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Users of cochlear implants (CIs) vary widely in their ability to recognize speech in noisy conditions. There are many factors that
may influence their performance. We have investigated to what degree it can be explained by the users’ ability to discriminate
spectral shapes. A speech recognition task has been simulated using both a simple and a complex models of CI hearing. The
models were individualized by adapting their parameters to fit the results of a spectral discrimination test. The predicted speech
recognition performance was compared to experimental results, and they were significantly correlated. The presented framework
may be used to simulate the effects of changing the CI encoding strategy.
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1. Introduction

Early cochlear implants, using only a single channel, were
useful for identifying environmental sounds and improving
lip reading performance. However, speech recognition with
such implants was very limited. Since then, the number of
channels in implants has steadily increased as technology
has matured, and modern implants make use of up to 22
separate channels (the Cochlear Nucleus implant), or even
up to 120 “virtual” channels (Advanced Bionics HiRes120)
[1]. The theoretical basis behind this development has been
that each channel stimulates mainly in a local region of the
cochlea, which along with the tonotopic organization of the
auditory nerve corresponds to a frequency specific sensation
[2]. According to this principle, each channel can be used
to encode the signal components in the corresponding
frequency band. However, it has been shown repeatedly
that the spectral resolution ability of CI users is limited to
about 4–8 “effective” channels, even if the actual number
of channels is much larger [3–5]. In an experiment using
normal hearing listeners and speech signals with modified
spectral content, Fu et al. [6] showed that increasing the
number of effective channels increases speech recognition in
noise, up to and beyond 16 channels. Therefore, it seems
logical to conclude that spectral resolution is a limiting

factor for CI users’ speech recognition. However, it is also
clear that cognitive factors such as short-term memory and
lexical knowledge have an impact [7], as well as patchy or
incomplete nerve survival.

In this paper, we examine the role of spectral resolution
on speech recognition ability. To this end, a sentence
recognition task has been simulated to predict the signal-
to-noise ratio at which words are barely recognized. The
simulation includes a model of CI hearing, which has been
individualized using data from psychophysical experiments.
This approach is not entirely novel; several earlier attempts
have been made to predict speech recognition performance
for hearing impaired listeners, either using heuristics [8, 9],
or auditory models [10–12]. All of these studies use the
audiogram as the main psychophysical data source to adapt
the model. However, in the case of CI hearing, the audiogram
is irrelevant, since sound levels can be arbitrarily matched to
stimulation levels. Therefore, other experimental data must
be used. In [5], the results of a spectral resolution experiment
is found to have a limited but significant correlation with the
speech recognition threshold (SRT) in noise. The data from
that study were used to evaluate the presented system.

It is important to stress that the goal of this paper
project is not to simply predict the speech recognition results;
that is done more effectively using regression techniques
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Figure 1: Results of the spectral discrimination test. Each box shows
the median, quartiles, and 10th and 90th percentiles among the CI
users for a specific stimulus type. The test and retest thresholds have
been averaged.

such as support vector machines or neural networks. The
goal is rather to explain the results in terms of equivalent
signal processing, which then can be modified in order to
simulate the effects of different signal processing techniques.
The end goal is to be able to predict how an individual’s
speech recognition performance will be affected by a change
in the speech processing algorithm, allowing for automatic
optimization of speech recognition performance. Although
such simulations may not be reliable enough for clinical
use, they may give indications on the types of strategies that
should be tested clinically. The general technique of fitting
hearing instrument parameters by optimizing an objective
measure of speech recognition ability has been proven useful
in hearing aid fitting, for example, NAL-NL1 [13]. In fact, the
approach dates back as far as the 1940s [14]. It is reasonable
to believe that similar methods could be derived for cochlear
implants in the future. Another goal is to show that a large
fraction of the variance in speech recognition ability in CI
users can be explained by spectral resolution properties.

2. Experimental Data

The presented framework was designed to simulate two psy-
chophysical experiments: a spectral discrimination test and
a sentence recognition test known as Hagerman’s sentences
[15]. These experiments are described below. 32 CI users
performed the spectral discrimination task on two separate
occasions (referred to as the test and retest) and the speech
recognition task on one occasion. All listening tests were
performed monaurally. Any hearing aid or CI on the other
ear was turned off or removed. All participants were above
15 years old and had no known neurological disorders. 5
participants had severe prelingual hearing loss. The implants
types were Med-El (17 users), Nucleus (12 users), and
Clarion (3 users). The stimuli were presented in free field in
a low-reverberant room at a fixed sound level of 70 dB SPL.

