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1. Introduction

The problem of sinusoidal parameter estimation in additive
noise has been an important research topic because of its
numerous applications in science and engineering [1–5]. The
typical parameters of interest are frequencies, amplitudes,
and phases. As the frequencies are nonlinear functions in
the received noisy measurements, they are usually estimated
prior to the amplitude and phase estimation. In this
paper, we focus on optimal parameter estimation for the
representative signal models of single complex/real tone,
multiple complex sinusoids, and single two-dimensional
(2D) complex tone, although the development can also be
extended to other related models [6–13] in the literature.

Utilizing the linear prediction polynomial (LPP) of the
noise-free signal, an ML estimator for sinusoidal parameter
estimation has been proposed in [7, 8] under the standard
assumption of Gaussian noise. The nonlinear least squares
(NLSs) estimator [14] will also produce ML estimation
performance when the noise is white. In particular, the ML
frequency estimate of a single complex sinusoid in white
Gaussian noise can be obtained from the periodogram peak
[2, 15]. However, the cost functions of all these ML methods
are multimodal and two steps are typically involved in the

estimation procedure. First suboptimal initial parameter
estimates are obtained by discrete Fourier transform (DFT),
linear prediction [16], or other means [7, 8]. A refinement
is then made through an iterative optimization of the cost
functions. As a result, this means that sufficiently accurate
initial estimates are necessary for global convergence. In this
work, we approximate the nonconvex ML formulations as
convex optimization problems so that a high-quality global
solution is guaranteed. In fact, convex optimization [17–
19] has been applied in a number of signal processing
and communication applications [20–28]. Phase-shift keying
demodulation, which is a Boolean quadratic problem with
polynomial constraints, is studied in [20]. Multiple-input-
multiple-output detection, which is a closet lattice point
search problem, is examined in [21–23]. In addition, the
problems of multigroup multicast transmit beamforming,
digital filter design and localization are considered in [24–
28] respectively. These problems are nonconvex in nature
but can be approximated as constrained convex optimization
programs where the objective functions are convex while the
inequality constraints are convex and the equality constraints
are linear.

The rest of the paper is organized as follows. We start
with the simplest single complex tone model corrupted by
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white Gaussian noise in Section 2. Through semidefinite
relaxation (SDR), the periodogram, LPP and NLS estimators
are approximated as convex programs. In the first two
SDR schemes, the frequency parameter is obtained prior to
amplitude and phase estimation while the third one is a
waveform estimator. In Section 3, the SDR approximations
of the LPP and NLS estimators for a noisy real sinusoid
are derived. Section 4 extends the SDR-LPP methodology in
Sections 2 and 3 to the multiple tone model. An illustration
for the dual tone case is provided. The SDR formulations of
the periodogram and NLS estimators for a 2D complex tone
are derived in Section 5, while the LPP version is omitted
as its development is too tedious. Fast implementation of
some developed SDR solutions for large observation records
is suggested in Section 6. In Section 7, numerical examples
are included to contrast the estimation performance of
the proposed SDR methods with the iterative quadratic
maximum likelihood (IQML) technique [7, 8] as well as
Cramér-Rao lower bound (CRLB). It is worthy to point out
that although the algorithms can work for noises which are
non-Gaussian and/or colored, we keep the assumption of
white Gaussian noise so that their optimality can be easily
assessed by comparing with the benchmark of CRLB. Finally,
conclusion is drawn in Section 8. A list of symbols that are
used in the paper is given in Table 1.

2. Single Complex Tone

In this section, we tackle the simplest form of the sinusoidal
estimation problem, namely, finding the parameters of a
complex tone in additive noise. The discrete-time signal
model is

y(n) = s(n) + η(n), n = 1, 2, . . . ,N , (1)

where

s(n) = A exp
{
j
(
ωn + φ

)}
. (2)

The A > 0, ω ∈ (−π,π) and φ ∈ [0, 2π) are deterministic
unknown constants which denote the sinusoidal ampli-
tude, frequency, and phase, respectively, while the additive
noise η(n) is a zero-mean complex Gaussian process. It
is assumed that the covariance matrix of the noise vector
η = [η(1),η(2), . . . ,η(N)]T , denoted by Ση = E{ηηH},
where E is the expectation operator, is known up to a
scalar. Our objective is to estimate A, ω, and φ from the N
noisy measurements of y(n). Three SDR methods namely,
periodogram, PPL, and NLS, are proposed to perform the
estimation as follows.

2.1. Periodogram Approach. In this subsection, we assume
that {η(n)} are independent and identically distributed
(IID), that is, Ση = σ2

η IN where σ2
η is unknown. In this

case, the ML frequency estimate can be obtained from the
periodogram maximum [15]:

max
ω

∣∣Y(ω)
∣∣2, (3)

where Y(ω) = ∑N
n=1 y(n) exp{− jωn} is the discrete-time

Fourier transform (DTFT) of y(n). The difficulty of solving
(3) lies in its multimodality. A conventional strategy is first to
obtain an initial estimate from the DFT peak and then apply
a gradient search for (3). Here, (3) will be relaxed as a convex
optimization problem so that a global high-quality solution
is guaranteed. First, it is clear that (3) is equivalent to the
following constrained problem:

max
c,ω

∣
∣
∣cHy

∣
∣
∣

2

s.t. c(n) = exp
{
jωn
}

, n = 1, 2, . . . ,N ,

(4)

where y = [y(1), y(2), . . . , y(N)]T and c =
[c(1), c(2), . . . , c(N)]T . The constraints make (4) a
nonconvex program as exp{·} is a periodic function.
Furthermore, if the constraints are removed, maximization
of the convex objective function |cHy|2 = yHccHy will result
in c(n) → ∞ as the function is not bounded above. To avoid
this, we define C = ccH ∈ CN to make the objective function
affine and now |cHy|2 is rewritten as yHCy which is linear in
C. Using the sinusoidal property of c(n), it is easy to show
that C has a special structure of the form:

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 c(1)∗ · · · c(N − 1)∗

c(1) 1 · · · c(N − 2)∗

...
...

. . .
...

c(N − 1) c(N − 2) · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Toeplitz
([

1, c(1)∗, c(2)∗, . . . , c(N − 1)∗
])
.

(5)

Then (4) is equivalent to

max
C,c

yHCy

s.t. C = ccH = Toeplitz
([

1, c(1)∗, c(2)∗, . . . , c(N − 1)∗
])
.

(6)

Finally, relaxing C = ccH to C � ccH yields the SDR
formulation for single complex tone frequency estimation:

max
C,c

yHCy

s.t.

⎡

⎣
C c

cH 1

⎤

⎦ � 0N+1,

C = Toeplitz
([

1, c(1)∗, c(2)∗, . . . , c(N − 1)∗
])
.

(7)

Note that no constraints are imposed on c(n), n =
1, 2, . . . ,N−1. In the optimization literature, there are readily
available solvers for finding the globally optimum solution
for (7), such as SeDuMi [29] and SDPT3 [30, 31], and they
basically employ the interior-point methods [32, 33]. As the
estimate of c, namely, ĉ, is constrained as a unity-amplitude
tone with zero initial phase, the frequency estimate, denoted
by ω̂, is computed as

ω̂ = ∠ĉ(1). (8)



EURASIP Journal on Advances in Signal Processing 3

Table 1: List of symbols.

