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1. INTRODUCTION

Multiple-input multiple-output (MIMO) communication
systems have the potential to offer high spectral efficiency
as well as link reliability. In multiuser MIMO downlink
networks, the spatial degrees of freedom offered by multiple
antennas can be advantageously exploited to enhance the
system capacity by scheduling multiple users by means of
space division multiple access (SDMA) to simultaneously
share the spatial channel [1, 2]. As the capacity-achieving
dirty paper coding (DPC) approach [3] is rather complex
to be implemented, several practical downlink transmission
techniques have been lately proposed. Downlink linear
precoding, although suboptimal, has been shown to achieve a
large fraction of DPC capacity, exhibiting reduced complex-
ity [4–6]

The advantages promised by multiuser MIMO systems
unfortunately come at the cost of perfect channel state

information at transmitter (CSIT) in order to properly serve
the spatially multiplexed users. Recent information-theoretic
results reveal the cardinal importance of CSIT in multiuser
MIMO precoding. If a base station (BS) with M transmit
antennas communicating with K single-antenna receivers
has perfect CSI, a multiplexing gain of min(M,K) can
be achieved. Nevertheless, if the transmitter has imperfect
channel knowledge, the full multiplexing gain is severely
reduced at high signal-to-noise ratio (SNR) [7], whereas if
there is complete lack of CSI knowledge, the multiplexing
gain collapses to one [8]. The approximation of close-to-
perfect CSI at the receiver (CSIR) is often reasonable, espe-
cially for downlink channels, where a common pilot can be
employed for channel estimation by a large number of users.
However, this assumption is often unrealistic and impractical
at the transmitter side. In a time-division duplex (TDD)
system, close-to-perfect CSIT can be obtained by exploiting
the channel reciprocity. In the context of frequency-division
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duplex (FDD) systems, CSIR is obtained through training,
whereas obtaining CSIT generally requires feedback report-
ing from each mobile station (MS).

Providing CSIT at the BS poses serious challenges in
practical settings where the channel information needs be
conveyed via a limited feedback channel in the uplink.
The requirement of CSIT feedback in multiuser MIMO
configurations places a significant burden on uplink capacity
in most systems, exacerbated in systems with wideband
(e.g., OFDM) communication or high mobility (such as
3GPP-LTE, WiMax). The often unrealistic assumption of
close-to-perfect CSIT, as well as the considerable capacity
gap between full and no CSIT, have motivated research
work on feedback reduction schemes. Inspection of recent
literature reveals several different schools of thought on
limited feedback, including vector quantization, dimension
reduction, adaptive feedback, contention-based feedback,
statistical feedback, and opportunistic SDMA. A tutorial on
multiuser MIMO with limited feedback can be found in
[9]. One line of work, often referred to as limited feedback
approach, attempts to reduce the amount of feedback per
user by means of quantization of CSI parameters. Limited
feedback approaches, imposing a bandwidth constraint on
the feedback channel, have been proposed for MIMO point-
to-point systems [10–13], where each user feeds back finite-
precision CSI on its channel direction by quantizing its
normalized channel vector to the closest vector contained
in a predetermined codebook. An extension of the limited
feedback model for multiple antenna broadcast channels
for the case of K = M is made in [14, 15]. In [14], it
is shown that the feedback load per mobile must increase
approximately linearly with the number of transmit antennas
and the average transmit power (in dB) in order to achieve
the full multiplexing gain, and consequently performance
close to that with full CSIT [14]. For instance, in a 6-
transmit antenna system operating at 10 dB, each user
has to report 17 bits. A feedback reduction technique for
MIMO broadcast channels exploiting multiple antennas at
the receiver side as a means to improve the quality of
channel estimate conveyed back to the BS is proposed in
[16].

A popular, very low-rate feedback technique, coined
as opportunistic random beamforming, was initially pro-
posed for single-beam setting [17] and later generalized
for an SDMA setting in [18]. In this scheme, once M
orthonormal beams are generated randomly, each user
calculates its signal-to-interference plus noise ratio (SINR)
for each of the M beams and feeds back its best SINR
value along with the corresponding beam index. The best
user on each beam is then scheduled. By means of mul-
tiuser diversity [19], this scheme is shown to yield the
optimal capacity growth of M loglogK for large number
of users. However, the sum rate performance of this
scheme is quickly degrading with decreasing number of
users.

An alternative approach, referred to as selective or
threshold-based feedback, allows a user to send back infor-
mation depending on whether its current channel conditions
exceed a certain threshold or not. This feedback reduction

algorithm was first proposed in [20] for a downlink single-
input, single-output (SISO) system and SNR-dependent
thresholds. This method is shown to reduce statistically the
required total amount of feedback by means of multiuser
diversity. The feedback rate can be further reduced, at the
cost of feedback delay by using an adaptive threshold [21].
The selective feedback idea was extended for MISO systems
in [22]. In [23], a scheme based on [17] and one bit
feedback was shown to achieve the optimal capacity growth
rate when K →∞. A scheme based on multibeam random
beamforming was proposed in [24, 25] where it was proved
that a deterministic feedback of log2(1 + M) bits per user
is enough to guarantee the optimal scaling law for single-
antenna receivers and fixed M.

A common limitation of the above feedback reduction
techniques is that the total feedback rate grows linearly with
the number of users, thus reducing the effective system
throughput when the number of users is large. SDMA
under a sum feedback rate constraint is considered in
[26], in which threshold-based feedback on the channel
quality and the channel direction is used for feedback
reduction in order to satisfy a sum feedback rate constraint.
Differently from the previous approaches in which users
are assumed to send feedback through dedicated channels,
the authors in [27] consider a contention-based feedback
protocol, in which users compete to gain access in a shared
medium. In this system, the feedback resources are fixed
random access minislots, and active users attempt to convey
feedback messages only if their channel gain is above a
threshold.

