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We address the problem of construction of space-time codes for cooperative communications in block fading channels. More
precisely, we consider a pragmatic approach based on the concatenation of convolutional codes and BPSK/QPSK modulation to
obtain cooperative codes for relay networks, for which we derive the pairwise error probability, an asymptotic bound for frame
error probability, and a design criterion to optimize both diversity and coding gain. Based on this framework, we set up a code
search procedure to obtain a set of good pragmatic space-time codes (P-STCs) with overlay construction, suitable for cooperative
communication with a variable number of relays in quasistatic channel, which outperform in terms of coding gain other space-
time codes (STCs) proposed in the literature. We also find that, despite the fact that the implementation of pragmatic space-time
codes requires standard convolutional encoders and Viterbi decoders with suitable generators and branch metric, thus having low
complexity, they perform quite well in block fading channels, including quasistatic channel, even with a low number of states and
relays.
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In wireless communications, signal fading arising from
multipath is one of the main impairments and it can be
mitigated through the use of diversity. A classical diversity
solution is given by the adoption of multiple receiving
antennas, spaced sufficiently apart from each other to obtain
independent copies of the transmitted signal (see, e.g.,
[1-3]). In addition, also the use of multiple transmitting
antennas can give similar improvements [4-6].

Cooperative communications are gaining increasing
interest as a new communication paradigm involving both
transmission and distributed processing which promises
significant increase of capacity and diversity gain in wireless
networks, by counteracting fading channels with cooperative
diversity.

Several issues arise with cooperative diversity schemes
such as, among others, channel modeling and implementa-
tion aspects [7, 8], protocols and resource management [9],
the choice of proper relays [10], power allocation among

cooperating nodes [11], and cooperative/distributed STCs
[12, 13]. This work is devoted to this latter aspect.

In addition to physical antenna arrays, the relay channel
model [14] enables the exploitation of distributed antennas
belonging to multiple relaying terminals. This form of
space diversity is referred to as cooperative diversity because
terminals share antennas and other resources to create a
virtual array through distributed transmission and signal
processing [15, 16].

With the introduction of STCs, it has been shown how,
with the use of proper trellis codes, multiple transmitting
antennas can be exploited to improve system performance
obtaining both diversity and coding gain, without sacrificing
spectral efficiency [6, 17-21].

In particular, the design of STCs over quasistatic flat fad-
ing (i.e., fading level constant over a frame and independent
frame by frame) have been addressed in [18], where some
handcrafted trellis codes for two transmitting antennas have
been proposed. A number of extensions of this work have
eventually appeared in the literature to design good codes for
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different scenarios, and STCs with improved coding gain has
been presented in [22-24]. In [25-27], a pragmatic approach
to STC, called P-STC, has been proposed; it simplifies the
encoder and decoder structures and also allows a feasible
method to search for good codes in block fading channel
(BFC). P-STCs consist in the use of standard convolutional
encoders and Viterbi decoders over multiple transmitting
and receiving antennas, achieving maximum diversity and
excellent performance, with no need of specific encoder
or decoder; the Viterbi decoder requires only a simple
modification in the metrics computation.

The parallel between spatial diversity and cooperative
diversity encouraged researchers to investigate design criteria
for STCs in relay networks, in most cases by considering
only one relaying node, a quasistatic channel and limitations
on the number of antennas per node. In this paper,
a methodology to design P-STCs for relay networks is
provided, resulting in increased flexibility with respect to the
above issues. We model the channel between transmitting
and receiving as BFC [28-30] that represents a simple and
powerful model to include a variety of fading rates, from
fast fading (i.e., ideal symbol interleaving) to quasistatic.
Moreover, after the proposal of the P-STC structure for
cooperative communication with various numbers of relays
and transmitting antennas, we will derive the pairwise error
probability, asymptotic error probability bounds, and design
criteria to optimize diversity and coding gain. Finally, we
will perform an efficient search for P-STCs with overlay
construction over BFC to provide good (with respect to our
performance bound) convolutional generators for various
constraint lengths and number of relays.

The paper is organized as follows. In Section 2, we
describe the system model and assumptions for the cooper-
ative scheme. In Section 3, we describe the P-STCs approach
for relay networks. Then in Section 5, we address design and
search procedures for cooperative codes. The performance of
P-STCs for relay networks is then given in Section 7, and our
conclusions are in Section 8.

2. SYSTEM MODEL

The cooperative scheme is depicted in Figure 1 and follows
time-division channel allocations with orthogonal coopera-
tive diversity transmission [31]. Each user (i.e., the source)
divides its own time-slot into two equal segments, the first
from time #; to f; + A and the second from t, = t; + A to
t, + A, where A is the segment duration. In the first segment,
the source broadcasts its coded symbols; in the second all the
active relays which are able to decode the message forward
the information through proper encoding trying to take
advantage of the overall available diversity. Thus, the design
of proper STCs for the two phases is crucial to maximize both
achievable diversity and coding gain.

We assume 7 transmitting antennas at each terminal and
m receiving antennas at the destination. Hence, n; = n
antennas will be used in the first phase and a total of n, = Rn
antennas will be used in the second phase, where R is the
number of relays able to decode and forward the source
message.