Symbol Meaning

RN Set of N ×N real matrices

CN Set of N ×N complex matrices

[a]i ith element of vector a

[A]i, j (i, j) entry of matrix A

AT Transpose of A

AH Hermitian transpose of A

A∗ Conjugate of A

tr(A) Trace of A

A � B A− B is positive semidefinite

∠(a) Angle of complex variable a

1N Square matrix with size N ×N of 1

0N Square matrix with size N ×N of 0

IN Identity matrix with size N ×N

diag(a) Diagonal matrix with vector a as main diagonal

diag(A, k) Column vector formed by the elements of kth diagonal of A

blkdiag(A1,A2, . . . ,An) Block diagonal matrix with its diagonal elements are square matrices of A1,A2, . . . ,An

Toeplitz(a) Symmetric or Hermitian Toeplitz matrix formed by a, which is the first row

Â Estimate of A

E{A} Expectation of A

�A� Round elements of A to the nearest integers towards −∞
sign(A) Sign of A

vec(A) Vectorization of A to produce a column vector containing all its elements

perm1(A,M,N) ∈ CMN [perm1(A,M,N)]k,l = [A]i, j , i, j = 1, 2, . . . ,MN ,

k =M(i− 1)− (MN − 1)�i/N� + 1,

l =M( j − 1)− (MN − 1)� j/N� + 1 (see the appendix)

perm2(A,M,N) ∈ Cmin([M,N]), [perm2(A,M,N)]k,l = [A]i, j , i, j = 1, 2, . . . ,MN ,

i =M(k − 1) + k, j =M(l − 1) + l (see the appendix)

min(a) Minimum element of vector a

With the use of (1), (2), and ĉ, the amplitude and phase
estimates, denoted by Â and φ̂, are calculated using least
squares (LS) as

Â =
∣
∣ĉHy

∣
∣

N
, (9)

φ̂ = −∠
(
ĉHy
)
. (10)

2.2. Linear Prediction Polynomial Approach. Following the
development in [34] with the use of the property of s(n) =
exp{ jω}s(n−1), it is shown that the ML frequency estimator
in the presence of Gaussian noise can be determined from
minimization of the following multimodal function:

min
c(1)

(
y2 − c(1)y1

)H
Σ−1
e

(
y2 − c(1)y1

)
, (11)

where yi = [y(i), y(2 + i), . . . , y(N − 2 + i)]T , i = 1, 2, and
Σe = E{eeH} ∈ CN−1 is a weighting matrix with e =

[e(1), e(2), . . . , e(N − 1)]T whose element is e(n) = η(n +
1) − c(1)η(n), n = 1, 2, . . . ,N − 1, and the presence of
c(1) in Σ−1

e makes (11) violating the convex framework. We
refer the estimator of (11) to as LPP approach. Unlike the
periodogram, the ML property of (11) holds for a general
form of Ση. Moreover, (11) can be extended to the scenarios
of multiple real or complex sinusoids. It is noteworthy that
the iterative quadratic maximum likelihood (IQML) [7]
technique provides a standard solution to (11) by relaxing the
LPP cost function to a quadratic form, although a sufficiently
close initial guess, which is usually obtained through solving
(11) with Σe = IN−1, is required to attain the global
minimum. Furthermore, the LPP scheme has similarities to
the linear filtering approach in [35, 36].

For simplicity but without loss of generality, here we
assume that Ση = σ2

η I and Σe is then of the form:

Σe = Toeplitz

⎛

⎜
⎝

⎡

⎢
⎣2,−c(1)∗,

N−3
︷ ︸︸ ︷
0, 0, . . . , 0

⎤

⎥
⎦

⎞

⎟
⎠σ2

η . (12)
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Ignoring the scaling factor of σ2
η in (12), the minimizer of

(11) is equivalent to

min
v,c(1)

v (13)

s.t. v = (y2 − c(1)y1
)H

Σ−1
e

(
y2 − c(1)y1

)
, (14)

Σe = Toeplitz

⎛

⎜
⎝

⎡

⎢
⎣2,−c(1)∗,

N−3
︷ ︸︸ ︷
0, 0, . . . , 0

⎤

⎥
⎦

⎞

⎟
⎠. (15)

By replacing (14) with Schur complement and relax the
resultant expression, the SDR formulation for solving c(1) is

min
v,c(1)

v

s.t.

⎡

⎣
v

(
y2 − c(1)y1

)H

(
y2 − c(1)y1

)
Σe

⎤

⎦ � 0N ,

Σe = Toeplitz

⎛

⎜
⎝

⎡

⎢
⎣2,−c(1)∗,

N−3
︷ ︸︸ ︷
0, 0, . . . , 0

⎤

⎥
⎦

⎞

⎟
⎠.

(16)

It is noteworthy that the inverse operator is removed in the
Schur complement and there is a linear relation between
the weighting matrix elements and the parameter estimate.
As a result, tight constraints are formed automatically. After
getting ĉ(1), the estimates of frequency, amplitude and phase
are computed using (8), (9), and (10), respectively.

2.3. Nonlinear Least Squares Approach. It is straightforward
to see that the NLS estimator for the sinusoidal parameters
can be expressed as the following constrained optimization
problem:

min
s,A,ω,φ

(
y − s
)H

Σ−1
η

(
y − s
)

s.t. s(n) = A exp
{
j
(
ωn + φ

)}
, n = 1, 2, . . . ,N ,

(17)

where y = [y(1), y(2), . . . , y(N)]T and s = [s(1), s(2),
. . . , s(N)]T . Similar to (4), the constraints, s(n) = A exp{ jω+
φ}, n = 1, 2, . . . ,N , make (17) violating the convex frame-
work. Based on the linear prediction property, the constraint
of s(n) can be alternatively expressed as

s(n)− exp
{
jωm
}
s(n−m) = 0

=⇒ s(n)s(n−m)∗ = A2 exp
(
jωn
) = A2c(m),

m = 1, 2, . . . ,N − 1.

(18)

Defining S = ssH ∈ CN with [S]i, j = s(i)s( j)∗ = A2c(i − j)
and using (18), the constraint in (17) is equivalent to

S = ssH

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A2c(0) A2c(1)∗ · · · A2c(N − 1)∗

A2c(1) A2c(0) · · · A2c(N − 2)∗

...
...

. . .
...

A2c(N − 1) A2c(N − 2) · · · A2c(0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Toeplitz
([
A2c(0),A2c(1)∗, . . . ,A2c(N − 1)∗

])
.

(19)

On the other hand, expanding the objective function of (17)
yields

sHΣ−1
η s− yHΣ−1

η s− sHΣ−1
η y + yHΣ−1

η y. (20)

We drop the term yHΣ−1
η y which takes no effect in the

minimization and replace sHΣ−1
η s with tr(Σ−1

η S). Relaxing
S = ssH as S � ssH , the SDR formulation becomes

min
S,s

tr
(
Σ−1
η S
)
− yHΣ−1

η s− sHΣ−1
η y

s.t.