In this paper, we take on a completely different approach
for feedback reduction compared to the existing ones.
Our work is building upon recently proposed ideas in the
context of scheduling [28]. In [28], a so-called “score-
based” opportunistic scheduler was proposed for realistic
scenarios with asymmetric fading statistics and data rate
constraints. Similar distribution-based schedulers have also
been proposed in [29–31] as a means to schedule a user
whose instantaneous rate is in the highest quantile of its
distribution. Interestingly, these works were solely focused
on scheduling at the transmitter side, and not in the context
of feedback reduction nor that of MIMO systems. We
consider the problem of feedback reduction in a downlink
multiple antenna communication system, in which a BS
equipped with M antennas communicates with K ≥ M
single-antenna users. It is assumed that the receivers have
perfect channel state information (CSI) while the BS relies
only on partial CSI, conveyed through a feedback channel.
In the lines of [32, 33], we adopt a two-stage approach by
splitting the feedback between a first stage of scheduling
(or “user selection”) and a second transmission/precoding
design (or “user serving”) stage. During the scheduling
phase, all active users are allowed to feedback some kind
of finite-rate channel quality information (CQI), whereas
in the second step, information on the transmission rate is
requested only from the M � K selected users. We focus
on the first phase and we propose a new CQI representation
metric as a means to reduce significantly the burden on
uplink feedback channel rate.
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The contributions of this paper are as follows.

(i) We propose a new concept of CSIT representation,
coined as “ranking-based feedback,” for the sole
purpose of user selection as a means to reduce the
required feedback load. The ranking-based CSIT
consists of an integer value that represents the rank
of each user’s instantaneous CQI among a number of
stored CQI values observed over the W past slots.

(ii) The key advantage of the proposed method is two
fold: (1) the ranking-based feedback is already in
digital form which helps for further compression
and simple scalar quantization. (2) the ranking-based
feedback provides not only information about the
channel quality at any instant but also about the
relative quality level, in a way that is independent of
the users’ fading statistics, thus providing inherent
fairness. This type of limited feedback enables the
base station to select users that are on the peak of
their own channel distribution, independently of the
channel conditions of other users.

(iii) We analyze the sum-rate performance of a multi-
antenna downlink system with multiple orthogonal
beams as in [18], in which users are selected during
the scheduling phase based on ranking-based CSIT.
Furthermore, we provide analytic expressions for the
sum rate when W is finite.

(iv) We compare the performance against standard ran-
dom beamforming schemes using SINR feedback
metric for user selection, and we quantify the
effect of finite W and the error introduced in the
scheduling decisions compared to the optimal case of
W→∞.

(v) We present an additional merit of ranking-based
CSIT in a heterogeneous network by showing that
such form of feedback can provide temporal fairness
among users, as the probability of a user to be
selected is 1/K , independently of the other users’
channel distributions and its own average SNR
(pathloss).

The remainder of this paper is organized as follows. The
system model is described in Section 2, and in Section 3 the
proposed ranking-based feedback framework is presented.
The system rate of a system employing ranking-based
feedback metric for user selection is analyzed in Section 4.
Extensions to codebook-based SDMA schemes are provided
in Section 5, and the proposed feedback concept is applied
to a heterogeneous network in Section 6. The performance
of the proposed feedback reduction technique is numerically
evaluated in Section 7, and, finally, Section 8 concludes the
paper.

2. SYSTEMMODEL

We consider a multiple antenna downlink channel in which
a base station (transmitter) equipped with M antennas
communicates with K single-antenna users (receivers). The

received signal yk(t) of the kth user at time slot t is mathe-
matically described as

yk(t) = hHk (t)x(t) + nk(t), k = 1, . . . ,K , (1)

where x(t) ∈ CM×1 is the vector of transmitted symbols
at time slot t, hk(t) ∈ CM×1 is the channel vector from
the transmitter to the kth receiver, and nk(t) is additive
white Gaussian noise at receiver k. We assume that each of
the receivers has perfect and instantaneous knowledge of its
own channel hk, and that nk is independent and identically
distributed (i.i.d.) circularly symmetric complex Gaussian
with zero mean and unit variance. The covariance matrix
of the transmitted signal is Σx = E(xxH). The transmitter
is subject to a total power constraint P, which implies
Tr
(
Σx
) ≤ P, where Tr(·) is the trace operator. We consider

an i.i.d. block Rayleigh flat fading model, where the channel
is invariant during each coded block, but is allowed to vary
independently from block to block. We also assume that the
number of mobiles is greater than or equal to the number of
transmit antennas, that is, K ≥M, and that the BS selects for
transmission M out of K users, with 1 ≤M ≤M.

Notation 1. We use bold upper and lower case letters for
matrices and column vectors, respectively. (·)∗, (·)T , and
(·)H stand for conjugate, transpose, and Hermitian trans-
pose, respectively. E(·) denotes the expectation operator. The
�2-norm of the vector x is denoted as ‖x‖, and ∠(x, y)
represents the angle between vectors x and y. The log(·)
refers to the natural logarithm while the base 2 logarithm is
denoted log2(·).

3. RANKING-BASED FEEDBACK FRAMEWORK

In this section, we present the concept of ranking-based
feedback and its intrinsic advantages when it is used as a user
selection metric during the scheduling stage. For simplicity
of exposition, we study its use in the particular context of
random beamforming (RBF), however, as it is shown later,
the ideas could be generalized to various downlink precoding
scenarios.

3.1. Randombeamforming systemmodel

In the random opportunistic beamforming scheme, only M,
1 ≤ M ≤ M, spatially separated users access the chan-
nel simultaneously. The transmitter generates M mutually
orthogonal random beams, as proposed in [17] for M =
1 and in [18] for the multibeam case of M = M. The
transmitted signal is given by

x(t) =
M∑

m=1

qm(t)sm(t), (2)

where sm(t) is the transmit symbol associated to the mth
beam, and qm ∈ CM×1 is the beamforming vector for the
mth beam in slot t. The random orthonormal vectors are
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generated as isotropically distributed. The SINR of the kth
user on beam m is given by

SINRk,m =
∣
∣hHk qm

∣
∣2

∑
j /=m

∣
∣hHk q j

∣
∣2

+ M/P
, m = 1, . . . ,M. (3)

For M = 1, (3) represents the received SNR given by SNRk =
P|hHk qm|

2
.