—> Phase 1
--> Phase2

FiGure 1: Two-phase relaying scheme: phase 1 (continuous line),
phase 2 (dashed line). Source, relays, and destination nodes are
denoted with S, R, D, respectively.

We indicate with ci? the modulation symbol transmitted
by relay r (0 < r < R, and r = 0 is the source) on
the antenna i at discrete time ¢, that is, at the fth instant
of the encoder clock. With superscripts H, T, and * we
denote conjugation and transposition, transposition only,
and conjugation only, respectively. Each symbol is assumed
to have unit norm and to be generated according to the
modulation format by suitable mapping. Note that symbol
c(()f,? is transmitted at time f; + ¢, while symbols ci’? for
r > 0 are transmitted at time t, + t. The received signals
corresponding to all symbols citl) are jointly processed by the
decoder at the reference time t. We also denote with C**) =
[c(()f)l, c(()g, ces cl(f‘),,] Ta supersymbol, which is the vector of the
(R + 1)n outputs of the overall “virtual encoder” constituted
by the source encoder and the relays’ encoders.

A codeword is a sequence ¢ = (CW,...,C™) of N
supersymbols generated by the source and relays’ encoders.
This codeword c¢ is interleaved before transmission to obtain
the sequence ¢; = I(c) = (C\),...,C%)), where 01,...,0y
is a permutation of the integers 1,...,N, and I(-) is the
interleaving function. Note that with this notation the
permutation is the same for all the transmitting terminals in
the two phases.

The channel model includes additive white Gaussian
noise (AWGN) and multiplicative flat fading, with Rayleigh
distributed amplitudes assumed constant over blocks of B
consecutive transmitted space-time symbols and indepen-
dent from block to block [28-30]. Perfect channel state
information is assumed at the decoder for each node.

The transmitted supersymbol at time g; goes through a
compound channel described by the ((#; + 1) X m) channel

matrix H@) = [Hég’),..., 1(20‘>]T, where H' = {1}, and

7,0,8

h(,al‘l is the channel gain between transmitting antenna i, with

i = 1,...,n, of the terminal r and receiving antenna s, with
s=1,...,m,at time o;.

In the BFC model, these channel matrices do not change

for B consecutive transmissions, thus we actually have only
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L = N/B possible distinct channel matrix instances per
codeword (for the sake of simplicity, we assume that N and B
are such that L is an integer). Denoting by Z = {Z,,...,Z}
the set of L channel instances, we have
H% =7, foro,=(—-1)B+1,...,IB, I=1,...,L
(1)

When the fading block length, B, is equal to one, we have the
ideally interleaved fading channel (i.e., independent fading
levels from symbol to symbol), while for L = 1, we have
the quasistatic fading channel (fading level constant over
a codeword); by varying L, we can describe channels with
different correlation degrees [28—30].

At the receiving side, the sequence of received signal
vectors is r; = (R, R()), and after deinterleaving we
haver = I"!(r;) = (RW R®M), where the received vector

at time t is R®) = [rft’l), rl(t’z),. T with components

s=1,...,m, (2)

1 (0r) (1) 1
t ) = \/>Zh0 1[5601 + ’7“ )

in the first phase and

R
2= B3 SR i,

r=1i=1

s=1,...,m, (3)

in the second phase. In this equation, r") s the signal-

space representation of the signal received by antenna s at

time ¢ in phase /, the noise terms qgt’l) are independent,
identically distributed (i.i.d.) complex Gaussian random
variables (r.v.s), with zero mean and variance Ny/2 per

dimension, and the r.v.s higjz represent the deinterleaved
complex Gaussian fading coefficients. Since we assume
spatially uncorrelated channels, these are i.i.d. with zero
mean and variance 1/2 per dimension, and consequently

Ihrg,‘zl are Rayleigh distributed r.v.s with unit power. The
constellations are multiplied by a factor /E; in order to have a
transmitted energy per symbol equal to E;, which is also the
average received symbol energy (per transmitting antenna)
due to the normalization adopted on the fading gains. This
is motivated by the use of a power control technique which
keeps constant the average received symbol energy.

The total energy transmitted per supersymbol is E;, =
(n1 + n2)E; and the energy transmitted per information bit is
Ep, = E/(hR.), where h is the number of bits per modulation
symbol and R, is the overall code rate of the cooperative
space-time code. Thus with ideal pulse shaping, the spectral
efficiency is nhR./2 [bps/Hz].

For following discussions sections, it is worthwhile to
recall that, over a Rayleigh fading channel, the system
achieves a diversity D if the asymptotic error probability is
P, ~ K(Es/Ny)™®, where K is a constant depending on the
asymptotic coding gain [1, 32]. In other words, a system with
diversity O is described by a curve of error probability with
a slope approaching 10/ [dB/decade] for large signal-to-
noise ratio (SNR).

3. PRAGMATIC SPACE-TIME CODES FOR
COOPERATIVE RELAYING

In the case of the two-phase relaying scheme shown in
Figure 1, the probability of transmission failure over the
two phases depends on the number of relays available for
cooperation and on the link qualities on source-destination,
source-relays, and relays-destination. We envisage two main
applications.