2.1. Spectral Discrimination Test. In this test, the listener’s
task is to determine which out of three consecutive stimuli
differ from the other two (known as a 3 interval, 3
alternative forced choice task, or 3I3AFC). The signals are
200 milliseconds noise bursts which have been filtered so that
the spectral density is matched to the long-term average of
speech. The signals are then filtered into K bands between
200 and 8000 Hz that are evenly spaced on the ERBN scale
[16]. For each interval, either the odd (1, 3, 5, . . .) or the
even (2, 4, 6, . . .) bands are attenuated, and the attenuation
is called the peak-to-valley ratio (PVR). The listener chooses
the stimulus that was filtered differently from the other
two stimuli. A modified up-down procedure (2-down, 1-
up) was used to estimate the threshold PVR, which is
defined as the 70.7% point on the psychometric function
[17]. If the required number of correct responses is not
found at the highest allowed PVR (20 dB), the fraction
of correct responses at this level is recorded. The process
is repeated for K = 1, 2, 4, 8, 16, and 32 bands. The
single band case is simply an intensity discrimination task.
Figure 1 shows the distribution of results in the test group
as percentiles. The experiment is described in more detail in
[5].

2.2. Hagerman’s Sentences. The Hagerman’s Sentences is a
Swedish word recognition test which is used to determine
speech recognition thresholds in noise. Similar tests exist
in several languages. The test consists of 50 phonetically
balanced words, organized into 5 sentence positions with
ten possible words for each position, so that choosing one
of the ten words for each position generates a grammat-
ically correct but semantically meaningless sentence. After
a sentence is presented along with speech-shaped masking
noise, the listener’s task is to repeat each sentence. The
experimenter counts the number of correctly repeated words.
The noise level is then shifted adaptively to converge to
the level where 2 out of 5 words are correct, that is, 40%
correct [18]. The corresponding SNR is noted as the result.
These results can be viewed in Figure 7 along with model
predictions.

3. ModellingMethods

To predict speech recognition performance, an entire speech
communication chain is simulated: going from a speaker,
via a medium, to a listener. The speaker tries to convey a
sequence of words W through articulation, thereby generat-
ing the acoustic signalX . When the signal reaches the listener,
it may be contaminated by additive noise and reverberation.
In the CI case, the acoustic signal is transduced into electrical
impulses, which give rise to a neural pattern sequence R.
The listener’s brain then acts as a classifier, finding an
estimate ̂W of the word sequence. The speech recognition
performance is defined as the fraction of words correctly
identified. The following sections describe the process steps
in more detail. Similar approaches are used in [11, 19] to
estimate speech recognition performance for listeners with
normal and impaired hearing.
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3.1. Model of Speech Production and Recognition. Speech
is inherently random; a single word will never be uttered
exactly the same twice. Therefore, probabilistic models are
appropriate to represent a speech source. Hidden Markov
Models (HMMs) are used extensively in automatic speech
recognition systems (and also to some degree in speech
synthesis) due to their ability to model signals with variability
in both duration and spectrum [20]. Here, each word in the
speech recognition test is modelled by an HMM. The speech
features used to train the models are calculated as follows:
the time-domain signal is divided into 20 milliseconds, 50%
overlapping frames. The spectrum of each frame is computed
in 32 equally spaced bands on the ERBN scale from 300
to 8000 Hz, which is the frequency range encoded by the
CIs used in the listening tests. The spectral magnitudes
were then converted to dB. This representation is relevant,
because Euclidean distance in this space is approximately
proportional to perceptual difference for normal hearing
listeners [21]. It is also quite similar to the signal encoding
used in most CIs, which is useful in the individual adaptation
procedure (see Section 3.4).

The speech features of the entire corpus are used to
train a Gaussian Mixture Model (GMM) [22] with 40
components, which should correspond to approximately one
component per phoneme of the Swedish language. Then, a
7-state HMM is trained on each single word, approximately
one state per phoneme. The GMM is used as the output
distribution for all word HMMs, and only the mixture
weights are adapted for each state. This is known as a tied-
mixture HMM [23], which reduces the degrees of freedom in
the model dramatically compared to a standard continuous
HMM. This approach reduces the risk of overfitting the
model, which is useful here as only one utterance of each
word is available in the Hagerman test. Finally, the single
word HMMs can be concatenated to form a sentence HMM.