3.2. Ranking-based scheduling

Let G be the set of all possible subsets of disjoint indices
among the complete set of user indices {1, . . . ,K} and
let S ∈ G be one such group of |S| = M ≤ M
users selected for transmission at a given time slot. In the
proposed CSIT framework, we assume a two-step feedback
approach by splitting the feedback resource into two stages
(scheduling followed by transmission). In the scheduling
stage, all K active users compete for medium access and
each user k is allowed to report instantaneous CQI, denoted
as γk, which is a certain function of the channel, that is,
γk = f (hk). This CQI metric can generally take on any
form of channel information representation. For instance,
in a time-division multiple access (TDMA) context, γk may
represent the SNR or the transmission rate of user k, whereas
in an SDMA variant, the CQI can be the received SINR
(achievable or estimated). This channel quality metric is used
solely for purposes of user selection during the scheduling
stage. Given a set of M preselected users, a second-step
exploiting precoding is applied to serve the selected users.
The second-step precoding matrix may require variable levels
of additional CSIT feedback to be computed, depending on
design. Here, we assume that the second-step beamformer
is the same as the one used in the scheduling step and the
selected users feed back their transmission rate. Alternatively,
the need for a second stage in order to inform the BS on
the transmission rate can potentially be circumvented by
assuming that the cumulative distribution functions (CDFs)
of different users are known a priori at the transmitter. This
assumption can be justified in systems where the statistical
reciprocity between the downlink and uplink channels allows
the BS to estimate the distributions by aggregating each user’s
CQI feedback.

At time instant t, each user measures its CQI on each
of M randomly generated beams (columns of the first-
stage precoding matrix). In addition to the instantaneous
CQI value on each beam m, {γk,m(t)}Mm=1, each user also
keeps record of a set of past CQI values, denoted as Wk,m,
observed over a window of size W , that is, Wk,m = {γk,m(t −
1), γk,m(t − 2), . . . , γk,m(t −W + 1)}. Then, each user, say the
kth, calculates the ranking (order) rk,m(t) ∈ {1, . . . ,W+1} of
its current CQI metric γk,m(t) on beam m among the W past
values contained in the set Wk,m. In other words, if γk,m(t)
is the third largest value within the set of W latest measured
values, rk,m(t) = 3. The rank value of user k at slot t on beam

m is mathematically given by [28]

rk,m(t) = 1 +
W−1∑

w=1

1
{
γk,m(t) < γk,m(t −w)

}

+
W−1∑

w=1

1
{
γk,m(t) = γk,m(t −w)

}
Zw,

(4)

where Zw are i.i.d. random variables on {0, 1} with Pr{Zw =
0} = 1/2 corresponding to the case where the instantaneous
CQI is equal to one or several of the past values, in which
either rank value is randomly chosen with equal probability.

The key ideas are as follows:

(1) each user selects its minimum rank value over the
beams, that is,

rk(t) = min
m=1,...,M

rk,m(t); (5)

(2) each user, instead of reporting directly its maximum
CQI value over the beams, feeds back a quantized
value r̂k(t) of the integer rk(t), along with the beam
index m in which the ranking value is minimum, that
is,

r̂k(t) = Q
(
rk(t)

)
, (6)

where Q(·) represents an N= 2B-level quantizer.
Thus, the feedback load per user is 
log2N�bits for
the ranking and 
log2M�bits for the index of its
preferred beam.

At the transmitter side, the scheduler assigns each beam
m to the user k∗m with the minimum reported ranking value,
that is,

k∗m(t) = arg min
1≤k≤K

r̂k(t). (7)

As stated before, once the users {k∗m(t)}Mm=1 are selected
based on ranking-based CSIT, they are polled and requested
to report the transmission rate that can be supported by their
instantaneous channel conditions.

The length of the observation window provides a mea-
sure of how accurately the channel distribution is monitored
by the user. The larger the W , the better a user can track
the distribution of its CQI process, thus identifying more
accurately the peaks with respect to its own distribution. In
other words, ranking-based CSIT enables each user to have
an estimate of the quantile of its CQI using W previous CQI
samples, where the sample quantile of order p is defined
as the statistical functional F̂−1

W (p) = inf{x : F̂W (x) ≥
p} for p ∈ (0, 1) and F̂W (·) denoting the empirical
distribution function of W samples. More formally, for
a process (Y(t), t ≥ 0) with stationary and independent
increments with Y(0) = 0, the p-quantile of (Y(s), 0 ≤
s ≤ t) for 0 < p < 1 is defined by M(p, t) = inf{x :
∫ t

01(Y(s) ≤ s)ds > pt}. In the asymptotic case of W →∞,
the observation window captures the entire distribution and
corresponds to the case in which ranking-based CSIT gives
exact information on the CDF of the CQI process. In this



Marios Kountouris et al. 5

case, the user with the minimum ranking-based CQI value is
the one whose instantaneous CQI is in the highest quantile.

4. PERFORMANCE EVALUATION

In this section, we evaluate the average rate of a system
employing random opportunistic beamforming in which
ranking-based feedback is used as user selection metric.
We assume that the CQI takes on the form of user rate,
that is, γk,m = log2(1 + SINRk,m). Let Xk,m denote the rate
process of the kth user rate on the mth beam with CDF
denoted as FXk,m(·). The distribution function is assumed to
be strictly increasing and continuous, such that its inverse
F−1
Xk,m

(·) exists. In the following sections, unless otherwise
stated, we assume a homogenous network where all users
have equal average SNR (i.i.d. channel statistics). The case
of independent but not identically distributed (non-i.i.d.)
channel statistics is studied in Section 6.