(a) With static set of relays. The set of relays is initialized
at the beginning of a data communication session and is kept
unchanged over a long period of many slots. The set of relays
is chosen by looking at active terminals able to guarantee a
good average link quality (depending on terminal position
and slow fading) with the source terminal. During this
period, a cooperative coding scheme is used by the source
and the set of relays to protect the transmission of data
frames between source and destination. Sometimes, due to
fast fading fluctuations, it may happen that one or more
relays are not able to decode the source codewords in phase
1. In the simplified case of equal quality on all source-relay
links, denoting by PE™ the error probability for the link
from source to destination, PeS_R the error probability for
the source- relay hnk (1 e., PSR — o — pSRI - PéS_R)),

and with PS*®®P) the error probability for the link from
the source plus k relays to destination, the overall error
probability P, is given by

P, = PSRPE-D) 4 (1 — pS-R) p(Ski-D),
P, = (PSR)2pSD) 4 2p(sR) (1

+ (1 _ PgS_R)) PéSR‘RZ_D),

_ Pé87R) )P£SR17D) (4)

for the cases of 1 and 2 potential relays, respectively. These
can be generalized to the case of R potential relays as

P, = (PER) PSP

R
> <R> (PER) (1 — psR-D)) pisiu--RD)
k) Ve ‘ ‘ '
k=1
(5)

(b) With dynamic set of relays. The set of cooperating
relays is determined frame by frame as those relays which
are active as well as able to hear and decode the source in
phase 1. By means of a suitable signaling, they agree on the
cooperative coding scheme and complete transmission in
phase 2. In this case, the error probability P, is given by

R
= Z[P’{k cooperating relays} (SR -Ri=D) (6)
k=0

where P{-} indicates probability, R is the total number of
relays, and P{k cooperating relays} depends on the spatial
distribution of the nodes in the network as well as fast and
slow fading statistics.

For the design of the coding scheme with cooperative
relays, it is generally recognized that the code components
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FIGURE 2: Architecture of pragmatic space-time codes. For coop-
erative P-STCs, the “distributed” convolutional encoder is the
ensamble of R + 1 single encoders, one for each transmitter; hence,
instead of n, we must consider the overall number of antennas
(R+1)n.
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FiGUure 3: Receiver structure for the proposed P-STCs in coop-
erative communications. The Viterbi decoder is the same as for
the single convolutional code adopted in transmission, but the
metric on the generic branch is, for example, for n = 2 and R =
L SR = VEHG) @on + hia, &) + i — VE(hi 8 +
hl,z,scl,z)l , where ¢y1, €02, C1,1, C1,2, are the four symbols associated

to the branch. Note that r{"" is received at time t; + t whereas b2
is received at time t; + £.

used by the source in phase 1 should maximize diversity
and coding gain for each link connecting the source to
relays and destination. The other code components should
be designed to maximize diversity and coding gain of the
entire cooperative code, that is, the code including all the
code components transmitted during phases 1 and 2, for any
possible number of cooperative relays [12].

In this paper, we are considering the design of space-time
trellis codes for relaying networks by using the pragmatic

approach of [25, 27]. Our proposed “pragmatic” approach
uses a low-complexity architecture for STCs where the code
components are built by the concatenation of a binary
convolutional encoder and binary phase shift keying (BPSK)
or quaternary phase shift keying (QPSK) modulator. This
code architecture was also referred to as algebraic STCs
in [33]. Our “pragmatic” approach thus consists in using
common convolutional codes as space-time codes, with the
architecture presented in Figure 2. Here, k information bits
are encoded by a convolutional encoder with rate k/(nh).
The nh output bits are divided into » streams, one for each
transmitting antenna, of BPSK (& = 1) or QPSK (h = 2)
symbols that are obtained from a natural (Gray) mapping
of hbits. By natural mapping; we mean that for BPSK an
information bit b € {0,1} is mapped into the antipodal
symbol ¢ = 2b — 1, giving ¢ € {—1,+1}; for QPSK a pair
of information bits, a, b, is mapped into a complex symbol
c=(a-1)/V2+j2b-1)//2, givingc € {+1//2+ j//2},
with j = /1. Then, each stream of symbols is eventually
interleaved (we focus our attention on symbol interleaving:
bit interleaving is addressed in [34]). If u is the encoder
constraint length, then the associated trellis has N;= 2k(=1)
states.

We can describe P-STCs for cooperative communication,
obtained by joining the R + 1 code components used by the
cooperating transmitters, by using the trellis of each encoder
(the same as for the convolutional codes (CC)), labelling the
generic branch from state S; to state S; with the supersymbol
(N:Sf—s,- = [Co1s..-> ER,,,]T, where for BPSK, the symbol ¢,; is
the output (in antipodal form) of the ith generator of the rth
transmitter.

