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pression level whilst maintaining a low-distortion level of the desired source.

Copyright © 2008 Hai Quang Dam et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Multichannel beamforming techniques can be largely di-
vided into three types, namely, fixed, optimum, and adap-
tive beamforming [1, 2]. For a fixed beamformer, the beam-
former weights, which usually consist of FIR-filter weights,
are designed to focus into a main source direction while sup-
pressing signals from other undesired directions. This prob-
lem can be viewed as a multidimensional filter design prob-
lem [2]. As such, the weights are calculated based on infor-
mation about the array geometry and the source localization
with no statistical information about the signal’s environ-
ment or the required signals.

Multichannel optimum filtering, on the other hand, re-
quires statistical knowledge about the noise statistics, the en-
vironment, and the source statistics. The beamformer coeffi-
cients are optimized in such a manner that a focussed beam
is steered to a desired source direction, whilst suppressing the
contributions coming from other directions [2, 3]. Similar to
the fixed beamformer case, the design also requires informa-
tion about the location of the target signal and the array ge-
ometry. From those parameters, a spatial, spectral, and tem-
poral filter is formed to match the beamforming requirement
[4, 5].

Adaptive beamforming techniques are developed to track
time-varying signal situations [6, 7]. A well-known tech-
nique is to combine the beamformer with an adaptive postfil-
tering technique. The adaptive postfiltering uses the estima-
tion of spectral densities of the desired and undesired signals
in the filter output to further suppress the noise. One com-
mon method to perform postfiltering is spectral subtraction.
This method exploits spectral information of the noise and
the speech sources to form a gain function to suppress the
noise [8, 9]. A critical part for spectral subtraction is the de-
tection of speech active and inactive periods [10]. The speech
inactive periods are used to update the noise statistics. Dur-
ing these periods, the noise information is updated in the
gain function. Naturally, any misdetection will lead to erro-
neous update of the noise and result in distortion. Also, spec-
tral subtraction succumbs to nonstationary noise as it relies
heavily on speech pauses to update the noise statistics. More
explicitly, the noise is estimated during speech pauses and is
used to form the gain function during speech periods. As a
consequence, spectral subtraction cannot deal well with situ-
ations where the interference is another speech source or the
noise is nonstationary.

To resolve the nonstationary problem, Zelinski intro-
duced the multichannel postfiltering technique [11]. The
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postfilter uses the auto- and cross-spectral densities of the ar-
ray inputs to estimate the signal and noise spectral densities.
By doing so, the postfilter is capable of performing in non-
stationary noise. However, one of the main assumptions in
[11] is that the noise in different channels are uncorrelated
corresponding to an incoherent noise field. In practice, the
correlation of the noise signals between channels may be sig-
nificant. This is especially the case for closely spaced sensors,
for example, typically in speech enhancement applications.
To cope with that, a number of techniques have been pro-
posed during the past few years [12, 13]. A postfiltering tech-
nique based on the complex coherence function for a specific
coherence noise field such as spherically isotropic (diffuse)
or cylindrically isotropic noise fields is proposed in [12]. In
[13], a multichannel postfiltering is developed to minimize
the log-spectral amplitude distortion in nonstationary noise
environments. A main assumption is made that a desired
source component is stronger at the beamformer output than
at any reference noisy signal, and the interference compo-
nent is the strongest at one of the reference signals. However,
this assumption might not be satisfied if the desired source
and other undesired interferences are located close to the ar-
ray and have fast time-varying characteristics such as speech
signals.

This paper aims to recover a particular speech source
while rejecting other speech sources in multispeaker environ-
ments. This has been referred to as a cocktail party effect or
an “attentional selectivity” [14, 15]. As an example, consider
a situation with many speakers in a “meeting” room. The ob-
served signals contain the speech signals from many speakers
with the possibility of overlapping one another. The objective
is to extract a single desired signal from the mixtures.

A new beamformer structure is proposed which em-
ploys a multichannel power spectral estimator of the desired
speech source. This structure includes a multiobjective opti-
mal beamformer followed by a postfilter. The multiobjective
optimal beamformer is designed to spatially extract a desired
source while suppressing all other undesired source(s). More
specifically, if there are three or more speech sources, the
multiobjective optimal beamformer is designed to eliminate
at least two undesired sources. As such, it may not be able
to suppress all the undesired sources. To suppress further the
undesired sources from the beamformer output, an adaptive
postfilter is proposed which includes a multichannel spec-
tral estimation of the desired signal. Two multichannel spec-
tral estimation methods are developed for the postfiltering
using, respectively, inner product and joint diagonalization
to estimate the desired source power spectral density (PSD).
Evaluations using recordings from a real room environment
show that the proposed beamformers offer good interference
suppression levels whilst maintaining low distortion levels of
the desired source.