4.1. Asymptotic optimality of ranking-based feedback
for largewindow sizeW

For finite window size W , ranking-based CSIT enables
each user to estimate the quantile of its instantaneous CQI
based on W samples of its empirical CQI process. For
fixed x, the number of random variables (r.v.) Xi such that
Xi ≤ x follows a binomial distribution with probability of
“success′′p = F(x), thus the random variable F̂W

X (x) follows
a binomial distribution with possible values 0, 1/W , . . . , 1.
In this section, we examine the behavior of the empirical
function F̂W

X (x) for W increasing and show how likely is
F̂W
X (x) to be close to F(x) for arbitrary large W and x fixed.

Let the collection of r.v. X = {Xt : t ∈ N+} be a
discrete-time stochastic process for each user defined on the
same probability space. X is assumed stationary and ergodic
and for exposition convenience we omitted the user index
k from the stochastic process. The random sample of i.i.d.
r.v. X1,X2, . . . ,XW is an empirical process, whose empirical
distribution F̂W

X (·) is defined as the CDF that puts mass 1/W
at each sample point Xi, that is,

F̂W
X (x) = 1

W

W∑

i=1

I
{
Xi ≤ x

}
, (8)

where I{Xi ≤ x} is an indicator function defined as

I
{
Xi ≤ x

} =
⎧
⎨

⎩

1, Xi ≤ x,

0, Xi > x.
(9)

Proposition 1. In a system where users have i.i.d. channel
statistics, user selection based on ranking-based feedback
converges to the capacity-optimal max-rate scheduling for
W →∞.

Proof . See Appendix A.

4.2. Average sum rate for infinite observation
window sizeW

In this section, we study the average sum rate of a system
using ranking-based feedback as a user selection metric in
the large W regime. Assuming W to be infinitely large, we
can easily see that user selection based on ranking-based
CSIT is equivalent to minimum complementary (CCDF)
scheduling. This means that if rk,m captures the distribution
of received SINR process Γk,m, then limW→∞(rk,m/W) =
FΓk,m(γk,m), where FΓk,m(γk,m) = 1 − FΓk,m(γk,m) is the com-
plementary CDF of CQI metric γk,m. Hence, as shown in
Proposition 1, selecting on each beam m the user k∗m with the
minimum ranking value is equivalent to selecting the user
with the minimum tail of CDF, that is

k∗m = arg min
1≤k≤K

rk,m(t)

= arg min
1≤k≤K

1− FΓk,m

(
γk,m(t)

)

= arg max
1≤k≤K

FΓk,m

(
γk,m(t)

)
m = 1, . . . ,M,

(10)

where rk,m(t) is the normalized ranking value and γk,m(t) is
the realization of Γk,m at slot t.

The rate of user k on beam m, prior to channel-aware
scheduling, is given by

Rk,m =
∫∞

0
log2(1 + γ) fΓk,m(γ)dγ

=
∫ 1

0
log2

(
1 + F−1

Γk,m
(r)
)
d r,

(11)

where fΓk,m(·) is the probability density function (pdf) of
CQI metric γ.

Consider a homogeneous system (i.i.d. channel distribu-
tions) and that the user on the highest quantile is scheduled
on each beam m, then the average sum rate is given by the
following proposition.

Proposition 2. The average sum rate, R, of a homogeneous
system in which user selection is performed based on ranking-
based feedback is given by

R =MK
∫ 1

0
log2

(
1 + F−1

Γ (z)
)
zK−1dz. (12)

Proof. The proof is straightforward by changing the variable
FΓ(γ) = z in the sum rate given by R =M

∫∞
0 log2(1+γ)dFK

Γ ,
where FK

Γ is the CDF of the best user selected among K i.i.d.
users with common parent distribution FΓ(γ).

Note that similar result has been derived in [29]. Therein,
the authors derive the average user rate for the general
case where the channel distributions are not necessarily
identically distributed and M = 1. Proving that the
probability that user k is selected at time slot t given that
the user rate Xk(t) = xk is Pr{k∗(t) = k | Xk(t) = xk} =
FK−1
Xk

(xk), they showed that the average rate of a user is given

by Rk =
∫ 1

0 u
K−1F−1

Xk
(u)du.

Equation (12) does not always result in closed-form
expressions. For instance, the sum rate of multibeam RBF
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Figure 1: Sum rate performance comparison of analytic high SNR
approximate solution (13) for RBF (M = 4 beams) using ranking-
based CSIT as user selection metric to simulated results using
Monte Carlo.

given by RRBF = MK
∫ 1

0 F
−1
Xk

(u)uK−1du, where F−1
Xk

(u) is
the inverse of FXk (u) = 1 − e−M/Pe−2uM/P/2(M−1)u, requires
numerical calculation. Nevertheless, analytic sum-rate ex-
pressions can be derived in specific regimes, such as the high-
and low-power regions.

Corollary 1. At high SNR (P→∞), the average sum rate of
multibeam random beamforming withM beams and ranking-
based user selection is given by

Rhigh = M

M − 1
HK

log(2)
, (13)

where HK =
∑K

k=1( 1/k) is the kth harmonic number.

Proof. When P→∞, the CDF of SINR can be approximated
by FΓ(γ) = 1−1/(1 + γ)M−1 Thus, by Proposition 2, the sum-
rate is given by R = −(M/(M− 1))K

∫ 1
0 log2(1− z)zK−1dz =

(M/(M − 1))(HK/ log(2)).

Corollary 2. At low SNR (P→ 0), the average sum rate of
multibeam random beamforming withM beams and ranking-
based user selection is given by

Rlow = log2(e)PHK , (14)

where HK is the kth harmonic number.

Proof. When P→ 0, the CDF of SINR can be approximated
by FΓ(γ) = 1 − e−Mγ/P . Using the first-order Taylor series
expansion of the logarithm, that is, log(1 + x) ≈ x for
small x, we have R = −(PK/ log(2))

∫ 1
0 log(1 − z)zK−1dz =

log2(e)PHK .
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Figure 2: Sum rate performance comparison of analytic low SNR
approximate solution (14) for RBF (M = 4 beams) using ranking-
based CSIT as user selection metric to simulated results using
Monte Carlo.