One of the advantages of the pragmatic architecture is
that the maximum likelihood (ML) decoder is the same
Viterbi decoder of the convolutional encoder adopted in
transmission (same trellis), with a simple modification of
the branch metrics. Being {c,;} the set of output symbols
labelling the branch, the branch metric for the Viterbi
decoder is thus given by

(t) ~v
hyjsCri

pbn) \thoﬁo:

+

-5

HM:

5= 1

(7)

For example, in Figure 3 we show the receiver architecture
for the cooperative P-STCs, that simply consists in the
usual Viterbi decoder for the convolutional code adopted
in transmission, with the only change of the metric on a
generic trellis branch, as illustrated in the caption. Thus, the
advantages of P-STCs with respect to STCs are as follows:

(i) the encoder is a common convolutional encoder;

(ii) the (Viterbi) decoder is the same as for a convo-
lutional code, except for a change in the metric
evaluation;

(iii) P-STCs are easy to study and optimize, even over
BFC.
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These advantages apply also when P-STCs are used for
cooperative communications, as it will be further investi-
gated in the next sections.

4. PERFORMANCE ANALYSIS FOR COOPERATIVE
SPACE-TIME CODES OVER BFC

We first consider the derivation of the pairwise error
probability (PEP). Given the transmitted codeword ¢ and
another codeword g # ¢, the PEP, that is, the probability that
the ML decoder favors the codeword g over ¢, conditional to
the set of fading levels Z, can be written as

Plc —g |2} = %erfc NG

—d*(c.g | Z), (8)

where erfc(x) £ (2//7) [ e "' dt is the complementary error
function, and the conditional Euclidean squared distance at
the channel output, d? (g,g | Z), is given by [18]

n 2

0) (t) (1)
Ozts COI gOz)

33

t=1s=1

)

2

& e (O ®
t t
Z Zhr(,yi:s'(cr,i _gr,i)

|

To specialize this expression for BFC, we first rewrite the
squared distance as follows:

Z zhm g)hloH (10)

t=1s=1

d*(c.g 1 Z) =

where h{™ = [, B, .. hg%)] is the (1 X (R + 1)n)
vector of fading coefficients related to the receiving antenna
s. In (10), the ((n; + n2) X (n; + ny)) matrix A®(c,g) is
Hermitian nonnegative definite [27] and has the following
block structure:

(1)
a 0
AY(c,g) = [ 0 amn] , (11)
where
H
albl) = (b)) _ g(bD) (b)) _ glb1)
. (12)
a(t,z) _ ( (t,2) ~-g tz))(c(t,z) _ g(t,z))

after having split the generic supersymbol C® in the two
parts transmitted during phase 1 and phase 2, respectively,
that is, C® = [c¢®tD 2T ,Con) and
) = [c11,... 5 Crnl-

Due to the BFC assumption, for each frame and each
receiving antenna, the fading channel is described by only
L different vectors h§‘ IS {z 2),...,z§L)}, s=1,...,m,
where 2" is the sth row of Z;. By grouping these vectors, we
can rewrite (10) as

, where ¢V = [¢o1,...

L m
d*(c.g1Z) = >2VFV(c,g)z"", (13)

N I=1s=1

where

F(cg) & > AY(cg),
n teT() B

I=1,...,L, (14)

and T(I) £ {t : H) = Z;} is the set of indexes t where the
channel fading gain matrix is equal to Z;. This set depends
on the interleaving strategy adopted. Note that in our
scheme (Figure 2), the interleaving is done “horizontally”
for each transmitting antenna and in the same way for each
transmitter, and that the set T'(/) is independent of s, in other
words, that the interleaving rule is the same for all antennas.

The matrix F?(c,g) is also Hermitian nonnegative
definite, being the sum of Hermitian nonnegative definite
matrices. It has, therefore, real nonnegative eigenvalues.
Moreover, it can be written as F (¢, g) = UVADUDH where

UD is a unitary matrix and AY is a real diagonal matrix,
whose diagonal elements )Ll(-l) withi = 1,...,% = n; + n, are
the eigenvalues of F¥(c,g) counting multiplicity. Note that
FO and its eigenvalues A\" are functions of ¢ — g. As a result,
we can express the squared distance d*(c, g | 23 in terms of

the eigenvalues of F¥)(c, g) as follows:

Z () l)A U l)Hzgl)H

M§

73

=1

P
Il
—

B AVBIH (15)

Il
M=
M=

Il
—_
©“

I
—

AT

Il
—
P

Il
—

Il
M=
M=

nM:z

where B = [ 5’1, éli,,/}%l)s] =z"uo,

It should be observed that the form of matrix F?(c,g)
is different from the matrix of the same space-time code
working on a system with #; + n, transmit antennas defined
in [27] due to the use of two distinct transmission phases
in the cooperative system. Therefore, the same code used in
the cooperative system may achieve different diversity and
coding gains. It should also be noted that this matrix is
diagonal (hence full-rank) only whenn = 1and R = 1. When
transmitters have more than one antenna or more than one
relay cooperate to transmission, only a suitable choice of the
code may lead to a full-rank matrix, as shown later.