The organization of the paper is given as follows. The
problem formulation is outlined in Section 2. The spatial
correlation matrix estimation using calibration signals is de-
veloped in Section 3. A fixed multiobjective optimal beam-
former is proposed in Section 4. Two multichannel spec-
tral estimation methods using, respectively, inner product
and joint diagonalization are developed in Section 5. Fi-
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Figure 1: Position of sources and the microphone array in multi-
speaker environment.

nally, evaluations of the proposed beamformer using real
data are presented in Section 6, and conclusions are given in
Section 7.

2. PROBLEM FORMULATION

Consider a multispeaker situation with I speakers located in
the near field of an L-element microphone array as depicted
in Figure 1. The speakers can be active in a random manner
and their speech signals may overlap in time. Denote by si(n),
1 ≤ i ≤ I , an L×1 vector of the discrete-time observed signal
from the ith source at the microphones where n denotes the
time index. The received signal x(n) at the microphones can
be written as

x(n) =
I∑

i=1

si(n) + v(n), (1)

where v(n) is the background noise. Here, we concentrate
mainly on the case with speech mixtures. Thus, the term v(n)
is being omitted. The task at hand is to extract the desired
source(s) from a mixture of I sources.

The proposed beamformer is performed in the frequency
domain. Thus, the received signal is decomposed into M sub-
bands in the frequency domain by using an analysis filter
bank [16]. The filtering and processing are then performed
for each frequency bin. The observed signal x(ω, k) for each
frequency bin ω and time index k can be given as

x(ω, k) =
I∑

i=1

si(ω, k), (2)

where si(ω, k) is the contribution from the ith source. Denote
by Ri(ω) and pi(ω, k) the spatial correlation matrix and the
PSD at time instant k, respectively, of the ith source [17, 18].
By assuming that all the sources are spatially invariant and
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statistically independent, the correlation matrix of the re-
ceived signal Rx(ω, k) at instant k can be expressed as

Rx(ω, k) =
I∑

i=1

Ri(ω)pi(ω, k). (3)

In the following section, a calibration method will be pre-
sented to calculate the source spatial correlation matrices be-
fore the beamforming process.

3. SPATIAL CORRELATIONMATRIX ESTIMATION
USING CALIBRATION SIGNALS

In [19, 20], a calibration method is outlined where the train-
ing samples of the sources are recorded prior to the beam-
forming process. This method is developed to estimate the
statistical information of the sources which includes un-
known signal path information. By doing so, all the infor-
mation on the array geometry and source localization will be
reflected in the solution [21].

During the calibration period, each speaker is active for a
short period of time while other speakers are silent. Denote
by [K1,i,K2,i] the active time of the ith source and R̂i,cal(ω) the
correlation matrix for ith source estimated during the cali-
bration period. This matrix can be obtained as

R̂i,cal(ω) = 1
K2,i − K1,i + 1

K2,i∑

k=K1,i

x(ω, k)xH(ω, k). (4)

Moreover, denote by d̂i,cal(ω) the spatial cross correlation
vector with respect to the �th prechosen reference micro-
phone, 1 ≤ � ≤ L. The vector d̂i,cal(ω) is estimated as

d̂i,cal(ω) = 1
K2,i − K1,i + 1

K2,i∑

k=K1,i

x(ω, k)x∗(ω, k, �), (5)

where x(ω, k, �) is the received signal at the �th microphone.
The spatial correlation matrix Ri(ω) and the spatial cross cor-
relation vector di(ω) can be estimated as

Ri(ω) = R̂i,cal(ω)

R̂i,cal(ω, �, �)
, (6)

di(ω) = d̂i,cal(ω)

d̂i,cal(ω, �)
, (7)

where R̂i,cal(ω, �, �) is the (�, �) element of the matrix R̂i,cal(ω)
and d̂i,cal(ω, �) is the �th element of the vector d̂i,cal(ω). Next,
a fixed multiobjective optimal beamformer is developed uti-
lizing the spatial correlation matrices.