3.2. Word Classification. The inner workings of human
speech perception is largely unknown, even after decades of
research. The best automatic speech recognizers are still not
close to human performance, which suggests that human
speech recognition is, if not optimal, then at least not far
from it. Therefore, the human brain is approximated by
an optimal classifier. Here, “optimal” should be interpreted
as classifying with minimal probability of error, which is
achieved by choosing the most probable word sequence.
After observing the neural pattern r, the listener finds the
word sequence ŵ that maximizes the conditional probability,

ŵ = arg max
w

PW|R(w | r). (1)

In the case of Hagerman’s sentences, every word sequence
has equal prior probability. Therefore, the maximum a pos-
teriori choice in (1) is identical to the maximum likelihood
choice,

ŵ = arg max
w

f R|W (r | w), (2)

where fR|W expresses the probability density function (pdf)
of the neural patterns elicited by a given word sequence. It

is defined by the sentence HMM, and the search over all
possible word sequences is efficiently computed using the
Viterbi algorithm. The probability of correctly recognizing
a word Pc can then be estimated as an average, by drawing
samples wi from the random variable W , giving

Pc = 1
Nw

E
[

δ
(

W , ̂W
)]

≈ 1
NwM

M
∑

i=1

δ(wi, ŵi). (3)

Here, E[·] denotes the expectation over all possible sen-
tences, Nw is the number of words in each sequence and
δ(·, ·) expresses the number of identical words in the two
sequences. This procedure is quite similar to what would be
done in a psychophysical experiment; it is simply averaging
the number of correct answers. Unfortunately, a fairly large
number of iterations M may be needed to find a good
estimate, which can be quite time consuming if elaborate
models are used. A more efficient approach is to consider
the mutual information (MI) between the source W and the
observation R, which expresses the amount of information
available to the classifier:

I(W ;R) = ER,W

[

log

(

fR|W (R |W)
fR(R)

)]

. (4)

Like (3), this quantity must also be estimated using a Monte
Carlo approach; however, it will converge faster, since each
iteration yields a continuous estimate, compared to the
binary result of 3. The MI is estimated using the following
expression, where M is set to achieve the required accuracy

I(W ;R) ≈ 1
M

M
∑

i=1

log
(

fR|W (ri | wi)
)− log

(

fR(ri)
)

, (5)

where wi is a word sequence drawn randomly from the
distribution of W and ri is the corresponding observed
neural pattern.

The relation between MI and minimal classification error
is given by rate-distortion theory, and is calculated using the
Blahut algorithm [24]. In the case of Hagerman’s sentences,
0.45 bits/word is needed to achieve the threshold 40% word
recognition.

3.3. Models of CI Hearing. For the purposes of this paper, two
models of CI hearing have been implemented. Model A is
the simplest possible model that can account for the results
of the spectral resolution test, while Model B is an attempt
to model the actual signal transformations, including the CI
speech processor, the electrical transduction from implant to
auditory nerve, and the response of the auditory nerve cells.
Model A has the advantage that its structure is very flexible
and can mimic any result of the spectral discrimination task.
Model B is less flexible, but since it is modelled after a
physical cochlea, it can capture the effects of, for example,
moving the electrodes. The following sections describe the
models in detail.

3.3.1. Model A: Functional Signal Processing Model. Model A
is an attempt to construct the simplest possible explanation
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Figure 2: Block diagram of model A. The processing is applied to
each time frame in the sequence.

of the observed psychophysical results. According to Occam’s
razor, one should always pick the simplest model when all
other things are equal (a good discussion of this preference
is provided in [25]). In the case of cochlear implants, we do
have some knowledge of how a particular acoustic input gets
encoded in the auditory nerve, but since that knowledge is
limited, any model of that entire procedure is bound to be
speculative. Therefore, model A is a good complement to the
more realistic model B.