Vector zgl) has independent, complex Gaussian elements,

with zero mean and variance 1/2 per dimension. Since
U represents a unitary transformatlon B! has the same
statistical description of 2. Moreover, for BFC, vectors

§” and ng) are independent for all /# j. Hence, the
unconditional pairwise error probability (PEP) becomes

Ple —g} =

1 E & & 0]
{erfc ZzZ/\ |Bis | }, (16)
-1

0s=1 =11
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where E{-} indicates expectation with respect to fading

(i.e., over the distribution of the ﬁ,(ls)) By evaluating the
asymptotic behavior for large SNR, we obtain (see [35])

L m -m
o) < o E '
P(c—g) —K(mﬂ)[gg/\i <4N0> } , (17)
where
1 [(2d-1
K(d)=22d< J ) (18)

A looser bound can be obtained by observing that K(d) <
1/4. The integer n; = nl(g,g) is the number of nonzero

eigenvalues of F¥(c, g)> and 7 (which we call the pairwise

transmit diversity) is the sum of the ranks of F(c,g), that
is, B

L L
n=n(cg) = >rank[F(c,g)] = >m. (19
=1 I=1

The PEP between ¢ and g shows a diversity my, that is, the
product of transmit and receive diversity.

Therefore, it is clear that the performance analysis
of a cooperative space-time codes with fixed number of
cooperating relays is similar to the analysis of common space-
time codes as in [18, 27]. The only difference lies in the
structure of the matrix F(c,g) which has some zero off-
diagonal elements and may therefore have different rank and
eigenvalues. Bearing in mind this fact, it is easy to derive an
error probability bound as

Py = YPlPu(0) < 3 X PIPlc—gh ()

c g#c

where P{c} is the probability of transmitting the codeword
¢ (i.e., for P-STCs, equal to 27%N for equiprobable input
bit sequence and 27 ¥N-#+D for a zero-tailed code) and
P, (¢) is the codeword error probability for the transmitted
codeword ¢. By using the asymptotic approximation (17),
and by observing that the retained dominant terms are those
with transmit diversity fmin = MingHmin(c), Where fmin(c) =
ming#(c,g) and E(c,x) = {g#c¢ : nlc,g) = x} is the set of
codeword sequences at minimum diversity, the asymptotic
error probability bound can be written as

m

~Hmin 1M L m -
ﬁmzK@ﬁmm(ii)" S Y Eqrpp]

ZEE(Gfmin) H=1 i=1

(21)

From (21), we observe that the asymptotic performance
of STCs in BFC depends on both the achievable diversity,
#imin - M, and the performance factor

ﬁmin(m) = Z[P){Q}Fmin (Q:m)

-mo (22)

]
1

=2

[

8E€E(¢min) [l

23 P{c}

L
=1i

which is related to the coding gain in (21).

Note also that 7jmin and the weights M, ?:‘1/1,(-1) for each
¢ and g do not depend on the number of receiving antennas.
Therefore, when a code is found to reach the maximum
diversity #min in a system with one receiving antenna, the
same code reaches the maximum diversity #min-m when
used with multiple receiving antennas. However, due to the
presence of the exponent m in each term of the sum in (22),
the best code (i.e., the code having the smallest performance
factor) for a given number of antennas is not necessarily the
best for a different number of receiving antennas. Thus, a
search for optimum codes in terms of both diversity and
performance factor must in principle be pursued for each m.

To summarize, the derivation of the asymptotic behavior
of a given STC with a given length requires the computation
of the matrices F (¢, g) in (14) with their rank and product
of nonzero eigenvalues. Moreover, according to [36], by
restricting in the bound the set of sequences g to those
corresponding to paths in the trellis diagram of the code
diverging only once from the path of codeword ¢, the union
bound becomes tighter and can be evaluated in an effective
way, by using the methodology illustrated in [27] through
the concept of space-time generalized transfer function.

5. PRAGMATIC SPACE-TIME CODE
DESIGN FOR RELAYING

In this section, we address the issues of how to set up design
criteria for good cooperative STCs and how to perform an
efficient search for the optimum (in a sense defined later)
generators for the code components of cooperative STCs in
BEC.

In general the design of good cooperative STCs may be
based on one of the following approaches.

(a) By assuming that the cooperative code is working
with a predefined number of cooperative relays R, it may
be designed as P-STC with k binary inputs and n(R + 1)
output symbols which maximize diversity gain and coding
gain. A pragmatic suboptimal solution to this problem
may be to build the code using the rate k/(nh(R + 1))
maximum free distance convolutional code, optimum for
the AWGN channel. This design method does not guarantee
that the first rate k/nh component code used in phase 1 is
the best performing code. It also does not guarantee good
performance when some code components are not used by
relays unable in some frames to decode the source message.
Moreover, the pragmatic solution may be not optimal even
in terms of diversity gain and therefore should be checked by
means of simulations. However, we observed that in many
cases this solution leads to quite good results.

(b) By assuming that the cooperative code is obtained by
joining code components in phase 2 from every relay able to
decode the source message, the code may be designed as STC
with overlay construction [37]. With this method, a good
code for R relays is designed starting from a good code for
R — 1 relays and by adding the best code component that
maximizes diversity and coding gain of the final code. In this
way, the first code component used by the source in phase 1
is always a good code. In the case of a fixed set of cooperating
relays, the sequence of additional code components can be
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assigned to the relays ranked in order of average link quality
in such a way that the second code component is assigned
to the relay with the best link quality and so on, thus they
are used with high probability in the same combinations
for which they have been designed. Moreover, it is easier
to design the additional code components than the entire
cooperative code.