⎡

⎣
S s

sH 1

⎤

⎦ � 0N+1,

S = Toeplitz
([
A2c(0),A2c(1)∗, . . . ,A2c(N − 1)∗

])
.

(21)

Note that no constraints are imposed on A2c(n), n =
0, 1, . . . ,N − 1, and the SDR solution, namely, ŝ, will be
the estimated waveform which is a pure complex tone. The
parameter estimates are easily computed as

ω̂ = ∠
[
Ŝ
]

2,1
, (22)

Â =
√[

Ŝ
]

1,1
, (23)

φ̂ = ∠
(
ŝ(1)
[
Ŝ
]

1,2

)
. (24)

3. Single Real Tone

In this section, we switch to find the parameters of a noisy
real tone which is another fundamental sinusoidal estimation
problem. The signal model is

x(n) = s(n) + q(n), n = 1, 2, . . . ,N , (25)

where

s(n) = A cos
(
ωn + φ

)
. (26)

The real and complex models are very similar except
now ω ∈ (0,π) and the Gaussian noise q(n) is real.
Similarly, the covariance matrix of the noise vector q =
[q(1), q(2), . . . , q(N)]T , denoted by Σq = E{qqT}, is assumed
known up to a scalar. As the periodogram is not an optimum
estimator for a real tone, only the LPP and NLS approaches
will be presented as follows.



EURASIP Journal on Advances in Signal Processing 5

3.1. Linear Prediction Polynomial Approach. Let ρ1 = cos(ω).
Utilizing s(n) − 2ρ1s(n − 1) + s(n − 2) and [34], the LPP
estimator for ρ1 is

min
ρ1

(
x3 − 2ρ1x1 + x2

)T
Σ−1
e

(
x3 − 2ρ1x1 + x2

)
, (27)

where xi = [x(i), x(i + 1), . . . , x(N + 3− i)]T , i = 1, 2, 3, and
Σe = E{eeT} ∈ RN−2 with e = [e(1), e(2), . . . , e(N − 2)]T

whose element is e(n) = q(n + 2) − 2ρ1q(n + 1) + q(n), n =
1, 2, . . . ,N − 2.

Assuming that Σq = σ2
q IN , a scaled version of Σe is

employed:

Σe = Toeplitz

⎛

⎜
⎜
⎝

⎡

⎢
⎣2 + 4ρ2

1,−4ρ1, 1,

N−5
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎦

T
⎞

⎟
⎟
⎠. (28)

The minimizer of (27) is identical to

min
v, ρ1

v (29)

s.t. v = (x3 − 2ρ1x1 + x2
)T
Σ−1
e

(
x3 − 2ρ1x1 + x2

)
, (30)

Σe = Toeplitz

⎛

⎜
⎜
⎝

⎡

⎢
⎣2 + 4ρ2

1,−4ρ1, 1,

N−5
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎦

T
⎞

⎟
⎟
⎠. (31)

Now we make two relaxations. First, we relax the constraint
of (30) as in (14). Second, as Σe is nonlinear in ρ1 in (31),
we substitute ρ2

1 with a dummy variable β and include a new
relaxed constraint of β ≥ ρ2

1. To strengthen the constraint,
we assume that the sign of ρ1, denoted by Ψ, is known, which
can be easily determined. As |ρ1| ≤ 1, we have Ψρ1 ≥ ρ2

1. As
a result, a tighter constraint is Ψρ1 ≥ β ≥ ρ2

1. As a result, the
SDR formulation for approximating (27) is

min
v, ρ1, β

v

s.t.

⎡

⎣
v

(
x3 + x2 − 2ρ1x1

)T

x3 + x2 − 2ρ1x1 Σe

⎤

⎦ � 0N−1,

Σe = Toeplitz

⎛

⎜
⎜
⎝

⎡

⎢
⎣2 + 4β,−4ρ1, 1,

N−5
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎦

T
⎞

⎟
⎟
⎠,

Ψρ1 ≥ β ≥ ρ2
1,

(32)

where the matrix inverse operator that appears in (30) is
removed by Schur complement representation. In our study,
Ψ is obtained using

Ψ = sign

⎛

⎝
N∑

n=3

x(n− 1)[x(n) + x(n− 2)]

⎞

⎠. (33)

After obtaining ρ̂1, the estimated frequency, ω̂, is computed
as

ω̂ = cos−1(ρ̂1
)
. (34)

With the use of ω̂, the amplitude and phase are estimated
according to constrained least squares:

min
ξ

(x − Bξ)T(x − Bξ)

s.t. ξTξ = A2,

(35)

where

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(ω̂) − sin(ω̂)

cos(2ω̂) − sin(2ω̂)

...
...

cos(Nω̂) − sin(Nω̂)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ξ =
⎡

⎣
A cos

(
φ
)

A sin
(
φ
)

⎤

⎦,

(36)

and x = [x(1), x(2), . . . , x(N)]T . By expanding the objective
function of (35) and removing xTBTBx, and introducing a
dummy matrix Ξ = ξξT , (35) is equivalent to

min
Ξ,ξ

tr
(
BTBΞ

)
− 2xTBξ

s.t. tr(Ξ) = A2,

Ξ = ξξT .

(37)

Applying relaxation on Ξ = ξξT , the SDR estimator for A
and φ is

min
Ξ,ξ

tr
(
BTBΞ

)
− 2xTBξ

s.t. tr(Ξ) = A2,
⎡

⎣
Ξ ξ

ξT 1

⎤

⎦ � 03,

(38)

where we treat A2 as a constant. Here, we have a convex
program with unique optimum without dealing with mul-
timodality as in the Lagrangian multiplier approach. Finally,
the amplitude and phase estimates are computed as

Â =
√

tr(Ξ), (39)

φ̂ = tan−1

(
[ξ]2

[ξ]1

)

. (40)
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3.2. Nonlinear Least Squares Approach. Similar to
Section 2.3, the NLS estimator for the real sinusoidal is

min
s,ω,φ,A

(x − s)TΣ−1
q (x − s)

s.t. s(n) = A cos
(
ωn + φ

)
, n = 1, 2, . . . ,N ,

(41)

where x = [x(1), x(2), . . . , x(N)]T and s = [s(1), s(2),
. . . , s(N)]T . Now we transform the constraint of s(n) =
A cos(ωn + φ) using the general LPP property as follows:

s(n) + s(n− 2m)

= 2ρms(n−m), n = 1, 2, · · · ,N , m = 1, 2, . . . ,M,
(42)

where ρm = cos(mω) and M = �(N − 1)/2� is the maximum
index for m. By considering various n in (42), the set of
equalities is converted to

s(i) + s(i− 2m)
s(i−m)

= s
(
j
)

+ s
(
j − 2m

)

s
(
j −m

) ,

m = 1, 2, . . . ,M, i > j = 2m + 1, 2m + 2, . . . ,N

=⇒ s(i)s
(
j −m

)
+ s(i− 2m)s

(
j −m

)

= s(i−m)s
(
j
)

+ s(i−m)s
(
j − 2m

)
,

(43)

where {ρm} and ω are eliminated. Next, we define
S = ssT ∈ RN with [S]i, j = s(i)s( j) to write (43) as

[S]i, j−m + [S]i−2m, j−m = [S]i−m, j + [S]i−m, j−2m,

m = 1, 2, . . . ,M, i > j = 2m + 1, 2m + 2, . . . ,N.
(44)

Using similar procedure as in (20) and (21), the objective
function of (41) is modified as tr(Σ−1

q S) − 2sTΣ−1
q x. The

SDR formulation is then given as

min
s,S

tr
(
Σ−1
q S
)
− 2sTΣ−1

q x

s.t. [S]i, j−m + [S]i−2m, j−m = [S]i−m, j + [S]i−m, j−2m,
⎡

⎣
S s

sT 1

⎤

⎦ � 0N+1,

m = 1, 2, . . . ,M, i > j = 2m + 1, 2m + 2, . . . ,N.

