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This paper presents a novel matched rotation precoding (MRP) scheme to design a rate one space-frequency block code (SFBC)
and a multirate SFBC for MIMO-OFDM systems with limited feedback. The proposed rate one MRP and multirate MRP can
always achieve full transmit diversity and optimal system performance for arbitrary number of antennas, subcarrier intervals,
and subcarrier groupings, with limited channel knowledge required by the transmit antennas. The optimization process of the
rate one MRP is simple and easily visualized so that the optimal rotation angle can be derived explicitly, or even intuitively for
some cases. The multirate MRP has a complex optimization process, but it has a better spectral efficiency and provides a relatively
smooth balance between system performance and transmission rate. Simulations show that the proposed SFBC with MRP can
overcome the diversity loss for specific propagation scenarios, always improve the system performance, and demonstrate flexible
performance with large performance gain. Therefore the proposed SFBCs with MRP demonstrate flexibility and feasibility so that
it is more suitable for a practical MIMO-OFDM system with dynamic parameters.
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1. Introduction

A multiple-input multiple-output (MIMO) communication
system has an increased spectral efficiency in a wireless
channel. It can provide both high rate transmission and
spatial diversity between any transmit-receive pair. The
appropriate space time block code (STBC) allows us to
achieve, or approach, channel capacity for the flat fad-
ing propagation channel with multiple antennas [1–4].
Moreover, an orthogonal frequency division multiplexing
(OFDM) system transforms a frequency selective fading
channel into a number of parallel subsystems with flat
fading. It can eliminate the inter symbol interference (ISI)
completely by inserting a long enough cyclic prefix (CP).
The MIMO-OFDM system has attracted much attention
for future broadband wireless systems and has already
been implemented in IEEE802.11n, WiMax [5] and 3G-LTE
systems [6, 7].

For MIMO-OFDM systems, various space-time/
frequency codes have been developed to achieve spatial,
multipath, and temporal diversities by coding across
multiple antennas, subcarriers, and OFDM symbol intervals
[8]. All existing STBCs, for example, [1, 9, 10], can be
converted into space-frequency block codes (SFBCs) simply
by spreading the time domain signal of STBC within the
frequency domain. This conversion works well if adjacent
subcarrier channels are highly correlated, for example,
Alamouti code [1] proposed to be deployed within the LTE
system [6]. However this kind of direct conversion [11] is
not optimal and fails to achieve valuable frequency diversity
that can improve system performance.

A SFBC should be able to achieve both spatial and
frequency diversity. The SFBCs proposed in [12–14] achieve
full spatial and frequency (multipath) diversities by coding
across multiple antennas and subcarriers. These SFBCs
require at least Nt(L + 1) subcarriers to achieve full diversity
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order where L is the fixed channel order (the number of
paths) and Nt is the number of transmit antennas. The
channel order provides an upperbound in the rank of the
frequency correlation matrix of the OFDM system [15].
Hence by employing more than a threshold number of
subcarriers, full spatial and frequency diversities can be
achieved. However the channel order L might be large, for
example, L + 1 = 20 in [16], and vary with users and
scatterer movement, raising questions about the practical
implementation of these SFBCs.

On the other hand, the design of SFBC provides a
fundamental understanding so that a variety of space-time-
frequency block codes (STFBCs) are proposed for particular
system requirements and channel conditions. Essentially
these STFBCs do not differ significantly from either SFBC or
STBC. Some STFBCs have assumed that consecutive OFDM
intervals are static during a period of time. For example, a
rate one STFBC is proposed in [17] by combining orthogonal
STBC [18] and linear dispersion codes [9, 19], and also
proposed in [20, 21] using quasiorthogonal block codes [22].
Alternatively some STFBCs have assumed that consecutive
OFDM intervals are independent (or slightly correlated)
during a period of time so that temporal diversity could be
achieved. For example, the rate one STFBC proposed in [23]
extends SFBC in [13] into all space, time, and frequency
domains. High rate full diversity STFBCs are proposed in
[24, 25] using a layered algebraic design.

