50 topologies
and 100 simulations per topology). The number of anchors
is 4, S = 0.03node/m? and D = 30m which means that
N is around 34. The results are presented in Figure 8. The
impact of multipath on localization error can be clearly seen
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Anchor: 4, density: 0.04 node/m?, dimension: (30 m, 30 m)

RMSE (m)

75 80 85 90 95 100 105 110 115 120
Dynamic range (dB)

—o— Fuller 500 MHz
—&— Schussler 500 MHz
—&— Norton 500 MHz
—v— AK 500 MHz

-©- Fuller 3 GHz
-8- Schussler 3 GHz
-¢- Norton 3 GHz
-v- AK3GHz

FiGURE 7: Localization performances as a function of dynamic
range, p, for 500 MHz and 3 GHz models.

for p(G = 1) = 0. Although the variance of the multipath
bias models is dependant on the measurement campaign,
it is important nonetheless to see that an average RMSE
between 0.14-0.2 m can be caused by multipath alone for
500 MHz models. The effect of multipath, however, decreases
substantially for the 3 GHz system bandwidth. As expected,
increasing p(G = 1) further degrades the localization
performance in an indoor environment. The effect will be
greater in buildings where p(X = 1) is high. For example,
both Fuller and AK NLOS channel models, see Table 2,
exhibit rather high probabilities of DP blockage and this
is reflected in the localization performance. Finally, Norton
building is least impacted by NLOS because the blockage
probability is low and the error statistics are significantly
smaller than the other buildings.

Lastly, we investigate the impact of DP blockage prob-
ability. For the ranging error distributions given in Tables
3 and 4, we fix p(G = 1) = 1 and vary p(X = 1)
between 0 and 1. We ran 5000 Monte Carlo simulations (50
topologies and 100 simulations per topology). The number
of anchors is 4, S = 0.04node/m? and D = 30m. The
results are presented in Figure 9. For this specific experiment,
results for AK were not available because p(G = 1) = 1,
which means that the ITI ranges are always NLOS and thus
shorter ranging coverage. In AK’s case, the WSNs in all the
simulations were ill connected. Nonetheless, the results in the
other buildings show that increasing p(X = 1) worsens the
localization error. Norton is an exception, since the statistics
of the ranging error in the presence and absence of the DP
are close to each other (see Tables 3 and 4). The impact
of blockage probability on office buildings is the highest,
since the statistical distribution of the lognormal biases
exhibits a higher “variance” compared to manufacturing or

Anchors: 4, node density: 0.03 node/m?

0.7

RMSE (m)

—©— Fuller 500 MHz -©- Fuller 3 GHz
—&— Schussler 500 MHz -8- Schussler 3 GHz
—4— Norton 500 MHz -¢- Norton 3 GHz
—v— AK 500 MHz -v- AK3GHz

F1Gure 8: Localization performances as a function of p(G = 1) for
500 MHz and 3 GHz models.

06 Anchors: 4, node density: 0.04 node/m?

0.5

RMSE (m)

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
pX =1
—o— Fuller 500 MHz -6~ Fuller 3GHz
—&— Schussler 500 MHz -8~ Schussler 3 GHz
—4— Norton 500 MHz -&- Norton 3 GHz

FIGURE 9: Localization performances as a function of DP blockage
probability, p(X = 1), for 500 MHz and 3 GHz models.

residential buildings. This can be seen in the Fuller model in
Table 4 where such an environment exhibits a heavier tailed
distribution of the spatial ranging errors [24, 25]. For these
conditions, when the DP blockage occurs, a larger number
of MPCs are lost causing higher ranging error. Finally, it is
interesting to note that the impact of system bandwidth has
limitations in areas where heavier construction and obstacles
separate sensor nodes. This can be seen by comparing the
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impact of bandwidth on the localization performance in
Schussler and Fuller.

5. CONCLUSION

In this paper, we provided an analysis of cooperative local-
ization bounds for WSNs based on empirical models of UWB
TOA-based OTI and ITI ranging in indoor multipath envi-
ronments. We verified the need for cooperative localization
in applications where indoor sensor nodes lack sufficient
coverage to outdoor anchor nodes. We also verified that in
addition to extending coverage, cooperative localization has
potential for improving accuracy. In addition, we provided a
comprehensive evaluation of the limitations imposed by the
indoor multipath environment on cooperative localization
performance in multihop WSNGs.

Simulation results showed that increasing node den-
sity improves localization accuracy and can improve per-
formance in indoor multipath channels. Increasing the
number of anchors, however, has greater impact on harsh
indoor en-vironments, such as office buildings, due to
shorter ranging coverage, that is, less internode connec-
tivity. For the ranging model parameters, localization is
constrained by the ranging coverage, statistics of rang-
ing error, probability of NLOS, probability of DP block-
age, and bandwidth. In general, office building struc-
tures introduce higher probability of NLOS/DP block-
age and shorter ranging coverage (higher DP penetration
loss and pathloss exponent) which means higher localiza-
tion error. Manufacturing floors and residential buildings,
on the other hand, exhibit better performance due to
“lighter” indoor channel conditions. Also, increasing the
system bandwidth, although reduces ranging coverage, has
the effect of improving accuracy. The localization perfor-
mance in office buildings exhibited less sensitivity to changes
in bandwidth because the range measurements faced harsher
obstacles such as metallic doors, vending machines, and
elevators.

As for the cooperative localization application for fire-
fighter or military operations, it is clear that in order to
improve accuracy, numerous nodes must be deployed in the
indoor environment alongside those attached to the per-
sonnel. In addition to providing the necessary network
density required for effective localization, these stationary
nodes can constantly provide ranging/localization informa-
tion which further improves performance in dense cluttered
environments.

Future work in this area should aim to extend the analysis
to 3 dimensions where RTI ranging can provide coverage
extension to multifloor buildings. Further measurements
and modeling are needed to analyze the ranging error beyond
ranging coverage. Specifically, the behavior of the biases
and measurement time variations with distance must be
evaluated for different ranging scenarios and environments.
Finally, research in localization algorithms for indoor-spe-
cific WSNs is needed to identify and mitigate NLOS biased
range measurements in order to achieve acceptable localiza-
tion performance.
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