(45)

As ŝ is the waveform estimate which is restricted to be a real
tone, the parameter estimates are sequentially computed as

ω̂ = cos−1

(
ŝ(1) + ŝ(3)

ŝ(2)

)

, (46)

φ̂ = tan−1

(
ŝ(1) cos(2ω̂)− ŝ(2) cos(ω̂)
ŝ(1) sin(2ω̂)− ŝ(2) sin(ω̂)

)

, (47)

Â = ŝ(1)

cos
(
ω̂ + φ̂

) . (48)

4. Multiple Complex Tones

In this section, we generalize our development in Sections 2
and 3 to multiple complex sinusoids. Now the signal model
is

y(n) = s(n) + η(n), n = 1, 2, . . . ,N , (49)

where

s(n) =
L∑

m=1

Am exp
{
j
(
ωmn + φm

)}
, (50)

where Am > 0, ωm ∈ (−π,π) and φm ∈ [0, 2π) represent
the amplitude, frequency, and phase of mth complex tone,
respectively, and they are unknown constants with ωi /=ωj ,
i /= j, while η is a zero-mean complex Gaussian noise. The
number of sinusoids L is assumed known. In the following,
the SDR algorithm based on the LPP approach will be
presented. Note that it is difficult to apply the NLS approach
as there will be numerous cross-terms. Based on the linear
prediction property for multiple complex tone signal, we
have

s(n) +
L∑

m=1

ams(n−m) = 0, (51)

where

a1 = −
L∑

i1=1

ρi1 ,

a2 =
L∑

i1=1

i1−1∑

i2=1

ρi1ρi2 ,

· · · · · · · · ·

am = (−1)m
m∑

i1=1

i1−1∑

i2=1

· · ·
im−1∑

im−1=1

m∏

j=1

ρij ,

· · · · · · · · ·

aL = (−1)L
L∏

j=1

ρLj ,

(52)
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and ρm = exp{ jωm}. Note that {ρm} are the roots of the
polynomial with {am} as coefficients. On the other hand, the
LPP estimator for {am} is

min
{am}

⎡

⎣yL+1 +
L∑

m=1

amym

⎤

⎦

H

Σ−1
e

⎡

⎣yL+1 +
L∑

m=1

amym

⎤

⎦, (53)

where yi = [y(i), y(i + 1), . . . , y(N + L + 1− i)]T , i =
1, 2, . . . ,L + 1 are the vectors of the observed signal, and
Σe = E{eeH} ∈ CN−L with e = [e(1), e(2), . . . , e(N − L)]T

and its elements are defined as

e(n− L)

= y(n) +
L∑

m=1

amy(n−m), n = L + 1,L + 2, . . . ,N.

(54)

Assuming that Ση = σ2
η IN , Σe becomes

Σe = Toeplitz

⎛

⎝

⎡

⎣
L∑

m=0

ama
∗
m,

L∑

m=1

ama
∗
m−1, . . . ,

L∑

m=κ
ama

∗
m−κ, . . . , aLa∗0 ,

N−2L−1
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎦

⎞

⎟
⎠.

(55)

As in the estimator for a single complex tone, we rewrite the
optimization problem of (53) by including (55) as

min
{am}

⎡

⎣yL+1 +
L∑

m=1

amym

⎤

⎦

H

Σe
−1

⎡

⎣yL+1 +
L∑

m=1

amym

⎤

⎦

s.t. Σe = Toeplitz

⎛

⎝

⎡

⎣
L∑

m=0

ama
∗
m,

L∑

m=1

ama
∗
m−1, . . . ,

L∑

m=κ
ama

∗
m−κ, . . . , aLa∗0 ,

N−2L−1
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎦

⎞

⎟
⎠,

(56)

which consists of cross-terms involving {am} and resulting in
a nonconvex program. We now define two dummy matrices
A ∈ CL+1 and R ∈ CL+1 to replace {am} and {ρm}:

A :=
⎡

⎣
aaH a

aH 1

⎤

⎦, (57)

R :=
⎡

⎣
ρρH ρ

ρH 1

⎤

⎦, (58)

where ρ = [ρ1, ρ2, . . . , ρL]T and a = [a1, a2, . . . , aL]T . When
A is introduced, the constraints will not be tight enough
because the relation between entries of A and {am} is relaxed.
To compensate this, we look for relationships between the

entries of A and R, which is analogous to (43). For the (L,L)
entry of A, we have

[A]L,L = aLa
∗
L =
∣
∣∣
∣
∣∣

(−1)L
L∏

i=1

ρi

∣
∣∣
∣
∣∣

2

= 1. (59)

For the Lth row and Lth column, the relations are

[A]m,L = ama
∗
L

= (−1)L+m

⎡

⎣
m∑

i1=1

i1−1∑

i2=1

· · ·
im−1∑

im−1=1

m∏

j=1

ρij

⎤

⎦

⎡

⎣
L∏

i=1

ρi

⎤

⎦

∗

= (−1)L−m
L−m∑

i1=1

i1−1∑

i2=1

· · ·
iL−m−1∑

iL−m−1=1

L−m∏

j=1

ρij

= aL−m, m = 1, 2, . . . ,L,

(60)

as (−1)L+m = (−1)L−m. Hence, A has the structure of

[A]m,k = ama
∗
k = amaka

∗
L aL

= (ama∗L
)(

aka∗L
)∗ = aL−ma∗L−k

= [A]L−m,L−k , m, k = 1, 2, . . . ,L− 1.