4. FIXEDMULTIOBJECTIVE OPTIMAL BEAMFORMER

In this section, a fixed multiobjective optimal beamformer
incorporating the spatial correlation matrices is proposed to
suppress the interference signals whilst preserving the desired
speech. For simplicity, the first source s1(ω, k) is assumed to

be the desired source while other I − 1 sources, si(ω, k), 2 ≤
i ≤ I , are undesired. The fixed multiobjective optimal filter
weight w f (ω) for the frequency ω is designed to minimize

wH
f (ω)Ri(ω)w f (ω) ∀2 ≤ i ≤ I , (8)

while maintaining the desired source direction, for example,
the first source direction

wH
f (ω)d1(ω) = 1. (9)

Thus, we propose to minimize the following weighted cost
function:

J = wH
f (ω)

[ I∑

i=2

Ri(ω)γi(ω)

]
w f (ω), (10)

where γi(ω), 2 ≤ i ≤ I , are the weighting parameters for the
sources. One possibility is to choose γi(ω) as the calibration
values R̂i,cal(ω, �, �) in (6) to match the spectral proportion
among the sources in the calibration time. Another possibil-
ity is to choose γi(ω) as one to give equal weighting for all in-
terference sources. In general, γi(ω) can be chosen differently
to allow different suppression levels for the interference de-
pending on the requirements. Consequently, the fixed mul-
tiobjective optimal beamformer weight can be obtained by
solving the following optimization problem:

min
w(ω)

wH(ω)

[ I∑

i=2

Ri(ω)γi(ω)

]
w(ω)

subject to wH(ω)d1(ω) = 1.

(11)

The solution of this optimization problem can be expressed
as

w f (ω) =
[∑I

i=2 Ri(ω)γi(ω)
]−1

d1(ω)

d
H
1 (ω)

[∑I
i=2 Ri(ω)γi(ω)

]−1
d1(ω)

. (12)

The output of the fixed beamformer is calculated as

u(ω, k) = wH
f (ω)x(ω, k). (13)

The beamformer output is then passed through a postfilter
to further suppress the undesired signals.

5. POSTFILTERING USINGMULTICHANNEL
SPECTRAL ESTIMATION

In this section, a postfiltering method employing two new
multichannel spectral estimators is proposed to suppress fur-
ther the undesired sources in the fixed multiobjective optimal
beamformer output while maintaining the desired source
component. More specifically, the spatial difference between
the desired and the undesired sources is used for the PSD es-
timation of the desired source.

To track the spectral changes of the desired speech source,
the multichannel spectral estimator is performed in the peri-
ods where the speech sources are quasistationary. As such, at
a time instant k, the instantaneous PSD of the desired source
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is estimated based on K samples before this instant. The esti-
mated correlation matrix R̂x(ω, k) of the observed signals for
these K samples is calculated as

R̂x(ω, k) = 1
K + 1

k∑

n=k−K
x(ω,n)xH(ω,n). (14)

Since speech sources can assume to be spatially invariant dur-
ing the period of K consecutive samples, the model in (3) is
employed. Based on (3) and (14), we propose two different
multichannel spectral estimators to efficiently estimate the
desired source PSD, p1(ω, k), from a mixture of signals in
multispeaker environments.

5.1. Spectral estimation using an inner product
and determinant

A PSD estimation method of the desired source, p1(ω, k), is
proposed based on the estimated instantaneous correlation
matrix R̂x(ω, k) and the model of the instantaneous correla-
tion matrix given in (3). Since the spatial correlation matrices
Ri(ω), 1 ≤ i ≤ I , are known from calibration and R̂x(ω, k)
has been estimated, the task is to find p1(ω, k) or in a more
general case pi(ω, k). This method relies on properties of de-
terminants and full rank matrices.

For every calibration matrix Ri(ω) of size L×L, define an
2L2 × 1 real vector V{Ri(ω)} containing all the elements of
Ri(ω) as

V
{

Ri(ω)
}

=
[(

r�1
)T

,
(

r�1
)T

,
(

r�2
)T

,
(

r�2
)T

, . . . ,
(

r�L
)T

,
(

r�L
)T]T

,

(15)

where r�l and r�l are, respectively, the real and imaginary
parts of the lth column of Ri(ω) for all 1 ≤ l ≤ L. Using
the vectors V{Ri(ω)}, we form a matrix Γ(ω) as

Γ(ω) =

⎛
⎜⎜⎜⎜⎝

ζ(1, 1) ζ(1, 2) · · · ζ(1, I)
ζ(2, 1) ζ(2, 2) · · · ζ(2, I)

...
...

. . .
...