The analytic expressions of the above two corollaries
((13) and (14)) are compared to simulated results in Figures
1 and 2.

4.3. Average sum rate for finite observation
window sizeW

Let Xk∗m(t) denote the rate process of the user k selected
on beam m with with distribution function FXk∗m

(x). The
expected rate Rk,m of kth user when scheduled on beam m
is given by

Rk,m = E
{
Xk∗m(t)

}

=
∫∞

0
Pr
{

max
1≤k≤K

Xk,m(t) > x
}
dx.

(15)

Proposition 3. The average sum rateR of a system generating
M random orthonormal beams and scheduling M users
among K active users based on ranking-based feedback with
observation windowW is given by

R =
M∑

m=1

(∫∞

0

(
1− (FXk∗m

(x)
)W)

dx

−
W∑

w=1

(
W −w

W

)K∫∞

0
Fw,m(x)dx

)

,

(16)

where Fw,m(x) = (
W
w

)
(FXk∗m

(x))W −w (1 − FX k∗m
(x))w, and

FXk∗m
(x) = [Pr{Xk,m ≤ x}]K .

Proof. See Appendix B.



Marios Kountouris et al. 7

For instance, based on the above proposition the
throughput RTDMA of single-beam RBF is given by

RTDMA =
W∑

w=0

[

1−
(
W −w

W

)K](W

w

)

×
∫∞

0

(
FXk∗m

(x)
)W−w(

1− FXk∗m
(x)
)w

dx,

(17)

as FXk∗m
(x) = (1− e−(2x−1)/P)

K
. Unfortunately, (17) does not

seem to have closed-form representation for exponentially
distributed channel gains. However, in the high power
regime, the following series representation can be obtained.

Corollary 3. At high SNR (P→∞), the average sum rate RW
high

of multibeam random beamforming with M = 2 beams, finite
W , and ranking-based user selection, are given by

RW
high = 2

W∑

w=1

(
W

w

)[

1−
(
W −w

W

)K]

× Γ
(
Kw − 1

)
Γ
(
KW − Kw + 1

)

Γ(KW)
.

(18)

For large enough W , a good approximation of the bino-
mial distribution is given by the normal distribution (De
Moivre-Laplace theorem). Let q = FXk∗m

(x) and p = 1 −
FXk∗m

(x), then Fw,m(x) can be approximated by

Fw,m(x) ≈ 1
√

2πWpq
e−(w−Wp)2/2Wpq, (19)

which simplifies the calculation of integral in (16) as
∫∞

0 Fw,m(x)dx = Q(
√

2Wp/q), where Q(·) is the standard
normal CDF.

4.4. Performance reduction bound for
finite window sizeW

In this section, we provide a bound on the ratio of the
empirical distribution observed over W samples by the
actual CDF (W→∞) as a means to quantify the throughput
reduction using ranking-based CSIT calculated over finite
W . Intuitively, the rate performance is a monotonically
decreasing function with W , thus for W decreasing, the
performance degradation is increased.

A bound on the difference between the rate when
each user knows perfectly its CDF and the throughput
when ranking-based feedback is based on the empirical
distribution of each user’s channel distribution over W
samples does not seem tractable. The main difficulty is
that the user rate distribution, as FXk,m(x), is not a linear
function of the CQI distribution, that is, FXk,m(x) = FΓk,m(2x−
1). Nevertheless, a bound on the the ratio F (W ,K) =
F̂W
Xk∗m

(x)/FXk∗m
(x), where F̂W

Xk∗m
(·) is rate distribution seen by

user k when is scheduled based on ranking-based feedback
estimated using W samples is derived in [31].

Proposition 4. For a system with K active users employing
ranking-based CSIT observed over W past values, the ratio
F (W ,K) is lower bounded as

F (W ,K) ≥
(

1−
(

W

W + 1

)K)W + 1
K

≤ (1− e−K/W
)
W + 1
K

,

(20)

where the Bernoulli inequality is used for bounding (W/(W
+ 1))K .

Expanding e−K/W in Taylor series, we have that (1 −
e−K/W )((W + 1)/K) = (1− (K/2W))((W + 1)/W) � 1− K/
(W + 2). Hence, for fixed throughput reduction, the number
of samples W required to be stored in memory has to scale
almost linearly with the number of active users K in the
system.

In addition to the previous bound, a sharp nonasymp-
totic bound can be derived based on the Dvoretsky-Kiefer-
Wolfowitz (DKW) inequality [34, 35].

Theorem 1. Let X1,X2, . . . ,XW ∼ FXk,m , then for any ε > 0

Pr
{

sup
x

∣∣F̂W
Xk,m

(x)− FXk,m(x)
∣∣ > ε

}
≤ 2e−2Wε2

. (21)

Based on Theorem 1, we can construct a confidence set
that gives us a measure of the required window size W . Given
α ∈ (0, 1), say that a random set S(x) is a (1− α) confidence
set for the parameter θ if

Pr
{
θ ∈ S(x)

} ≥ 1− α. (22)

Define two sequences �1(x) = max{F̂ W
Xk,m

(x) − εW , 0} and

�2(x) = min{F̂ W
Xk,m

(x) + εW , 1} with εW =
√

(1/2W)log(2/α).
Then, for any F, we have that

Pr
{
�1(x) ≤ FXk,m(x) ≤ �2(x), ∀x} ≥ 1− α. (23)

This implies that if one wishes to draw a large enough
sample to ensure that the deviation between the empirical
distribution and the actual CDF is less than or equal to 10%,
with 90% confidence, then for ε = 0.1 in (21), a sample size
of approximately W = 150 samples is needed.