(61)

Finally, [A]1,1 and R are connected by

[A]1,1 = a1a
∗
1 =

∣
∣∣
∣
∣
∣
−

L∑

i1=1

ρi1

∣
∣∣
∣
∣
∣

2

=
L∑

m=1

L∑

k=1

[R]m,k, (62)

and all the diagonal elements of R are
[
diag(R, 0)

]
m = 1, m = 1, 2, . . . ,L. (63)

Constraints, which limit the degrees of freedom of A and
R are obtained from (59)–(63). To fit (56) into convex
framework, we replace aia

∗
j with [A]i, j . Furthermore, by

introducing a dummy variable v, we make the objective
function of (53) to a constraint. As a result, the optimization
problem is now

min
A,{am},v

v

s.t. v =
⎡

⎣yL+1 +
L∑

m=1

amym

⎤

⎦

H

Σe
−1

⎡

⎣yL+1 +
L∑

m=1

amym

⎤

⎦,

Σe = Toeplitz

⎛

⎝

⎡

⎣
L∑

m=0

[A]m,m,
L∑

m=1

[A]m,m−1, . . . ,

L∑

m=κ
[A]m,m−κ, . . . , [A]L,0,

N−2L−1
︷ ︸︸ ︷
0, . . . , 0,

⎤

⎥
⎦

⎞

⎟
⎠,

a1 = ρ1 + ρ2 + · · · + ρL,
(64)

where the last constraint comes from the definition of a1 and
we have defined [A]0,0 = 1, [A]m,0 = am and [A]0,m = a∗m,
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m = 1, 2 . . . ,L. Using Schur complement representation and
performing SDR relaxation, (64) becomes

min
R,A,{am},{ρm},v

v

s.t.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v

⎡

⎣yL+1 +
L∑

m=1

amym

⎤

⎦

H

yL+1 +
L∑

m=1

amym Σe

⎤

⎥
⎥
⎥
⎥
⎥
⎦
� 0N−L+1,

Σe = Toeplitz

⎛

⎝

⎡

⎣
L∑

m=0

[A]m,m,
L∑

m=1

[A]m,m−1, . . . ,

L∑

m=κ
[A]m,m−κ, . . . , [A]L,0,

N−2L−1
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎦

⎞

⎟
⎠,

R � 0L+1,

A � 0L+1,

a1 = ρ1 + ρ2 + · · · + ρL,

[A]m,k = [A]L−m,L−k , m, k = 1, 2, . . . ,L,

[A]1,1 =
L∑

m=1

L∑

k=1

[R]m,k,

[A]L,L = 1,
[
diag(R, 0)

]
m = 1, m = 1, 2, . . . ,L,

(65)

where the last four constraints are based on (59)–(63) to limit
the matrix structure. It is worthy to mention that although
constraints are imposed, some entries are not well bounded
which may decrease the estimation accuracy. Note also that
similar to (32), the inverse matrix operator is removed from
the Schur complement representation. The frequencies are
estimated by finding the phases of {ρ̂m}. After obtaining
{ω̂m}, {Âm} and {φ̂m} are computed similarly as in (35):

min
ξ,{A2

m}
(x − Bξ)H(x − Bξ)

s.t.
[

diag
(
ξξH , 0

)]

m
= A2

m, m = 1, 2, . . . ,L,

(66)

where

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

exp
{
jω̂1
}

exp
{
jω̂2
} · · · exp

{
jω̂L
}

exp
{
j2ω̂1
}

exp
{
j2ω̂2
} · · · exp

{
j2ω̂L
}

...
...

...
...

exp
{
jNω̂1

}
exp
{
jNω̂2

} · · · exp
{
jNω̂L

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ξ = [A1 exp
{
jφ1
}

,A2 exp
{
jφ2
}

, . . . ,AL exp
{
jφL
}]T

.
(67)

By expanding (66) and dropping the irrelevant terms,
(66) is equivalent to

min
ξ,{A2

m}
ξHBHBξ − 2yHBξ

s.t.
[

diag
(
ξξH , 0

)]

m
= A2

m, m = 1, 2, . . . ,L.

(68)

We then define a matrix Ξ = ξξH and perform relaxation on
(68) to yield

min
Ξ,ξ,{A2

m}
tr
(
BHBΞ

)
− 2yHBξ

s.t.
[
diag(Ξ, 0)

]
m = A2

m, m = 1, 2, . . . ,L,
⎡

⎣
Ξ ξ

ξH 1

⎤

⎦ � 0L+1,

(69)

where {A2
m} are treated as constants. The amplitude and

phase estimates are computed as

Âm =
√[

diag(Ξ, 0)
]
m, m = 1, 2, . . . ,L, (70)

φ̂m = ∠
(
[ξ]m
)
, m = 1, 2, . . . ,L. (71)

As an illustration, we consider L = 2 as follows. The
linear prediction property of (51) gives

s(n) + a1s(n− 1) + a2s(n− 2) = 0, (72)

where a1 = ρ1 + ρ2 and a2 = ρ1ρ2. The covariance matrix is

Σe

= Toeplitz

⎛

⎜
⎝

⎡

⎢
⎣1 + a1a

∗
2 + a2a

∗
2 , a1 +

a1a
∗
2 , a∗2 ,

N−5
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎦

⎞

⎟
⎠ ∈ CN−2.

(73)

From (59) and (62), and replacing aia
∗
i with [A]i,i, i = 1, 2,

we have

1 + a1a
∗
1 + a2a

∗
2 = 1 + [A]1,1 + [A]2,2

= 1 +
2∑

m=1

2∑

k=1

[R]m,k + 1.
(74)

From (61), we get

a1 + a2a
∗
1 = a1 + [A]2,1

= a1 + [A]2−2,2−1 = a1 + a∗1 .
(75)
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Applying (74) and (75) yields

min
a1,a2,ρ1,ρ2,v

v

s.t. v = (y3 + a1y1 + a2y2
)H

Σ−1
e

(
y3 + a1y1 + a2y2

)
,

a1 = ρ1 + ρ2,

Σe = Toeplitz

⎛

⎝

⎡

⎣2 +
2∑

m=1

2∑

k=1

[R]m,k, a1+

a∗1 , a∗2 ,

N−5
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎦

⎞

⎟
⎠.

(76)

Finally, the SDR algorithm for frequencies is

min
R,A,a1,a2,ρ1,ρ2,v

v

s.t.

⎡

⎣
υ (x3 + a1x1 + a2x2)H

x3 + a1x1 + a2x2 Σe

⎤

⎦ � 0N−1,

A � 03,

R � 03,

Σe = Toeplitz

⎛

⎜
⎝

⎡

⎢
⎣2 +

2∑

m=1

2∑

k=1

[R]m,k, a1 +

a∗1 , a∗2 ,

N−5
︷ ︸︸ ︷
0, . . . , 0

⎤

⎥
⎦

⎞

⎟
⎠,

a1 = ρ1 + ρ2,
[
diag(R, 0)

]
m = 1, m = 1, 2.

(77)

Using (69)–(71), Â1, φ̂1, Â2, and φ̂2 can then be determined.
For L = 2, B and ξ have the forms of

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

exp
{
jω̂1
)

exp
{
jω̂2
}

exp
{
j2ω̂1
)

exp
{
j2ω̂2
}

...
...

exp
{
jNω̂1

)
exp
{
jNω̂2

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ξ = [A1 exp
{
jφ1
}

,A2 exp
{
jφ2
}]T

.

(78)

It is noteworthy that the real signal model can be tackled in a
similar manner by including the two additional constraints:
{am} are symmetric and {ρm} are in conjugate pairs.