ζ(I , 1) ζ(I , 2) · · · ζ(I , I)

⎞
⎟⎟⎟⎟⎠

, (16)

where ζ(i, j), 1 ≤ i, j ≤ I , is the inner product between
V{Ri(ω)} and V{R j(ω)}:

ζ(i, j) = 1
2L2

VT
{

Ri(ω)
}
V
{

R j(ω)
}
. (17)

Since Ri(ω), 1 ≤ i ≤ I , are spatial correlation matrices of
the speech sources with strictly different locations, their cor-
responding vectors can assume to be linearly independent.
From this, it follows that the determinant of the matrix Γ(ω),
denoted by det{Γ(ω)}, is nonzero [22].

In the same way as in (15), a vector V{Rx(ω, k)} can be
formed from Rx(ω, k). Since the operation from Rx(ω, k) to
V{Rx(ω, k)} is linear, by using (21) the following expression
is obtained:

V
{

Rx(ω, k)
} =

I∑

i=1

pi(ω, k)V
{

Ri(ω)
}
. (18)

Inserting this expression in (17) yields

ζx(i) =
I∑

j=1

ζ( j, i)pj(ω, k)

= ζ(1, i)p1(ω, k) +
I∑

j=2

ζ( j, i)pj(ω, k),

(19)

where ζx(i), 1 ≤ i ≤ I , is the inner product between the in-
stantaneous correlation matrix Rx(ω, k) and the spatial cor-
relation matrices Ri(ω). Inserting ζx(i), 1 ≤ i ≤ I , in the first
row of the matrix Γ(ω, k) in (16), we have

Γx(ω, k) =

⎛
⎜⎜⎜⎜⎝

ζx(1) ζx(2) · · · ζx(I)
ζ(2, 1) ζ(2, 2) · · · ζ(2, I)

...
...

. . .
...

ζ(I , 1) ζ(I , 2) · · · ζ(I , I)

⎞
⎟⎟⎟⎟⎠
. (20)

By combining (19) and (20), we have (21).

Γx(ω, k)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

p1(ω, k)ζ(1, 1) p1(ω, k)ζ(1, 2) · · · p1(ω, k)ζ(1, I)

ζ(2, 1) ζ(2, 2) · · · ζ(2, I)

...
...

. . .
...

ζ(I , 1) ζ(I , 2) · · · ζ(I , I)

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

∑I
j=2 ζ( j, 1)pj(ω, k)

∑I
j=2 ζ( j, 2)pj(ω, k) · · · ∑I

j=2 ζ( j, I)pj(ω, k)

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(21)

By taking the determinant of (21), we have

det
{
Γx(ω, k)

} = p1(ω, k) det
{
Γ(ω)

}
. (22)

Thus, we propose an estimation method for p1(ω, k)
based on det{Γ(ω)} and det{Γx̂(ω, k)} as

p1(ω, k) = max
{

0,
det

{
Γx̂(ω, k)

}

det
{
Γ(ω)

}
}

, (23)

where Γx̂(ω, k) is the same as Γx(ω, k) but with Rx(ω, k) re-
placed by the estimate of the correlation matrix R̂x(ω, k).

It can be noted from (20) that for each time instant k, we
only need to estimate the first row of the matrix Γx(ω, k). This
is done by taking the inner product betweenV{R̂x(ω, k)} and
V{Ri(ω)} for all i. As the matrices V{Ri(ω)} are all known,
this results in 2IL2 real multiplications. In addition, the de-
terminant det{Γx(ω, k)} in (23) requires I real multiplica-
tions where the determinant is taken along the first row with
all the cofactors precalculated. Therefore, the number of real
multiplications required is approximately I(2L2 + 1) for each
frequency bin.

In the following section, we present another method for
estimating the desired source PSD by using a joint diagonal-
ization technique.
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5.2. Spectral estimation using joint diagonalization

Since the spatial correlation matrices of all the undesired
sources are known, joint diagonalization is proposed to be
performed prior to the beamforming period to extract infor-
mation of the undesired signals. As such, for each frequency
bin ω, the problem becomes to estimate the matrix H(ω)
which jointly minimizes the off-diagonal elements of the fol-
lowing matrices:

H(ω)R2(ω)HH(ω), . . . , H(ω)Ri(ω)HH(ω). (24)

To avoid trivial solutions, the following constraint is in-
cluded:

∥∥hi(ω)
∥∥
F = 1, 1 ≤ i ≤ L, (25)

where hi(ω) is the ith column of the matrix H(ω) and ‖ · ‖F
is the Frobenius norm operator. This problem can be formu-
lated as minimizing the following cost function:

C(ω) =
I∑

i=2

∥∥offdiag
{

H(ω)Ri(ω)HH(ω)
}∥∥2

F , (26)

with the constraints in (25), where offdiag{·} is an operator
that sets all diagonal elements of {·} to zeros. Here, this opti-
mization problem is solved by using the algorithm proposed
in [23], where the simultaneous diagonalization algorithm is
an extension of the Jacobi technique, that is, a joint diagonal-
ity criterion is iteratively optimized under plane rotations.