4.5. Window size versus feedback reduction tradeoff

In the previous section, it has been shown that the per-
formance difference between ranking-based user selection
and max-rate scheduling is decreased for W increasing. In
practical systems, the feedback channel shared by all users
has a fixed bandwidth and thus the rate of reporting r̂k(t) is
finite and generally fixed. As a result, under a fixed feedback
rate constraint of B = 
log2N�bits, when W is increased,
the accuracy of r̂k(t) is decreased as the distortion of the
quantizer Q(·) is increased. This is evidently due to the fact
that the dynamic range of the integer values rk(t) ∈ (0,W+1]
to be quantized by B bits is increased. In order to guarantee
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the same throughput performance for increasing W , the
number of feedback bits B should scale accordingly so that
the quantization error is fixed. This results in an interesting
tradeoff between the following:

(i) the capacity performance,

(ii) the window size W ,

(iii) the number of feedback bits B.

Consider that uniform scalar quantization is used to quantize
a source R that is uniformly distributed over [0, 1]. The error
variance (distortion) is given by

σ2
Q = E

{(
R−Q(R)

)2} =
∫ +∞

−∞

(
r −Q(r)

)2
fR(r)dr

=
(
rmax − rmin

)2

12N2
,

(24)

where fR(r) is the PDF of the uniform source R, and rmax and
rmin are the maximum and minimum value of ranking-based
feedback, respectively. For fixed variance of the quantization
error σ2

Q = δ2, rmin = 1 and rmax = W + 1, the number
of bits B should scale proportionally to B ∼ (log2(W/δ) −
1.8) bits. This feedback requirement can be decreased if
nonuniform quantization (e.g., optimal entropy-constrained
[36]) is employed. The problem of optimum quantization
design for ranking-based feedback is beyond the scope of this
paper.

5. EXTENSIONS TO CODEBOOK-BASED
SDMA SCHEMES

The concept of ranking-based feedback, as presented above,
is not restrictive to the random beamforming; it can be
generalized to other downlink precoding configurations. The
ranking-based concept can indeed be applied to any kind
of feedback information of interest. In a MIMO broadcast
channel, for instance, it can be additionally used to represent
some kind of channel direction information (CDI) as a
means to select near orthogonal user with large channel
gains. Consider a system in which each user can report
CDI feedback based on a predefined codebook in addition
to the CQI value that can take on the form of channel
norm or estimate of SINR [37, 38]. Consider a quantization
codebook Vk = {vk1, vk2, . . . , vkL} containing L unit norm
vectors vki ∈ CM , for i = 1, . . . ,L, which is assumed to
be known to both the kth receiver and the transmitter.
In each scheduling interval, each receiver k quantizes its
channel to the codevector that maximizes the following inner
product:

ĥk = vkl = arg max
vki∈Vk

∣
∣
∣h

H
k vki

∣
∣
∣

2

= arg max
vki∈Vk

cos2(∠
(
hk, vki

)) (25)

where the normalized channel vector hk = hk/‖hk‖
corresponds to the channel direction, and we refer to ĥk as
the kth user channel quantization.

Denote rg,k the kth user ranking of its CQI among W past
values, where CQI is given by the channel norm ‖hk‖. Let
rd,k be the ranking-based CDI given by alignment between
the directions of the actual channel and the quantized one,

that is, cos2(∠(hk, ĥk)) = |hHk ĥk|2. The users report back to
the transmitter both rg,k and rd,k and the scheduler selects
the user set with minimum ranking values in both CQI
and CDI, thus selects the users with high instantaneous
channel gain and small quantization error. Alternatively to
the previous centralized protocol, the set of scheduled users
can be constructed using a decentralized approach. In such
cases, only the subset L of users whose ranking values are
below a threshold is allowed to report their CSIT to the BS.
This pre-selection protocol is given by

L = {k ∈K : rg,k ≤ τg and rd,k ≤ τd
}

, (26)

where K is the population of all users, and τg , τd the
thresholds for the channel norm and channel alignment,
respectively. The fact that rg,k, rd,k are uniformly distributed
facilitates the calculation of optimal threshold values.

6. SCHEDULINGWITH HETEROGENEOUS USERS

Up to this point, we considered a system with statistically
identical users and studied the system throughput when all
users exhibit equal average signal-to-noise ratio (SNRs’).
However, in a typical wireless network, user channels are not
necessarily i.i.d. and mobile terminals experience unequal
average signal-to-noise ratio (SNR’s) due to different dis-
tances from the BS and the corresponding different path
losses (near-far effects). Hence, if a max-rate scheduler is
used as a means to exploit multiuser diversity, the sum rate
will be maximized by transmitting to the users with the
strongest channels. As the selected users are highly likely to
be the ones closest to the BS, the issue of fairness arises.
Restoring fairness requires considering a different scheduling
policy that sacrifices capacity for the sake of equalizing the
probability that a user is scheduled.

In heterogeneous system configurations, the sum rate is
no longer an appropriate performance metric, as it cannot
guarantee any fairness constraints and rate balancing among
users with nonsymmetric average SNRs. We focus on the
problem of maximizing the weighted sum rate in order to
reflect the potential fairness issues that arise. Assume that
the channel vector of each user can be written as hk =√
ρk h̃k, where ρk denotes the kth user average SNR and

h̃k ∼ CN (0, 1). The equivalent channel model becomes

yk =
√
ρk h̃kx + nk, k = 1, . . . ,K. (27)

We consider a weighted sum-rate maximization criterion,
which results in the optimization problem

max
S∈G

∑

k∈S
wkRk

s.t.
∑

k∈S
wk = 1wk ≥ 0 ∀k,

(28)
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where Rk and wk are the rate and weighting factor of the kth
user, respectively.

Let ϕk be the fraction of time slots allocated to user k,
with

∑K
k=1ϕk = 1. A general CCDF-based user selection

policy on mth beam is defined as

k∗m = arg min
1≤k≤K

(
1− FXk,m

(
xk,m

))1/ϕk . (29)

In other words, using the minimum tail scheduler, user k can
gain access to the channel with probability ϕk. In [29], it has
been shown that this scheduling policy can guarantee equal
access to the channel for heterogeneous users. This can also
be achieved if ranking-based feedback is employed during
the scheduling stage. More formally, let Ak,m be the event
that user k is selected on beam m based on ranking-based
feedback. If all users have the same time fraction, that is,
ϕk = 1/K , then, following the proof in [29], we have

Pr
{
Ak,m

} =
∫∞

0
Pr
{
Ak,m | Xk,m = x

}
fXk,m(x)dx

= −
∫∞

0

(
1− FXk,m(x)

)(1−K)/K
dFXk,m(x) = 1/K.