5. Two-Dimensional Complex Tone

In this section, we will extend the periodogram and NLS
approaches in Section 2 to parameter estimation of a 2D
complex sinusoid in additive noise. It is straightforward to
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Figure 1: MSE for A of single complex sinusoid at N = 20.
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Figure 2: MSE for ω of single complex sinusoid at N = 20.

apply the LPP approach although its formulation is more
tedious. The observed 2D signal is modeled as

y(m,n) = A exp
{
j
(
μm + νn + φ

)}

+ η(m,n), m = 1, 2, . . . ,M, n = 1, 2, . . . ,N ,
(79)

where A is the unknown amplitude, μ and ν are the unknown
2D frequencies, and φ is the initial phase while η(m,n) is a
zero-mean Gaussian noise. The task is to find μ, ν, A, φ from
the MN samples of {y(m,n)}. To facilitate the algorithm
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Figure 3: MSE for φ of single complex sinusoid at N = 20.
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Figure 4: MSE for A of single complex sinusoid at N = 128.

development, we let [S]m,n = A exp{ j(μm+νn+φ)}, [Y]m,n =
y(m,n) and [N]m,n = η(m,n) to rewrite (79) as

Y = S + N. (80)

5.1. Periodogram Approach. Assuming that {η(m,n)} are IID
or E{vec (N)H vec(N)} = σ2

η IMN with unknown σ2
η , the ML

frequency estimates can be obtained from

max
μ,ν

∣∣Y
(
μ, ν
)∣∣2, (81)
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Figure 5: MSE for ω of single complex sinusoid at N = 128.

−50

−40

−30

−20

−10

0

10

20

−5 0 5 10 15 20 25

M
ea

n
sq

u
ar

e
ph

as
e

er
ro

r
(d

B
)

SNR (dB)

IQML
Periodogram
LPP

NLS
CRLB

Figure 6: MSE for φ of single complex sinusoid at N = 128.

where Y(μ, ν) = ∑M
m=1

∑N
n=1 y(m,n) exp{− j(μm + νn)} is

the 2D DTFT of y(m,n). By introducing a dummy matrix
C which is analogous to c in the single complex tone model,
the optimization problem of (81) is equivalent to

max
C,μ,ν

∣∣
∣vec (C)H vec(Y)

∣∣
∣

2

s.t. [C]m,n = exp
{
j
(
μm + νn

)}
.

(82)
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Figure 7: MSE for A of single real sinusoid with fixed φ.
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Figure 8: MSE for ω of single real sinusoid with fixed φ.

We further introduce a dummy matrix C =
vec(C) vec (C)H ∈ CMN to replace | vec (C)H vec(Y)|2
with vec (Y)HC vec(Y) to rewrite (82) as

max
C,C,μ,ν

vec (Y)HC vec(Y)

s.t. C = vec(C) vec (C)H ,

[C]m,n = exp
{
j
(
μm + νn

)}
.

(83)

Applying SDR on (83) and retaining the Toeplitz structure of
C yields the estimator for 2D frequencies:

max
C,C,μ,ν

vec (Y)HC vec(Y)

s.t.

⎡

⎣
C vec(C)

vec (C)H 1

⎤

⎦ � 0(MN+1)×(MN+1),

C = blkdiag

⎛

⎜
⎜
⎝

N
︷ ︸︸ ︷
C(μ),C(μ), . . . ,C(μ)

⎞

⎟
⎟
⎠,

perm1(C,M,N) = blkdiag

⎛

⎜
⎜
⎝

M
︷ ︸︸ ︷
C(ν),C(ν), . . . ,C(ν)

⎞

⎟
⎟
⎠,

perm2(C,M,N) = C(μ+ν),

C(κ) = Toeplitz
([
c(κ)

0 , c(κ)∗
1 , . . . , c(κ)∗

N−1

])
,

κ = μ, ν,μ + ν.

(84)

Due to the Toeplitz structure, c(κ)
n has the form of exp{ jκn}.

The C and perm1(C,M,N) are used to maintain the Toeplitz
structure in vertical and horizontal directions, respectively,

and the ideal expression of the latter is vec (CT)
H

vec(CT).
For the entries of C depicting the form of exp{ j(μ + ν)n},
n = 1, 2, . . . , min(M,N), where (μ + ν) is considered as a
frequency parameter, perm2(C,M,N) is employed to impose
the corresponding Toeplitz relation. (See the appendix for
the perm function development.) The frequency estimates
are computed as

μ̂ = ∠
([

C(μ)
]

2,1

)
, ν̂ = ∠

([
C(ν)
]

2,1

)
. (85)

With the use of the estimated C, the LS amplitude and phase
estimates, denoted by Â and φ̂, are

Â =
∣
∣tr
(
YCH
)∣∣

MN
, (86)

φ̂ = ∠
(

tr
(
YCH
))

. (87)

5.2. Nonlinear Least Squares Approach. Denoting the noise
covariance matrix as ΣN = E{vec(N) vec (N)H}, the NLS
estimator for 2D sinusoidal parameters is

min
S,A,μ,ν,φ

(vec(Y)− vec(S))HΣ−1
N (vec(Y)− vec(S))

s.t. [S]m,n = A exp
{
j
(
μm + νn + φ

)}
,

m,n = 1, 2, . . . ,M.

(88)
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Figure 9: MSE for φ of single real sinusoid with fixed φ.
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Figure 10: MSE for A of single real sinusoid with random φ.

Introducing a dummy matrix S = vec(S) vec (S)H , (88) is
equivalent to

min
S,S

tr
(
Σ−1S
)
− vec (S)HΣ−1

N vec(Y)− vec (Y)HΣ−1 vec(S)

s.t. S = vec(S) vec (S)H ,

[S]m,n = A exp
{
j
(
μm + νn + φ

)}
,

m,n = 1, 2, · · · ,M.
(89)
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Figure 11: MSE for ω of single real sinusoid with random φ.

Performing relaxation and maintaining Toeplitz structure on
S yields the SDR formulation:

min
S,S

tr
(
Σ−1S
)
− vec (S)HΣ−1

N vec(Y)− vec (Y)HΣ−1 vec(S)

s.t.

⎡

⎣
S vec(S)

vec (S)H 1

⎤

⎦ � 0NM+1×MN+1,

S = blkdiag

⎛

⎜
⎜
⎝

N
︷ ︸︸ ︷
S(μ), S(μ), . . . , S(μ)

⎞

⎟
⎟
⎠,

perm1(S,M,N) = blkdiag

⎛

⎜
⎜
⎝

M
︷ ︸︸ ︷
S(ν), S(ν), . . . , S(ν)

⎞

⎟
⎟
⎠,

perm2(S,M,N) = S(μ+ν),

S(κ) = Toeplitz
([
c(κ)

0 , c(κ)∗
1 , . . . , c(κ)∗

N−1

])
, κ = μ, ν,μ + ν,

(90)

where c(κ)
n will be of the form of A2 exp{ jκn}. The

perm1(S,M,N) and perm2(S,M,N) perform similar func-
tions as in the periodogram approach but with a scaling of

A2. From the estimate of c(κ)
1 , denoted by ĉ(κ)

1 , κ = μ, ν, the
2D frequency estimates are calculated as

μ̂ = ∠
(
ĉ

(μ)
1

)
, ν̂ = ∠

(
ĉ (ν)

1

)
, (91)

while the amplitude and phase estimates are computed as

Â =
√

[S]1,1, (92)

φ̂ = ∠
(

[S]1,1c
(μ+ν)∗
1

)
. (93)
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Figure 12: MSE for φ of single real sinusoid with random φ.