Denote by H(ω) the optimum solution for the joint diag-
onalization problem. The desired source PSD, p1(ω, k), is es-
timated from the correlation matrix R̂x(ω, k) of the observed
signal and the matrix H(ω) according to

p1(ω, k)

= arg min
p1(ω)≥0

∥∥offdiag
{

H(ω)R̂x(ω, k)HH(ω)
}

− p1(ω) offdiag
{

H(ω)R1(ω)HH(ω)
}∥∥2

F .
(27)

Denote by rm,n(ω, k), hm,n(ω), am,n(ω, k), and bm,n(ω)
the (m,n)th complex elements of the matrices R̂x(ω, k),
H(ω), H(ω)R̂x(ω, k)HH(ω), and H(ω)R1(ω)HH(ω), respec-
tively. The element am,n(ω, k) can be obtained as

am,n(ω, k) =
L∑

i=1

L∑

j=1

hm,i(ω)ri, j(ω, k)h∗n, j(ω). (28)

Since, the right-hand side of (27) is an algebraic polynomial
of degree 2 with an unknown parameter p1(ω), the optimiza-
tion solution with constraint p1(ω) ≥ 0 can be written as

p1(ω, k) = max

⎧
⎪⎪⎨
⎪⎪⎩

0,

∑L
m=1

∑L
n=1

m /=n
�{amn(ω, k)b∗mn(ω)

}

∑L
m=1

∑L
n=1

m /=n

∣∣bmn(ω)
∣∣2

⎫
⎪⎪⎬
⎪⎪⎭

,

(29)

where �{·} denotes the real part of a complex variable. Us-
ing (28), the term in the right-hand side of (29) can be writ-
ten as
∑L

m=1

∑L
n=1

m /=n
�{amn(ω, k)b∗mn(ω)

}

∑L
m=1

∑L
n=1

m /=n

∣∣bmn(ω)
∣∣2

=
L∑

i=1

L∑

j=1

�

⎧
⎪⎪⎨
⎪⎪⎩
ri, j(ω, k)

∑L
m=1

∑L
n=1

m /=n
hm,i(ω)h∗n, j(ω)b∗mn(ω)

∑L
m=1

∑L
n=1

m /=n

∣∣bmn(ω)
∣∣2

⎫
⎪⎪⎬
⎪⎪⎭
.

(30)

As such, the solution (29) can be obtained by multiplying
the variables ri, j(ω, k) with the precalculated cofactors. So,
the number of calculations required for each estimation step
is approximately L2 complex multiplications or 4L2 real mul-
tiplications for each frequency bin.

The desired source PSD is now used in the postfilter to
improve the performance of the fixed multiobjective optimal
beamformer.

5.3. Postfilter

Since the first signal is assumed to be the desired source, the
power of the desired source in the output of the fixed mul-
tiobjective optimal beamformer at a time instant k, Pd(ω, k),
can be estimated as

Pd(ω, k) = p1(ω, k)wH
f (ω)R1(ω)w f (ω). (31)

The total power of the output, P(ω, k), can be estimated
based on R̂x(ω, k) as

P(ω, k) = wH
f (ω)R̂x(ω, k)w f (ω). (32)

From (31) and (32), the source power gain in the postfilter
output can be calculated as

G(ω, k) = min

(
1,

√
Pd(ω, k)
P(ω, k)

)
, P(ω, k) > 0. (33)

If P(ω, k) is zero, then G(ω, k) is set to one to avoid a nu-
merical problem. The output of the postfilter can be obtained
based on the beamformer output u(ω, k) in (13) and the gain
G(ω, k) as

y(ω, k) = G(ω, k)u(ω, k). (34)

This output is then passed through a synthesis filter bank
to obtain its fullband representation [16]. A general diagram
of the proposed structure is shown in Figure 2.



6 EURASIP Journal on Advances in Signal Processing

Spectral estimator

Spectral estimator

Spectral estimator

Sy
n

th
es

is
fi

lt
er

ba
n

k

A
n

al
ys

is
fi

lt
er

ba
n

k

w f (ω0)

w f (ω1)

w f (ωM−1)

G(ω0, k)

G(ω1, k)

G(ωM−1, k)

y(ω0, k)

y(ω1, k)

y(ωM−1, k)

x(ω0, k)

x(ω1, k)

x(ωM−1, k)

x(n)

y(n)

...