(30)

Interestingly, the probability that the kth user is selected
Pr{Ak,m = 1} does not depend on the distribution of the
other users, even if the users’ channels are independent but
not necessarily identically distributed. The independence of
the selection probability from the other users’ statistics can
be inferred from the fact that the ranking of each user’s
CQI follows a uniform distribution independently of the
other users’ fading characteristics. Thus, in addition to its
feedback reduction merits, ranking-based metric can also
restore temporal fairness by sharing the scheduling time slots
in a fair manner among users.

The average user throughput of a heterogeneous network
(non-i.i.d channel distributions) with M = 1 and max-CDF
scheduling is studied in [29]. In the appendix, we provide an
additional proof of following result [29].

Proposition 5. The average sum rate, R, of a heterogeneous
system in which ranking-based feedback is used for the purposes
of user selection is given by

R =
M∑

m=1

K
∫ 1

0
F−1
Xk,m

(z)zK−1dz. (31)

Proof. See Appendix C.

7. NUMERICAL RESULTS

In this section, we compare the performance of the following
schemes.

(i) Scheme I: RBF employing quantized ranking-based
CQI for user selection in the scheduling stage.

(ii) Scheme II: RBF in which users are selected based
on quantized SNR/SINR feedback in the scheduling
stage.
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Figure 3: Average rate comparison as a function of window size
W for single-beam RBF with M = 2 antennas, SNR = 10 dB
and K = 10 active users. User selection based on ranking-based
feedback converges to capacity-optimal max-rate (SNR) scheduling
for W→∞.

As stated above, we consider a two-stage approach, thus the
proposed CSIT representation is used solely for selecting
the group of scheduled users. Thus, in both schemes under
comparison, once the group of users (among all active K
ones) is identified in the first stage, the BS requests the
transmission rate of the M selected users in order to perform
link adaptation.

In the first set of simulations, we consider single-beam
RBF [17] as downlink transmission scheme with M =
2 transmit antennas and SNR = 10 dB. In Figure 3, the
throughput difference between Scheme I and II is plotted as
a function of observation window size W . Expectedly, for
small values of W , ranking-based feedback cannot capture
sufficiently the CQI distribution, failing to select the users
that are on their highest quantile of their distribution.
This results in a rate reduction penalty as the system does
not exploit multiuser diversity and does not schedule users
with large channel gains. As stated in Proposition 1, for
W increasing, the performance of ranking-based system
converges to that of max-rate scheduler (for W→∞).

Figures 4 and 5 show the effect of feedback quanti-
zation on the system throughput. In Figure 4, the signal-
to-noise ratio (SNR) feedback metric is quantized with
B = 5 bits using the optimal Max-Lloyd algorithm, whereas
the ranking-based CQI is quantized using B = 3 bits.
For different values of W , the proposed feedback repre-
sentation is able to identify correctly the users with the
highest instantaneous rate as compared to the quantized
signal-to-noise ratio (SNR) feedback, resulting in capacity
gain even with feedback load reduction of 40%. This is
mainly due to the inherent digital form of ranking-based
CQI and its dynamic range, which allows for efficient
compression. In Figure 5, the performance of ranking-based
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Figure 6: Sum rate as a function of the number of users for
multibeam RBF with M = 2 antennas, SNR = 10 dB and W = 1000
slots. The SINR feedback is quantized using B = 5 bits, whereas
only 3 bits are used for ranking-based feedback quantization. The
feedback reduction advantage of ranking-based representation is
preserved in an SDMA context.

user selection for different quantization rates is compared
with that of signal-to-noise ratio (SNR)-based user selection
for fixed observation window size. The feedback load can
be reduced up to 40% with negligible capacity reduction
(∼0.1 bps/Hz).

In the second set of simulations, the multibeam variant
of RBF [18] is used as transmission scheme. The SINR
feedback is quantized using B = 5 bits, whereas only
3 bits are used for ranking-based CQI quantization. As
shown in Figure 6, the proposed feedback representation
in an SDMA downlink with M = 2 antennas provides
similar results as in the single-beam case by representing
more efficiently the user selection metric, thus reducing the
uplink channel rate with no compromise on the system
throughput. A heterogeneous network in which the users’
average power are uniformly distributed from −10 to 30
dB is also considered for multibeam RBF with M = 4
antennas. The loss in sum rate observed in Figure 7 is
expected since in the non-i.i.d. case, the ranking-based
feedback does not necessarily select the users with the
highest absolute instantaneous CQI values, but those whose
instantaneous CQI values are near to a peak with respect
to their own distribution. Nevertheless, cell-edge users
that enjoy lower averagesignal-to-noise ratio (SNRs’) have
equal probability of being selected if their CQI values
are on the highest quantile. Selecting users with higher
pathloss (lower average SNR) results in system throughput
reduction, however, temporal fairness is restored as the
access time per user is equalized independently as shown in
Figure 8.
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8. CONCLUSION

We considered the problem of feedback reduction in a mul-
tiuser multiple-antenna downlink system with more users

than transmit antennas, under partial channel knowledge at
the transmitter due to limited rate feedback. A novel type of
CSIT representation, coined as ranking-based feedback, has
been proposed as a means to reduce the required feedback
load in the scheduling stage. The performance of random
opportunistic beamforming in which users are first selected
based on ranking-based metric has been analyzed. When
users have i.i.d. channels, it is shown that ranking-based
user selection can reduce substantially the uplink feedback
rate with negligible decrease in multiuser diversity gain and
system throughput. In heterogeneous networks (non-i.i.d.
channels), it is shown that temporal fairness is provided
at little expense of throughput due to the fact that users
have equal access in the channel medium, irrespective to the
distribution of other users.