The design of STCs with overlay construction was
addressed in [37], but not in the special case of cooperative
codes. Algebraic design criteria were derived for maximizing
diversity gain, without addressing coding gain issues. The
work in [12] proposed to use this STC with overlay construc-
tion as a cooperative STC but without specializing the design
for the cooperative scenario. In this section, we propose to
set up an STC code search that aims at seeking cooperative
codes covering both the outlined design approaches, that is,
the design of an entire rate k/(nh(R + 1)) P-STCs, and the
design of rate k/nh code components in an overlay structure.

The search criterion proposed here is based on the
asymptotic error probability in (21), so that the optimum
code with fixed parameters (n, k, h, 1), among the set of non-
catastrophic codes, is the code that

(i) maximizes the achieved diversity, fmin;

(ii) minimizes the performance factor ﬁmin(m);

where the values of 7 and ﬁmin(m) can be extracted from
the space-time generalized transfer function (ST-GTF) of the
code [27]. Therefore, an exhaustive search algorithm should
evaluate the ST-GTF for each code of the set.

Another search criterion for STC has been addressed
in [22, 24] where a method based on the evaluation of
the worst PEP was proposed. Although the worst PEP
carries information about the achievable diversity, #min, it
is incomplete with respect to coding gain, thus producing
a lower bound for the error probability. Even though our
method based on the union bound is still approximate with
respect to coding gain (giving an upper bound), it includes
more information than the other method, leading often to
the choice of codes with better performance.

When applying our search criterion, we must consider
that, as shown in [38], the union bound for the average
error probability is loose and in some cases (long codes
and small diversity) is very far from the actual value. This
problem can be partially overcome by truncating the sum
to the most significant terms, but this technique leads to an
approximation. However, this approach gives good results in
reproducing the correct performance ranking of the codes
among those achieving the same diversity #jmin, as will be
checked in the numerical results section.

Of course, the achievable diversity is the most important
design parameter. Since #min cannot be larger than #(c,g) <
(R + 1)nL and the free distance dy of the convolutional
code used to build the P-STCs, it appears that to capture
the maximum diversity per receiving antenna offered by the
channel, (R + 1)nL, the free distance of a good code for a
given BFC should be at least (R+1)nL or larger. On the other
hand, there is a fundamental limit on the achievable diversity
related to the Singleton bound for BEC [30].

TaBLE 1: Optimum overlays for rate 1/(2R) COP-STC with BPSK,
n =2, m=1, R =1, in quasistatic channel. The basic code for a
single transmitter is STC as in [27].

~

U Generators r = 0 Generators r = 1 Foin(1)/N
2 (1,2), (1,2)q 0.0044
3 (3,4)s (5,7)s 0.0015
4 (13,15), (11,17); 0.0008
5 (23,31), (27,35), 0.0006

Let us define the reference block fading channel (RBFC)
for the system as the ideal equivalent BFC with (R + 1)nL
fading blocks that would describe the space-time fading
channel if the (R+ 1)n transmitters determine (R + 1)n inde-
pendent channels. The achievable diversity, which cannot be
larger than the diversity achievable on the reference BFC, is

bounded by

Hmin < 1+ [L(R+ l)n(l - m” (23)

As an example, to achieve full diversity (R + 1)n with P-
STCs in a quasistatic channel (L = 1), the value k/h cannot
be larger than 1, thus the code rate of each convolutional
code component cannot be larger than 1/n, or the value of
h cannot be smaller than k (see also [18]).

6. CODE SEARCH RESULTS

In this section, we report the results obtained in our search
for good cooperative STCs with overlay construction for
different system configurations with R = 1,2,3 relays, n =
1,2 transmitting antennas, m = 1 receiving antennas. Note
that according to the analytical framework in Section 4 the
diversity gain of the proposed codes increases as Dm for
m > 1. All the codes proposed are full-diversity codes.
Two approaches are considered for overlay construction:
the first considers the use of the maximum free distance
(optimum for AWGN channel) rate k/hn code as the first
code component; the second as the first code component
considers the best rate k/hn P-STCs reported in [27]. When
possible, these codes are compared with the cooperative STCs
proposed in [12].

Suboptimal cooperative STCs, working with a predefined
number of cooperative relays R and constructed by pragmat-
ically choosing the best (maximum distance) convolutional
codes for AWGN, can be easily obtained by using the
convolutional code generators reported in [2, Section 8.2].
It has been checked that this easy approach leads in most
cases to acceptable results. However, it sometimes leads to
cooperative STCs not achieving full diversity. As an example,
this is the case of the rate 1/4, 4-state code with generators
(5,7,7,7)g for systems with BPSK, n = 2 and R = 1
cooperative relays, which achieves a maximum diversity of
3. Note that, according to the Singleton bound, full-diversity
rate k/(h(R + 1)n) codes can be constructed if k < h.