To create a simple functional model, it is first observed
that the spectral shapes to be discriminated in the spectral
discrimination test are periodic modulations on the ERBN
scale. These are quite similar to the basis functions of mel-
frequency cepstral coefficients (MFCCs), which is a ubiqui-
tous signal representation in automatic speech recognition
(this is of course not a coincidence, the experiment was
designed with that in mind). As previously discussed, the
incoming acoustic signal X is represented by a sequence of
short-time auditory spectra in log units (i.e., dB). By apply-
ing the Discrete Cosine Transform (DCT) to each frame, the
resulting features are effectively MFCCs. Each coefficient is
then multiplied by a weight ci, which controls the sensitivity
to the corresponding spectral shape. Thereafter the feature
vectors are inversely transformed, and Gaussian noise with
unity variance is added to each coefficient. A block diagram
of this process is shown in Figure 2.

This model is able to simulate any result of the spectral
discrimination experiment, by adapting the weights c =
{c1 · · · cN}. For example, by attenuating the higher cepstral
coefficients, the spectrum is smoothed, simulating a loss
in frequency selectivity. The noise amplitude is adapted
indirectly, by allowing all signal weights to scale.

3.3.2. Model B: Biologically Inspired Model. In this model,
each user’s implant settings were simulated, including
frequency bands, “map-law”, and (approximate) electrode
positions. However, any additional signal processing being
performed by the speech processor could not be modelled
as these algorithms are proprietary. Instead, it has been
assumed that the gain in each channel is mapped directly
from the signal energy in the corresponding frequency
band. Also, the signal preprocessing is implicitly modelled
by assuming that the settings are ideally fitted, so that
the signals utilize the full dynamic range in each channel

(explained in more detail below). This mirrors the purpose
of a front-end slow-acting compressor and a pre-emphasis
filter. Thereafter, the spread of electric current in the cochlea
is simulated in a 3D finite element model, implemented
according to the specifications supplied by Rattay et al.
[26]. The simulation was performed using the COMSOL
Multiphysics finite element software [27].

A healthy cochlea contains approximately 32 000 audi-
tory nerve fibers [28]. To model each nerve fiber individually
is neither feasible nor necessary to capture the statistics of
the neural activity. Instead, the auditory nerve is divided
into tonotopic groups, and the expected spike rate from each
group is computed. It is assumed that the perception of
spectral shapes is based solely on the number of neural spikes
from each group of neurons, that is, spike timing is neglected
and the spike count is summed for each group and time
frame. Furthermore, it is assumed that the summed response
from each neural group is a monotonic function of the sum
of the “activation” (defined below) in the nerve tissue elicited
by each electrical impulse. These simplifications, although
somewhat crude, are needed to make the speech recognition
simulation possible.

The 3D model comprises one and a half turns of the
cochlea. The electric field in the cochlea is examined in
30 degree steps, making for a total of 19 modelled fibers.
Each modelled fiber is then assumed to be typical for the
nerve fibers surrounding it, forming a “neural group” with
homogenous properties. Each nerve fiber model consists
of ten straight line sections, as illustrated in Figure 3. Unit
monopolar impulses are simulated from electrodes at each
of the corresponding 30 degree positions, and the activation
as defined in [29] (the second spacial derivative of the
electric potential) is recorded for each nerve segment. These
results are stored in the activation matrices Aj , where Aj(k, i)
represents the activation in the kth section of nerve fiber i
due to a unit impulse from electrode position j. From these
data, responses to stimulation from electrodes at arbitrary
positions could be found using linear interpolation.

In this model, it is assumed that all variation in frequency
selectivity that is not explained by known factors (such
as CI properties and settings) is due to degeneration of
the auditory nerve. To model different stages of neural
degeneration, the parameter ck represents the fraction of
nerve fibers that have the kth section, as well as all sections
on the central side, intact. In other words, it is the fraction
of fibers that are able to transmit an action potential when
stimulated at section k. It is assumed that the degeneration is
uniform across all neural groups. Studies on cochlear nerve
degeneration show that this is generally not the case [30],
but it may be an acceptable approximation, given that the
spectral discrimination test used in this study does not give
any frequency specific information. The weights c are used
to compute the transfer matrix T , where each element Tij

represents the activity in neural group i due to a unit impulse
from electrode position j, and is computed as

Tij =
10
∑

k=1

ckAj(k, i). (6)
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(a) (b)

Figure 3: Visualization of 3D cochlear model. (a): Cross-section view of the model. Nerve fibers are shown as gray lines, with black dots at
the boundaries between sections. One electrode positioned in the Scala Tympani is shown as a circle. (b): External view of the model cochlea.