Figure 2: Multi-objective optimal beamforming with postfiltering
using the analysis and synthesis filter banks.
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Figure 3: Position of original sources and the microphone array in
the two-dimensional space.

6. EVALUATIONS

Measurements and evaluations have been performed in a
real room environment using a linear microphone array con-
sisting of 6 microphones with the distance of 6 cm between
two adjacent microphones. There are 4 near-field speakers (2
men and 2 women). The distance between the speakers and
the microphone array is approximately 1 m. The room size is
3.5× 3.1× 2.3 m3 with the reverberation time approximately
250 milliseconds. The speaker number is 1 to 4 from left to
right.

The positions of the speakers are shown in Figure 3 with
θ1, θ2, θ3, and θ4 being approximately 145◦, 110◦, 70◦, and
35◦, respectively.

The calibration time for each speaker is 10 seconds. This
calibration time can be chosen arbitrarily. However, it is rec-
ommended that the calibration time is chosen more than
3 seconds to capture the spatial information of the speak-
ers. The weighting parameters γi(ω) in (10) are chosen as
pi,cal(ω).

Figure 4 shows the time domain plots of the speech sig-
nals and the observed signal at the 4th microphone. The
length of the speaker speech signals is 35 seconds and the
speech signals were recorded separately for the evaluations.
Note that the recording was made from the actual human
speakers and the speech signals occurred at different times
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Figure 4: Time domain plots of the original sources and the ob-
served signal at the 4th microphone.

and overlaped each other. The overlapping is used to sim-
ulate simultaneous conversation between the speakers. The
corresponding spectrogram plots of the speech signals and
the observed signal at the 4th microphone are depicted in
Figure 5.

The observed signals are decomposed into M = 64 sub-
bands by using a uniform oversampled analysis filterbank. In
this case, a oversampling factor of two is chosen to reduce the
aliasing effects between adjacent subbands [16]. The perfor-
mance of the proposed beamformer is measured in terms of
the interference suppression (IS) level, defined as

IS = 10 log10

( ∫ π
−π P̂in,n(ω)dω
∫ π
−π P̂out,n(ω)dω

)
− 10 log10

(
Cd
)
, (35)
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Figure 5: Spectrograms of the original sources and the observed
signal at the 4th microphone.

where P̂in,n(ω) and P̂out,n(ω) are the spectral power estimates
of the reference microphone observation and the output, re-
spectively, when the interferences are active alone and Cd is a
constant to normalize the desired source’s gain. The perfor-
mance is also given in terms of the source distortion measure
(SD), defined as

SD = 10 log10

(
1

2π

∫ π

−π

∣∣∣∣
(

1
Cd

)
P̂in,s(ω)− P̂out,s(ω)

∣∣∣∣dω
)

,

(36)

where P̂in,s(ω) and P̂out,s(ω) are the spectral power estimates
of the reference microphone observation and the output, re-
spectively, when the desired source is active alone. The source
distortion is the mean output spectral power deviation from
the observed single sensor spectral power. Ideally, the distor-
tion is zero.
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Figure 6: Source 1 is the desired source: time domain plots of out-
puts from (a) the fixed multiobjective optimal beamformer, (b) the
postfilter with power spectral estimation using inner product and
(c) the postfilter with power spectral estimation using joint diago-
nalization.
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(c) the postfilter with power spectral estimation using joint diago-
nalization.
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Figure 8: Source 1 is the desired source: spectrograms of outputs
from (a) the fixed multiobjective optimal beamformer, (b) the post-
filter with power spectral estimation using an inner product, and
(c) the postfilter with power spectral estimation using joint diago-
nalization.

Here, one speaker is viewed as the desired signal while
others are undesired or interference signals. Obviously, the
suppression levels for each undesired source are different de-
pending on the spatial differences between its location and
the location of the desired source. However, we consider all
the undesired signals as one interference signal for evaluating
the IS level for the proposed methods.

The proposed beamformers are employed to enhance a
desired speech signal. Figures 6 and 8 show, respectively, the
time domain and the spectrogram plots of (a) the fixed mul-
tiobjective optimal beamformer, (b) the postfilter with PSD
estimation using an inner product, and (c) the postfilter with
PSD estimation using joint diagonalization, with the desired
source chosen as the 1st source. Also, the time domain and
the spectrogram plots of the output for the 2nd source are
illustrated in Figures 7 and 9, respectively.

As the suppression and distortion levels are different for
the active and inactive periods of the desired source, these
two cases are analyzed separately.