The results are collected in Tables 1-5. It is interesting
to note that the proposed codes are able to capture the
maximum available diversity with only 2—4 states in the
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TaBLE 2: Optimum overlays for rate 1/(2R) COP-STC with BPSK, n = 2, m = 1, R = 1, in quasistatic channel. The basic code for a single
transmitter is STC with the best convolutional code for the AWGN channel. Superscript (1) refers to C-STC as in [12].

U Generators r = 0 Generators r = 1 ﬁmm(l)/N Generators'Vr = 1 ﬁmin(l)(l)/N
2 (1,3), (1,2)q 0.0044 — —
3 (5,7)s (5,6)s 0.00135 (5,7)s 0.00155
4 (15,17); (13,16), 0.00095 (13,15); 0.00121
5 (23,35), (27,31), 0.00061 (25,37, 0.00072
TABLE 3: Optimum overlays for rate 1/(2R) COP-STC with QPSK, 10° ¢
n =2, m =1, R =1 in quasistatic channel. The basic code for a :
single transmitter is STC as in [27].
U Generators r = 0 Generators r = 1 ﬁmin(l)/N o1
2 (1,2,3,1)4 (1,2,3,1)4 0.00305 ;
3 (2,5,7,6)s (2,7,5,3)s 0.00109 &
4 (11,15,17,13), (06,15,13,12), 0.00053 =
1072 ¢
TaBLE 4: Optimum overlays for rate 1/(2R) with QPSK, n =
2, m = 1, R = 1, in quasistatic channel. The basic code for single
transmitter is STC with best convolutional code for the AWGN .,
channel. 10

U Generators r = 0 Generators r = 1 ﬁmin(l)/N
2 (1,3,3,3)s (1,2,3,1) 0.0075
3 (5,7,7,7)s (2,6,5,3)s 0.00239
4 (13,15,15,17), (11,17,16,12), 0.00069

trellis. By increasing the number of trellis states, only a small
coding gain improvement is obtained. It is also worth noting
that cooperative codes obtained by using the best P-STCs as a
first code component usually perform better than the others,
including the best available one from the literature [12]. It is
also found in Table 5 that the 4-state code in [12] for R = 2
does not achieve full diversity.

7. NUMERICAL RESULTS

In this section, we report the performance results, in
terms of frame error rate (FER) as a function of SNR,
for cooperative pragmatic space-time codes (CP-STCs) and
cooperative overlay pragmatic space-time codes (COP-STCs)
in different conditions. The SNR is defined as E,/N, per
receiving-antenna element where, for a fair comparison
among situations with different number of relays, E, is
the total energy per information bit over all transmitting
nodes and averaged with respect to fading. We refer here to
applications with a static set of relays in the simplified case of
equal quality on all source-relay links. The probability that a
relay cooperates with the source, Peoop, is given by

Peoop = 1 = PSR, (24)

We first investigate in Figure 4 the effect of the number of
states (ranging from 4 to 64) on the achievable diversity, in
case of two relays cooperating with the source (i.e., R = 2 and

SNR (dB)

— Relaying
--~- No relaying

FIGURE 4: BPSK, optimal generators for AWGN, 4 to 64 states,
2 relays, 2 transmitting antennas per node, 1 receiving antenna,
quasistatic fading channel L = 1.

100: - T T T T T
107! E
=
[Sa)
m
1072 ¢
1073 . . . . . .
0 2 4 6 8 10 12
SNR (dB)

Ficure 5: FER versus SNR for BPSK modulation, optimal gen-
erators for AWGN, 8 states, 1 relay, 2 transmitting antennas per
node, 1 receiving antenna, respectively, in quasistatic fading channel
(L=1).

Peoop = 1). We assume CP-STCs with the rate 1/6 generators
optimal for the AWGN channel, two transmitting antennas
per node, one receiving antenna, a quasistatic fading channel
(i.e., L = 1), and BPSK modulation. It is noticeable that
only a portion of the available space-time diversity can be
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TaBLE 5: Optimum overlays for rate 1/(2R) COP-STC with QPSK, n = 1, m = 1, R € {1,2,3}, in quasistatic channel. The basic code for a
single transmitter is the best convolutional code for the AWGN channel. The bottom part of the table refers to C-STC as in [12].

u Generators  Generators  Generators  Generators ﬁmin(l)/N ﬁmin(l)/N R—3 FER FER
r=0 r=1 r=2 r=3 R=1 R=2 (R=1@12dB) (R=2@12dB)
1 (1,3)q (1,3)s (2,1)4 (2,2)s 0.060 0.012 div< 4 0.041 0.040
2 (5,7)g (1,3)q (6,4)g (2,1)4 0.101 0.0113 0.00237 0.026 0.012
3 (15,17)g (11,13)g (05,16)4 (16,13); 0.189 0.0136 0.00148 0.015 0.0051
5  (23,35)4 (27,31)4 (21,37)g 0.315 0.0157 0.013 0.0038
3 (5,7)s (5,7)s (5,7)s — 0.125 div<3 — 0.020 0.022
4 (15,17)g (13,15)g (17,13)4 — 0.323 0.0191 — 0.015 0.0069
5 (23,35); (25,37)g (27,33)4 — 0.401 0.0169 — 0.013 0.038
100 - "y T T T T T 100 ==
E ‘L= 1,2,4,130