This work opens several interesting questions for future
research in low-rate feedback schemes and CSIT represen-
tation. First, as ranking-based feedback is in digital form,
design of efficient, low-complexity compression, and quan-
tization schemes that can capture the multiuser diversity
effects and provide near-optimal performance is of particular
interest. Second, the nontrivial tradeoff among sum-rate per-
formance, amount of feedback bits, and observation window
size needs to be further explored as a means to provide
useful design guidelines and quantify the actual benefits
when feedback resources and complexity requirements are
carefully accounted for. Another assumption made here is
that the channel is instantaneous and error-free. The effect of
feedback delay and CSI estimation errors on the performance
requires further study, especially in large doppler spread
channels where delays are more prominent. Finally, it
still remains open to determine which form of channel
knowledge representation is sufficient and/or necessary for
the transmitter in order to select spatially separable users
with large channel gains.

APPENDICES

A. PROOF OF PROPOSITION 1

The ranking rk,m(t), measured over W past samples, provides
information about the empirical distribution of the rate
process. More formally, rk(t)/W ≈ 1 − F̂W

Xk,m
(x). We want

to show that the difference between F̂W
Xk,m

(x) and the actual
CDF FXk,m(x) vanishes to zero when W→∞. A measure of
closeness of the two functionals, called maximum discrepancy
(Kolmogorov-Smirnov statistic), is given by

DW = sup
−∞<x<∞

∣
∣F̂W

Xk,m
(x)− FXk,m(x)

∣
∣ (A.1)

whose probability density function is independent of F(·)
provided that F(·) is continuous.

Proposition 1 is a direct consequence of the following
theorem.
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Theorem 2 (Glivenko-Cantelli [39]). Let X1,X2, . . . ,XW ∼
FXk,m(x), then the sample paths of F̂W

Xk,m
get uniformly closer to

FXk,m asW→∞, that is,

∥
∥
∥F̂W

Xk,m
(x)− FXk,m(x)

∥
∥
∥
∞ = sup

x

∣
∣
∣F̂W

Xk,m
(x)− FXk,m(x)

∣
∣
∣

as−−→0.

(A.2)

The above theorem implies that for large W , the
empirical distribution converges to the distribution function
almost surely. Hence F̂W

Xk,m
, which is observed over a window

of size W , is almost surely a good approximation for FXk,m ,
and the approximation becomes better as the number of
observations increases. In this case, user selection based
on ranking-based CSIT becomes equivalent to max-CDF
scheduling, which, in turn, is equivalent to max-rate schedul-
ing for large W and i.i.d. channel distributions, that is,

k∗m(t) = arg min
1≤k≤K

rk(t)

= arg min
1≤k≤K

(
1− FXk,m

(
xk,m

)
(t)
)

= arg max
1≤k≤K

xk,m(t).

(A.3)

B. PROOF OF PROPOSITION 3

Let FXk∗m
(x) = Pr

{
Xk∗m(t) ≤ x

}
be the rate distribution of the

selected user k over beamm and let Fw,m(x) be the probability
that in beam m, the w largest values among W are greater
than x, then for a selected user k∗ over beam m conditioning
on Fw,m(x), we have

Pr
{
Xk∗m(t) ≤ x

} =
W−1∑

w=0

Pr
{
rk∗m(t) > w

}
Fw,m(x)

=
W−1∑

w=0

(
W −w

W

)K
Fw,m(x),

(B.1)

where Pr{rk∗m(t) > w} = Pr{min1≤k≤Krk,m(t) > w}
= [1− Fr(w)]K = ((W −w)/W)K as the ranking-based
CSIT is uniformly distributed with CDF Fr(w) over the set
of W past values. Using results from order statistics [40], we
have that

Fw,m(x) =
(
W

w

)
(
FXk∗m

(x)
)W−w(

1− FXk∗m
(x)
)w
. (B.2)

Therefore, the expected sum rate R is given by

R =
M∑

m=1

∫∞

0
Pr
{
Xk∗m(t) > x

}
dx

=
M∑

m=1

∫∞

0

(
1− Pr

{
Xk∗m(t) ≤ x

})
dx

=
M∑

m=1

∫∞

0
1−

W−1∑

w=0

(
W −w

W

)K
Fw,m(x)dx,

(B.3)

which gives (16) as F0,m(z) = (FXk∗m
(x))W .

C. PROOF OF PROPOSITION 5

Before proceeding to the proof, we state the following result.

Lemma 1. The random variable Uk,m = FXk,m(Xk,m) is uni-
formly distributed on the interval [0, 1].

Proof. In the lines of [29], suppose that x is an arbitrary
number and u = FXk,m(x), with 0 ≤ u ≤ 1. The distribution
function (CDF) of Uk,m is given as

FUk,m(u) = Pr
{
Uk,m ≤ u

}

= Pr
{
FXk,m

(
Xk,m

) ≤ u
}

= Pr
{
Xk,m ≤ F−1

Xk,m
(u)
}
= u, 0 ≤ u ≤ 1,

(C.1)

which implies that Uk,m is uniformly distributed on [0, 1].
The average sum rate of multibeam random beamform-

ing is given by

R =
M∑

m=1

Rk,m, (C.2)

where Rk,m is the average rate of the selected user k on beam
m given by

Rk,m = E
(
X (K)
k,m

)
, (C.3)

where X (K)
k,m = max{X1

k,m,X2
k,m, . . . ,XK

k,m} (maximum over K

i.i.d. random variables) with Xi
k,m ∼ Xk,m. As E(X (K)

k,m) =
E(F−1

Xk ,m(U (K)
k,m)) withU (K)

k,m = max{U1
k,m,U2

k,m, . . . ,UK
k,m}, from

order statistics [40, eqation 3.1.1], we have that

E
(
F−1
Xk,m

(
U (K)

k,m

))
= K

∫ 1

0
F−1
Xk,m

(z)zK−1dz. (C.4)

Putting (C.4) into (C.2) results in (31).
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