6.1. Active time of the desired source

Evaluations are obtained for the periods in which the de-
sired source is active. For example, the periods [9 seconds,
42 seconds] and [0 second,34 seconds] are considered as the
active time for the 1st and the 2nd sources, respectively. Also,
Figures 6 and 7 show the active time for the corresponding

desired sources. The active periods are viewed as “source is
active.”

The desired source is chosen as one of the four speech
signals. Table 1 shows the IS and the SD levels in the output
of the delay and sum beamformer, the multiobjective opti-
mal beamformer, the postfilter with PSD estimation using an
inner product, and the postfilter with PSD estimation using
joint diagonalization. The delay and sum beamformer forms
a beam towards a specified direction by matching the de-
lay such that signals from that direction will be reinforced
(summed together with matching delay).

The IS level for the delay and sum beamformer ranges
from 0.3 to 1.3 dB depending on the desired source posi-
tion. The IS level for the multiobjective optimal beamformer
ranges from 5 to 6.57 dB depending on the desired source
position. The results show that the multiobjective optimal
beamformer achieves a significant improvement in the IS
levels over the delay and sum beamformer. The postfilters
improve further the IS levels of the multiobjective optimal
beamfomer outputs. More specifically, the postfilter with
PSD estimation using an inner product improves approxi-
mately 3 dB in IS level over the fixed multiobjective opti-
mal beamformer for all the desired sources. The postfilter
with PSD estimation using joint diagonalization improves
approximately 2.5 dB in IS level for all the desired sources.

The speakers 1 and 4 have slightly better IS than the other
two speakers. This is due to the fact that those speakers’ po-
sitions are more spatially separated when compared to the
other positions. From simulation results, the postfilter with
PSD estimation using inner product has a slightly higher IS
level than the one using joint diagonalization. On the other
hand, the postfilter using joint diagonalization has a slightly
lower SD than the one with inner product. In general, all the
outputs have low SD levels, leading to low distortion of the
desired source.

6.2. Inactive time of the desired source

Evaluations are also obtained for the periods in which the
desired source is inactive. For example, the time periods
[0 second, 9 seconds] and [42 seconds, 60 seconds] are inac-
tive periods for the 1st source, (see Figure 6). Thus, evalu-
ation is performed for the combining outputs of both peri-
ods. Also, the time period [34 seconds, 60 seconds] is inactive
period for the 2nd source (see Figure 7). In Figures 6 and 7,
the inactive periods for the corresponding desired sources are
viewed as “source is inactive.” In addition, the signal to inter-
ference ratio (SIR) is zero in the inactive source periods and
there is only an IS measure for the evaluation.

Table 2 shows the IS levels for the outputs of the de-
lay and sum beamformer, the fixed multiobjective optimal
beamformer, the postfilter with PSD estimation using an in-
ner product and the postfilter with PSD estimation using
joint diagonalization. The range of IS levels for the delay and
sum beamformer and the fixed multiobjective optimal beam-
former remains approximately the same as for the source ac-
tive periods. The IS of the postfilters with PSD estimations,
however, is significantly improved over the previous case
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Table 1: Desired source is active: IS and SD levels of delay and sum beamformer (DLSB) output, fixed multiobjective optimal beamformer
(FMOB) output, the postfilter with power spectral estimation using an inner product (PF & IPT), and the postfilter with power spectral
estimation using joint diagonalization (PF & JDG).

Desired source
DLSB FMOB PF & IPT PF & JDG

IS SD IS SD IS SD IS SD

dB dB dB dB dB dB dB dB

1 1.3 −37.4 6.8 −29.2 9.5 −27.9 9.2 −28.2

2 0.3 −35.8 5.7 −26.6 9.1 −25.4 8.0 −26.0

3 0.7 −37.4 5.0 −28.2 7.9 −26.3 7.1 −26.9

4 0.8 −37 6.3 −26 8.9 −25.0 8.6 −25.5

Table 2: Desired source is nonactive: IS levels for the outputs of de-
lay and sum beamformer (DLSB), the fixed multiobjective optimal
beamformer (FMOB), postfilter with power spectral estimation us-
ing inner product (PF & IPT), and postfilter with power spectral
estimation using joint diagonalization (PF & JDG).