107" 10k
” : g
E 5

L =~
1072 ¢ 102}
1073 * * * * * * 1073
SNR (dB) SNR (dB)

FIGURE 6: FER versus SNR for BPSK modulation, optimal gen- ... No relaying
erators for AWGN, 8 states, two relay, 2 transmitting antennas --- 1relay
per node, one receiving antenna, respectively, in quasistatic fading — 2 relays

channel (L =1).

achieved depending on the number of states, that is, fjmin = 3
for 4-state codes, fmin = 4 for 8 and 64 states, §min = 5 for
16 and 32 states, respectively. Note also that the generators
for 64 state codes achieve a diversity smaller than that for
32 state codes. This is due to the the fact that pragmatic
suboptimal construction does not always lead to the best
possible generators for the direct and the relay phases. For
understanding the impact of space-time diversity given by
the cooperation phase, we also plot the case of rate 1/6 code
with 4 states in the absence of relaying, showing that this
code is not able to capture the same diversity degree as with
relaying (achieving diversity 2). This is due to the fact that, in
this case, the cooperative diversity of relaying is not available
as can be seen from the branch metric evaluation.

In Figures 5 and 6, we show the FER versus SNR for
CP-STCs with BPSK modulation, optimal generators for
AWGN, 8 states, one relay, 2 transmitting antennas per node,
and one receiving antenna in the quasistatic fading channel
(L = 1). Here, the probability of cooperation P,p takes
values 0% (no cooperation), 50%, 80%, 90%, 95%, 99%,
and 100% (i.e., certainty of cooperation). We investigate
both the situations where up to 1 relay is available and

Ficgure 7: BPSK, optimal generators for AWGN, 16 states, 1 or 2
relays with Pe,op = 1,2 transmitting antennas per node, 1 receiving
antenna, in BFC with various L.

optimal rate 1/4 generators for AWGN are used, and up to 2
relaying nodes are available and optimal rate 1/6 generators
for AWGN are used. We can note from the figures that to
approach the best performance a probability of cooperation
larger than 0.95 and (0.9) are needed for 1 and 2 relays,
respectively. On the other hand, the code used for 2 relays
only achieves diversity 4.

We now study the impact of fading velocity, related
to L, in the case of CP-STCs with BPSK modulation,
optimal 8 state code generators in AWGN, two transmitting
antennas per node, one receiving antenna at the destination.
We consider the extreme cases of absence of cooperation
(i.e., Peoop 0), as well as of perfect cooperation (i.e.,
Peoop = 1) when varying L. The performance is reported
in Figure 7. It is possible to note that, for the given number
of states, as the available temporal diversity L increases, the
performance with one relay approaches that with two relays,
while a significant performance improvement is obtained
with respect to the situation of absence of relaying. It is
easy to see that the best results are obtained with the second
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SNR (dB) SNR (dB)
— Gen. (11,15,17,13,06,15,13,12)s e No relaying
--- Gen. (13,15,15,17,11,17,16,12)3 == lrelay
— Gen. (11,15,17,13)g --- 2relays
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FiGure 8: QPSK, 8 states (4 = 4), generators as in Tables 3 and
4 with and without one relay, 2 transmitting antennas per node, 1
receiving antenna, in quasistatic fading channel.

approach, with a performance gain in agreement with the
values of the performance factor (Finin(1)/N is 0.00069 and
0.00053, resp.).

With the next figures we verify the performance of
COP-STCs codes for QPSK modulation obtained through
the design and search criterion explained in Section 5.
In Figure 8, we show the performance without relaying
and with one relay in the quasistatic fading channel (i.e.,
L = 1). Generators for rate 1/(4R) and 8 state codes are
obtained through the two different approaches for overlay
construction explained in Section 5, that is, designing the
overall code starting from first code component taken as
the the best rate 1/4 code for AWGN or as the best P-STCs
reported in [27]. It is easy to see that the best results are
obtained with the second approach.

Finally, we investigate in Figure 9 the impact of the
number of relaying nodes, ranging from 0 to 3, for the 8
state COP-STCs with QPSK with one transmitting antenna
per node and one receiving antenna in the quasistatic fading
channel. The generators are those in Table 5 third line, and
Peoop = 1 is assumed to fully exploit cooperation.

8. CONCLUSIONS

In this paper, we investigated the feasibility of a pragmatic
approach to space-time coding for wireless cooperative
relay networks, where standard convolutional encoders and
decoders are used with suitably defined branch metrics.

We also proposed a design criterion to rank different
codes with an efficient algorithm, based on the asymptotic
error probability union bound. A search methodology to
obtain optimum generators for different fading rates has then
been given.

F1Gure 9: QPSK, 8 states (4 = 4), generators as in Table 5, various
number of relaying nodes, 1 transmitting antenna per node, 1
receiving antenna, in quasistatic fading channel.

It has been shown that P-STCs applied to cooperative
communication systems achieve comparable or improved
performance when compared to previously known STCs
and that they are suitable for systems with different spectral
efficiencies, number of antennas and fading rates, making
them a suitable choice in terms of both implementation
complexity and performance.
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