In particular, when the noises are uncorrelated among
rows or columns, we can break down the huge SDR
constraint of S and (90) is simplified as

min
S,S

tr
(
Σ−1
N S
)
− vec (S)HΣ−1

N vec(Y)− vec (Y)HΣ−1
N vec(S)

s.t.

⎡

⎢
⎣
S(μ) s

(μ)
n

s
(μ)H
n 1

⎤

⎥
⎦ � 0M+1, n = 1, 2, . . . ,N ,

⎡

⎣
S(ν) s(ν)

m

s(ν)H
m 1

⎤

⎦ � 0N+1, m = 1, 2, . . . ,M,

⎡

⎣
S(μ+ν) diag(S, 0)

diag (S, 0)H 1

⎤

⎦ � 0min(M,N)+1,

S = blkdiag

⎛

⎜
⎜
⎝

N
︷ ︸︸ ︷
S(μ), S(μ), . . . , S(μ)

⎞

⎟
⎟
⎠,

perm1(S,M,N) = blkdiag

⎛

⎜
⎜
⎝

M
︷ ︸︸ ︷
S(ν), S(ν), . . . , S(ν)

⎞

⎟
⎟
⎠,

perm2(S,M,N) = S(μ+ν),

S(κ) = Toeplitz
([
c(κ)

0 , c(κ)∗
1 , . . . , c(κ)∗

N−1

])
, κ = μ, ν,μ + ν,

(94)

by excluding entries of S which are uncorrelated, and s(ν)
m

and s
(μ)T
n are the mth column and nth row of S, respectively.

If the noises are IID processes where Σ−1
N is proportional

to the identity matrix, tr(Σ−1
N S) of (94) will be replaced by

NM[S]1,1.
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Figure 13: MSE for A of single real sinusoid at SNR= 20 dB.

6. Fast Algorithm

In the previous sections, we come across some constraints
with the following structure:

⎡

⎣
T t

tH 1

⎤

⎦ � 0N+1

s.t. T = Toeplitz([τ0, τ1, . . . , τN−1]),

(95)

where T is a dummy matrix, t = [t(1), t(2), . . . , t(N)]T and
{τn} are variables. They appear in the single complex tone
models, namely, (7), (21), (84), (90), and (94). When N is
large, it is desirable to break down T ∈ CN to reduce the
computational complexity. Indeed, (95) can be decomposed
into
⎡

⎢
⎢
⎢
⎣

τ0 τi− j t(i)

τ∗i− j τ0 t
(
j
)

t(i)∗ t
(
j
)∗ 1

⎤

⎥
⎥
⎥
⎦
� 03, i > j = 1, 2, . . . ,N , (96)

where (96) corresponds to N(N − 1)/2 semidefinite con-
straints with size 3× 3 which is analogous to the ESPD [37].
As an illustration, (7) can be written as

max
{c(i)}

N∑

i> j

y
(
i− j
)
c
(
i− j
)

+

⎛

⎝
N∑

i> j

y
(
i− j
)
c
(
i− j
)
⎞

⎠

∗

s.t.

⎡

⎢
⎢
⎢
⎣

1 c
(
i− j
)

c(i)

c
(
i− j
)∗ 1 c

(
j
)

c(i)∗ c
(
j
)∗ 1

⎤

⎥
⎥
⎥
⎦
� 03, i > j = 1, 2, . . . ,N ,

(97)

where τ0 = 1, τn = c(n), n = 1, 2, . . . ,N − 1, and t(n) = c(n),
n = 1, 2, . . . ,N . Furthermore, the entries of C are replaced
with the affine objective function.
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Figure 14: MSE for ω of single real sinusoid at SNR= 20 dB.
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Figure 15: MSE for φ of single real sinusoid at SNR= 20 dB.

7. Simulation Results

Computer simulations are conducted to evaluate the sinu-
soidal parameter estimation performance of the proposed
SDR approach by comparing with the IQML estimator and
CRLB in terms of mean square error (MSE). We utilize the
MATLAB toolbox YALMIP [38] to realize all SDP algorithms
where the solvers of SeDuMi [29] and SDPT3 [30, 31]
are employed. In the IQML scheme, Σe is initialized by
the identity matrix with I = 3 iterations, and amplitude
and phase estimation is performed by LS after obtaining
the frequencies. The additive noises are zero-mean white
complex/real Gaussian processes and they are scaled to
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Figure 16: MSE for A1 of multiple complex sinusoids.
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Figure 17: MSE for A2 of multiple complex sinusoids.

obtain different signal-to-noise ratio (SNR) conditions. All
results are based on 500 independent runs.

In the first test, we examine the single complex tone
signal model and the sinusoidal parameters are assigned as
A = √2, ω = 0.6π, and φ = 0.8π. The data length is N = 20.
Figures 1 to 3 show the MSEs for A, ω, and φ, respectively,
using the proposed SDR methods and IQML estimator as
well as CRLB. It is seen that the SDR approximations for the
periodogram and NLS estimators perform almost identical
and give the best performance in terms of estimation
accuracy and threshold SNR. This is due to the tightness
of their SDR constraints. In relaxing the NLS estimator, the
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Figure 18: MSE for ω1 of multiple complex sinusoids.
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Figure 19: MSE for ω2 of multiple complex sinusoids.

differences between the lower and upper bounds are small,
though equalities are replaced by positive semidefinite (PSD)
constraints. While in the periodogram-based scheme, the
linear constraint helps to sustain the structure even with the
PSD constraints. On the other hand, the LPP and IQML
methods also give optimum estimation performance but
with larger threshold SNR values. They perform similarly
because both relax the same cost function, although the
relaxation techniques are different. Larger threshold SNRs
also indicate that the relaxation in the LPP methodology is
not tight enough. Regarding computational complexity of
different algorithms, a comparison is provided in Table 2.
The complexity analysis of the convex algorithms is evaluated

−35

−30

−25

−20

−15

−10

−5

10

0

5

−5 0 5 10 15 20 25

M
ea

n
sq

u
ar

e
ph

as
e

er
ro

r
(d

B
)

SNR (dB)

IQML
LPP
CRLB

Figure 20: MSE for φ1 of multiple complex sinusoids.
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Figure 21: MSE for φ2 of multiple complex sinusoids.

using [17]. In summary, their operations per iteration are
around O(N3) and the required iteration number is roughly
of O(N0.5) and thus the overall complexity is O(N3.5). On
the other hand, the IQML method is less computationally
demanding as its complexity is around O(N3) because the
iteration number I is usually a small integer.

The above test is repeated with N = 128 while all other
parameters are same as before, and the results are plotted in
Figures 4, 5, and 6. Basically, the findings are similar to those
of Figures 1, 2, and 3, although now the threshold and/or
MSE performance improves because of a larger N .

In the third test, parameter estimation of a real tone
in white Gaussian noise is investigated. The values of the
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Figure 22: MSE for ω1 of multiple complex sinusoids versus ω2.
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Figure 23: MSE for ω2 of multiple complex sinusoids versus ω2.

Table 2: Complexity comparison of different algorithms.