Desired DLSB FMOB PF & IPT PF & JDG

source IS (dB) IS (dB) IS (dB) IS (dB)

1 1.3 7.2 17.7 17.1

2 0.3 6.7 17.2 16.3

3 0.7 5.4 15.9 14.5

4 0.8 6.8 17.1 16.9
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Figure 9: Source 2 is the desired source: spectrograms of outputs
from (a) the fixed multiobjective optimal beamformer, (b) the post-
filter with power spectral estimation using an inner product, and
(c) the postfilter with power spectral estimation using joint diago-
nalization.

where the desired source is active. More specifically, the post-
filter using an inner product improves approximately 10 dB
over the fixed multiobjective optimal beamformer output for
all desired sources. Similarly, the postfilter with PSD esti-
mation using joint diagonalization improves approximately
9 dB for all the desired sources.

Similar to the case where the desired source is active, bet-
ter IS levels are obtained for the 1st and the 4th speakers.
Also, the postfilter with PSD estimation using an inner prod-
uct has a slightly higher suppression level than the one using
joint diagonalization.

From the simulation results, the postfilter with spectral
estimation using an inner product has a slightly higher in-
terference suppression level than the postfilter with spectral
estimation using the joint diagonalization. This also comes
with a higher computational complexity as the number of
real multiplications required for each frequency bin by the
first estimation method is higher than the second method,
for example, 4(2L2 + 1) versus 4L2, (see Sections 5.1 and 5.2).
A limitation of the proposed methods is that calibration is
required for the spatial correlation matrix estimation. Fur-
ther work is required to investigate the near-field estimation
models of the spatial correlation matrix with on-time spatial
information update.

7. CONCLUSIONS

In this paper, a two-stage beamformer structure is proposed
for speech enhancement in a multispeaker environment. In
the first stage, a fixed multiobjective optimal beamformer is
designed to spatially extract the desired source. In the second
stage, a postfilter technique is used to further enhance the ex-
traction process. Two different multichannel power spectral
estimation methods have been proposed and evaluated. Both
methods are capable of estimating the desired source PSD in
a multispeaker environment. Evaluations in a real environ-
ment show that both methods have similar suppression ca-
pability and comparable distortion levels. The postfilter with
spectral estimation using inner product has a slightly higher
suppression level than the method using joint diagonaliza-
tion with a higher computational complexity.
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[5] N. Grbić, S. Nordholm, and A. Cantoni, “Optimal FIR sub-
band beamforming for speech enhancement in multipath en-
vironments,” IEEE Signal Processing Letters, vol. 10, no. 11, pp.
335–338, 2003.

[6] S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle
River, NJ, USA, 4th edition, 2001.

[7] H. Q. Dam, S. Y. Low, S. Nordholm, and H. H. Dam, “Adaptive
microphone array with noise statistics updates,” in Proceed-
ings of the International Symposium on Circuits and Systems
(ISCAS ’04), vol. 3, pp. 433–436, Vancouver, British Columbia,
Canada, May 2004.

[8] S. Boll, “Suppression of acoustic noise in speech using spec-
tral subtraction,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 27, no. 2, pp. 113–120, 1979.

[9] B. L. Sim, Y. C. Tong, J. S. Chang, and C. T. Tan, “A parametric
formulation of the generalized spectral subtraction method,”
IEEE Transactions on Speech and Audio Processing, vol. 6, no. 4,
pp. 328–337, 1998.

[10] H. Gustafsson, S. Nordholm, and I. Claesson, “Spectral sub-
traction using reduced delay convolution and adaptive averag-
ing,” IEEE Transactions on Speech and Audio Processing, vol. 9,
no. 8, pp. 799–807, 2001.

[11] R. Zelinski, “A microphone array with adaptive post-filtering
for noise reduction in reverberant rooms,” in Proceedings of
the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’88), vol. 5, pp. 2578–2581, New York, NY,
USA, April 1988.

[12] I. A. McCowan and H. Bourlard, “Microphone array post-
filter based on noise field coherence,” IEEE Transactions on
Speech and Audio Processing, vol. 11, no. 6, pp. 709–716, 2003.

[13] I. Cohen, “Multichannel post-filtering in nonstationary noise
environments,” IEEE Transactions on Signal Processing, vol. 52,
no. 5, pp. 1149–1160, 2004.

[14] Y. Huang, J. Benesty, and J. Chen, “Separation and dereverber-
ation of speech signals with multiple microphones,” in Speech
Enhancement, chapter 12, pp. 271–298, Springer, Berlin, Ger-
many, 2005.

[15] Y. Cao, S. Sridharan, and M. Moody, “Speech enhancement
iby simulation of cocktail party effect with neural network
controlled iterative filter,” in Proceedings of the 4th Interna-
tional Symposium on Signal Processing and Its Applications
(ISSPA ’96), vol. 2, pp. 541–544, Gold Cost, Australia, August
1996.
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