Thus, the T matrix is used to model the spread of excitation
in the cochlea. Examples of A and T matrices are shown in
Figure 4.

The random variable Rt representing the neural feature
vector at time t is computed as

Rt = g
(

TX ′t + Nt
)

, (7)

where X ′t is the output from the CI electrode, Nt is isotropic
Gaussian noise, and g(·) is a sigmoidal function applied to
every element in the vector, defined as

g
(

y
) = 1

1 + e(m−y)/s , (8)

where m is the midpoint of the sigmoid and s is its
slope parameter. The sigmoid function is used to map the
activation to neural firing rate, which has been shown to have
a sigmoidal relation in single fiber measurements [31]. The
values of the sigmoid parameters are not known; instead, it
is assumed that the CI output range has been fitted to match
these parameters, so that the neural “input” TX ′t + Nt has a
mean and standard deviation that is approximately m and s
respectively, for each neural group. For simplicity, all noise
sources (noise due to stochastic neural firing, decision noise,
etc.) are modelled by the additive term Nt. A schematic view
of the signal processing in the model is shown in Figure 5.

The model is adapted to individual data by varying the
weights c and scaling the variance of the additive noise term
Nt. With these free parameters, it is in general not possible
to adapt the model to match a set of spectral discrimination
results exactly. Therefore it is adapted using a maximum
likelihood approach that is described in Section 3.4.1.

3.4. Adaptation to Psychophysical Data. The models of CI
hearing have a number of individual (free) parameters,
which vary between subjects. Some parameters can be
observed directly (such as the number of active channels),
while others cannot (such as the degeneration of the
auditory nerve). For each subject, the latter set of parameters
are estimated by matching the results from the spectral

discrimination experiment described in Section 2.1 in a sim-
ulation using a Maximum Likelihood criterion, as described
below. The estimated model parameters are then applied
in the speech recognition simulation to predict the speech
recognition threshold. The full procedure is illustrated in
Figure 6.

3.4.1. Maximum Likelihood Adaptation. The models of hear-
ing have limited degrees of freedom, and it is generally
not possible to match the experimental thresholds exactly.
However, the measured thresholds should not be interpreted
as deterministic; all psychophysical results have an inherent
uncertainty due to the probabilistic nature of perception. In
the spectral discrimination test, the experimenters calculated
a threshold estimate m̂i and associated error variance σ2

i for
each condition. From these data, a probability distribution of
the true thresholds mi can be formed (assuming estimation
errors are independent and Gaussian):

f (m1 · · ·mN ) =
∏

i

f (mi) =
∏

i

1√
2πσi

e−(mi−m̂i)
2/2σ2

i , (9)

where f (·) denotes a probability density (the likelihood
function). To find the optimal parameter set, an iterative
optimization scheme is employed (the Nelder-Mead simplex
method, a popular “hillclimbing” algorithm [32]). The
algorithm converges to the set of parameters that (locally)
maximizes the likelihood of the simulated thresholds.

4. Results

In order to predict the speech recognition threshold in noise
(SRT) of a specific user, synthesized speech signals were
mixed with noise and run through the user-adapted CI
model. The signal-to-noise ratio (SNR) was initiated at 20 dB
and the information rate was estimated according to 5. The
estimate was refined until the threshold rate 0.45 bits/word
was outside the 99% confidence interval. The SNR was
shifted in 2 dB steps until two consecutive SNR levels were
found to be on either side of the threshold rate. The SRT
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estimate was then found by linear interpolation between
the two levels. The process was repeated for test and retest
data, for both CI models, and for each individual CI user.
The results are displayed in Figure 7. Correlations between
predictions and experimental data are tabulated in Table 1,
along with median absolute prediction errors. As a reference,

Table 1: SRT prediction accuracy. The median absolute errors and
Spearman correlation coefficients with corresponding P-values for
SRT predictions using all combinations of models and data sets,
including the average of the test and retest predictions (denoted
“avg”). The table also includes prediction results from a jackknife
linear regression analysis (noted “R”).