Algorithm Iteration number Operations per iteration

Periodogram O((N + 1)1/2) O((N + 1)2(N − 1))

LPP O((N)1/2) O((N + 1)2(N − 1))

NLS O((N + 1)1/2) O((N + 1)2N)

IQML I = 3 O((N − 1)3)

sinusoidal parameters and observation length are identical to
those of the first study. The MSE results for the amplitude,
frequency, and phase are shown in Figures 7, 8, and 9,
respectively. Again, the SDR-NLS method gives the best
estimation performance with smallest threshold SNR values.
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Figure 24: MSE for A of 2D single complex sinusoid.
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Figure 25: MSE for μ of 2D single complex sinusoid.

At higher SNRs, the IQML method is also an optimum
estimator. Nevertheless, the SDR-LPP scheme is a suboptimal
estimator as its MSEs for ω and φ cannot attain the CRLBs,
although its amplitude estimation performance is optimum
when SNR > 5 dB. This experiment has been repeated
with a random phase model where φ is a uniform random
variable between (0, 2π) at each trial. The corresponding
results are provided in Figures 10, 11, and 12 and we
observe that there is no significant difference comparing
with the fixed phase scenario. In Figures 13, 14, and 15,
we study the MSE performance versus ω ∈ (0,π) at
SNR = 20 dB and all parameter settings are identical to
the previous test. In addition to the approximate uniform
estimation performance while the SDR-LPP scheme has a
higher frequency dependence, similar findings are observed.
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Figure 26: MSE for ν of 2D single complex sinusoid.

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

−5 0 5 10 15 20 25

M
ea

n
sq

u
ar

e
ph

as
e

er
ro

r
(d

B
)

SNR (dB)

IQML
Periodogram

NLS
CRLB

Figure 27: MSE for φ of 2D single complex sinusoid.

The multiple complex tone signal model is examined in
the fourth test. We employ a dual tone with the following
parameters, A1 = A2 = √

2, ω1 = 0.1π, ω2 = 0.9π,
φ1 = 0.2π, and φ2 = 0.8π, and N = 20 is assigned.
The MSE results of the SDR-LPP and IQML methods are
plotted in Figures 16, 17, 18, 19, 20, and 21. As in the
second test, the LPP scheme provides optimum amplitude
estimation performance for sufficiently high SNRs but its
MSEs for frequencies and phases fail to reach the CRLBs.
On the other hand, the IQML method is superior to the
SDR approach in frequency and phase estimation. We also
study the frequency resolution issue by varying ω2 from 0
to π. The corresponding mean square frequency errors are
shown in Figures 22 and 23. All other parameters are kept
unchanged. It is seen that the SDR-LPP algorithm shows

a better performance compared to IQML method when
the frequencies are well separated and their performance
is comparably poor for small frequency separation. Note
that the MSE results for other sinusoidal parameters are not
provided here as they give similar observations.

Finally, parameter estimation performance of SDR
approximations for the periodogram and NLS estimators as
well as the IQML method for a 2D complex tone is studied
and the results are plotted in Figures 24, 25, 26, and 27. The
sinusoidal parameters are A = √

2, μ = 0.3π, ν = 0.6π,
and φ = 0.8π with M = N = 8. Although all three
methods give optimum estimation accuracy at sufficiently
large SNR conditions, the periodogram scheme has the
smallest threshold SNRs, while the performance of the SDR-
NLS method is similar to that of the IQML approach.

8. Conclusion

A comprehensive study of formulating semidefinite relax-
ation (SDR) programs for sinusoidal parameter estimation
problems has been conducted. We have proposed three
common ways to relax the nonconvex maximum likelihood
(ML) optimization problems regarding the periodogram,
linear prediction polynomial (LPP), and nonlinear least
squares (NLS) methods, to convex programs. It is shown that
the SDR version of the periodogram gives the best estimation
performance for a single complex sinusoid, including the
two-dimensional signal model, while the SDR-NLS scheme is
optimum for both the single complex and real tone models.
Although the SDR-LPP methodology is flexible in the sense
that it can be utilized in a wide range of ML cost functions, it
only provides optimum estimation performance for a single
complex sinusoid.

Appendix

In this appendix, we present the development of the
permutation operators perm1(S,M,N) and perm2(S,M,N)
via deriving the mapping of elements for S.

For perm1(S,M,N), we aim at mapping the entries

between vec(S) vec (S)H and vec(ST) vec (ST)
H

, so that linear
constraints can be established. Mathematically, our task is to
relate the indices i, j, k, and l, in the following equation

[
vec(S) vec (S)H

]

i, j
=
[

vec
(
ST
)

vec
(
ST
)H]

k,l
. (A.1)

First we consider the relationship between i and k by writing
the RHS of (A.1) as:

[
vec(S) vec (S)H

]

i, j

= [vec(S)]i
[

vec (S)H
]

j
, i, j = 1, 2, . . . ,MN.

(A.2)

It is clear that [vec(S)]i has the form of

[vec(S)]i = [S]y,x, i = 1, 2, . . . ,MN ,

y = 1, 2, . . . ,M, x = 1, 2, . . . ,N.
(A.3)



18 EURASIP Journal on Advances in Signal Processing

The indices x and y are related with i by

y =
⌊
i

N

⌋
+ 1, (A.4)

x = i−N
⌊
i

N

⌋
, i = 1, 2, . . . ,MN , (A.5)

which correspond to reverse operation of vectorization. On
the other hand, we have [S]y,x = [ST]x,y to yield

[
ST
]

x,y
=
[

vec
(
ST
)]

k
, i = 1, 2, . . . ,MN ,

y = 1, 2, . . . ,M, x = 1, 2, . . . ,N
(A.6)

with

k = (x − 1)M + y, (A.7)

which corresponds to the vectorization operation. Substitut-
ing (A.4) and (A.5) into (A.7), k is expressed in terms of i
as

k =M(i− 1)− (MN − 1)
⌊
i

N

⌋
+ 1. (A.8)

By replacing k with l, and i with j in (A.8), we have

l =M
(
j − 1
)− (MN − 1)

⌊
j

N

⌋
+ 1. (A.9)

The operator of perm1(S,M,N) is thus obtained.
For perm2(S,M,N), we aim at finding the mappings

between {k, l} and {i, j} in

[
vec(S) vec (S)H

]

i, j
=
[

diag(S, 0) diag (S, 0)H
]

k,l

= [S]k,k[S]∗l,l .
(A.10)

Note that the valid range of k and l is [1, min([M,N])], while
that of i and j is [1,MN]. With the use of (A.2) and (A.10),
we get

[vec(S)]i = [S]k,k,

k = 1, 2, . . . , min([M,N]),

i = 1, 2, . . . ,MN.

(A.11)

It is observed that i and k are related by

i = (k − 1)(M + 1) + 1 =M(k − 1) + k,

k = 1, 2, . . . , min([M,N]), 1 ≤ 1 ≤MN.
(A.12)

By replacing k with l, and i with j in (A.12), we obtain

j =M(l − 1) + l, l = 1, 2, . . . , min([M,N]),

1 ≤ j ≤MN.
(A.13)

This yields the operator of perm2(S,M,N).
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