Model/data Error (dB) Correlation P-value

A/test 5.0 0.57 6 · 10−4

A/retest 4.0 0.73 3 · 10−6

A/avg 4.4 0.72 4 · 10−6

B/test 4.3 0.52 2 · 10−3

B/retest 4.4 0.72 4 · 10−6

B/avg 4.8 0.68 2 · 10−5

R/test 3.3 0.54 2 · 10−3

R/retest 4.0 0.62 2 · 10−4

R/avg 2.6 0.66 4 · 10−5

prediction using jackknife (leave one out cross-validation)
linear least squares estimation (LLSE) or commonly known
as linear regression has been performed, noted in the table as
model “R”. This method finds the linear dependency between
the spectral discrimination and speech recognition results
that minimizes the mean square prediction error. Statistical
analysis using Spearman’s rank correlation test has showed
that all the measured correlations are significant at the 99%
confidence level. It can be noted that the proportion of the
variance in the data that is “explained” by the prediction
is equal to the square of the correlation coefficient, which
means that models A and B explain more than half of the
variance when fitted to the retest data.

5. Discussion

The results in Figure 7 and Table 1 show that the two
CI models give predictions that are approximately equally
accurate, but not identical. Both models also overestimate
performance (i.e., underestimate the SRT), which most likely
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Figure 7: Speech recognition threshold for 32 CI users, as measured experimentally and as predicted by models A (a) and B (b). Each line
connects the SRT predicted from the test (circles) and retest (squares) data. The SRT is expressed in dB and a lower value means better speech
recognition.

is a result of using an optimal decision unit as a model
of the cognitive process. For many subjects there is a large
discrepancy between the test and retest predictions, which
indicates that the spectral discrimination test results are not
very reliable. The tabulated correlation coefficients suggest
that the retest measurements are more accurate, which is
reasonable; some users may be confused by the fairly abstract
discrimination task on the first occasion. The two models
give different predictions, but are approximately equally
accurate. The main advantage of model A is its ability
to simulate any spectral resolution exactly, which model
B cannot. However, model B is more useful because it
is able to simulate different types of CI signal processing
and coding strategies, as discussed below. The regression
predictor gives smaller errors on average, as there is no bias
present; looking at the correlation coefficients, however, the
regression predictor is comparable to the models A and B.

One major weakness of the spectral discrimination
experiment is its inability to assess frequency specific infor-
mation. This is because the signals used in the experiment
are modulated across the entire frequency range. Thus, any
frequency specific deficiency, for example, hearing only a
small range of frequencies, cannot be detected. However,
this does not imply that the resulting prediction will be
inaccurate; as mentioned earlier, the stimuli are similar to
MFCCs, which in some sense are the “basis functions”
of speech, and one may argue that it is a more relevant
domain than the frequency domain when modelling speech
recognition. Of course, the optimal case would be to have
access to data in both domains. Another possible weakness
in the data is that the experiments were not done using
roving sound levels, which means that discrimination can

potentially be performed by monitoring the intensity in a
narrow frequency range, a problem that was illuminated
in a recent study [33]. In this particular case, it should
be a minor concern; since the data include a 1-band case
(i.e., intensity discrimination), the models can adapt to
situations where listeners are using mainly intensity as a cue
for discrimination and this will be reflected in the speech
recognition simulation.

Although many simplifications have been made even in
our advanced model B, it is fairly unlikely that using more
accurate modelling would improve the prediction to any
significant degree; there are simply too many unmeasur-
able factors influencing the outcome. However, the cause
of an individual discrepancy may be unveiled in further
psychophysical experiments. An interesting next step would
be to construct a ladder of ecological validity: a series of
experiments ranging from simple spectral discrimination
up to sentence recognition, having intermediate steps that
are more controlled than speech but more realistic than
filtered noise. In this way, one is able to check which of the
underlying assumptions in the presented framework hold
and which do not.

A quite useful application of this framework would be
to modify the signal processing and coding strategy of a
modelled implant and observe the impact on the predicted
speech recognition threshold. In this way, novel schemes can
be evaluated by simulation. Although such results will never
be a replacement for human trials, it can be useful at the
development stage, as human trials tend to be very lengthy.
Since the CI models are individualized, it would be possible
to estimate which strategy is most suited for that particular
user.
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6. Conclusion

The two presented models of CI hearing are both capable
of explaining as much as 50% of the variance in speech
recognition capability among CI users. The framework for
simulating speech communication is useful for evaluating
novel signal processing strategies for CIs, both for the
CI users in general and for finding optimal settings for
individual users. The spectral discrimination test used to
assess users’ hearing capabilities has shown to be useful, even
though additional listening tests might enable more accurate
modelling and prediction.
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