The SFBC proposed in [12, 23] does not require knowl-
edge of the channel power delay profile (PDP) at the transmit
end. However it is verified only for specific channel condi-
tions and provides an upperbound of performance so that
the diversity lose may happen. To overcome this problem and
also optimize the system performance, perfect knowledge of
channel PDP is required by the transmit antennas in the
optimization process proposed in [13] and further high rate
SFBC design proposed in [24, 25]. Such an assumptionmight
not be feasible for a practical implementation. Moreover,
the optimization process proposed in [13] adjusted the
subcarrier interval to improve the performance. But the
optimal subcarrier interval might not be a factor of Nc where
Nc is the number of subcarriers of a MIMO-OFDM system.
Hence partial subcarriers of the system cannot achieve such
optimal subcarrier interval after grouping. Furthermore, a
MIMO-OFDM system is usually divided into a number
of MIMO-OFDM subsystems by subcarrier grouping. In a
multiuser scenario each user will be allocated one or more
subsystems. This property leads to diverse optimal subcarrier
intervals for different subsystems and users. Then a new
problem of subcarrier grouping is raised since all users in the
system will compete with each other to get a better allocation
of subcarriers.

Because of relatively large channel order in real propaga-
tion scenarios, achieving full space and frequency diversity
is not a top priority but how to achieve a given transmit
diversity order efficiently across both space and frequency
domains is a more important question. Moreover, consider-
ing the difficulty in realization of full knowledge of channel
PDP at the transmit end, and the limitation of optimization
for subcarrier interval, a novel matched rotation precoding

(MRP) is proposed in this paper. At first, the basic structure
and design criteria of SFBC demonstrate the repetition and
rotation patterns, which do not exist in the traditional
STBC design. Moreover, the proposed SFBC design structure
focuses on the scenario of partial knowledge of channel PDP
known by the transmit antennas through the link feedback.
Then a rate one MRP and a multirate MRP are proposed,
both of which are capable of achieving full transmit diversity
for the MIMO-OFDM system with an arbitrary number of
antennas, subcarrier interval, or subcarrier grouping. The
rate one MRP has a relatively simple optimization process,
which can be transformed into an explicit diagram. The
optimal rotation angles of MRP can be derived explicitly,
or even intuitively in some cases. On the other hand, the
multirate MRP has a more complex optimization process but
has better spectral efficiency than the rate one MRP. Hence a
better performance can be achieved by the multirate MRP if
the same bit transmission rate is assumed. It is also capable
of achieving a relatively smooth balance between system
performance and transmission rate without significantly
changing the coding structure.

The rest of the paper is organized as follows. Section 2
describes a model for the MIMO-OFDM system and reviews
the correlation structure between space and frequency
domains. Section 3 presents design criteria of SFBC and
reveals the distinct repetition and rotation patterns. Design
structures for scenarios with full or limited knowledge of
PDP are also compared and investigated in this section. Then
Section 4 introduces a rate one MRP with limited feedback
knowledge and corresponding optimization process. And
Section 5 introduces a multirate MRP with limited feedback
knowledge and corresponding optimization process. Sec-
tion 6 provides simulation results, and Section 7 concludes
the paper.

Notation 1. Matrices and vectors are denoted by boldface
letters. The (·)T , (·)∗, and (·)† are defined as matrix trans-
pose, complex conjugate, and adjoint of complex conjugate
transpose, respectively. The process of “vec” is defined as a
matrix reconstruction which stacks a matrix columnwise to
form a column vector. ⊗ and ◦ are defined as Kronecker
product andHadamard product, respectively. 1a and 1a×b are
defined as a× a and a× b all one matrices, respectively. Ia is
defined as an a× a identity matrix.

2. MIMO-OFDM SystemModelling

This section presents a general MIMO-OFDM system model
and proposes a concise SFBC design structure that is used
to design precoding matrices and to optimize coding gain
and diversity gain. The MIMO-OFDM system model is
simplified with some preliminary assumptions, compared
with complex SCM model [26] or WINNER model [16]. It
is assumed that the MIMO-OFDM system model has perfect
synchronization between transmit and receive antennas, and
also among the users so that the system has no ISI. The
AoA and AoD of the MIMO channels are assumed to be
uncorrelated.
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2.1. Subcarrier Grouping for the MIMO-OFDM Model. We
consider a MIMO-OFDM system withNt transmit antennas,
Nr receive antennas and Nc subcarriers. The frequency
selective channel is assumed to be static (timeinvariant)
within at least one OFDM symbol interval Ts. Each transmit
and receive pair has L+1 resolvable delay paths with the same
PDP, for example, SCM [26] and COST207 [27]. A block
of data symbols is transmitted over each transmit antenna
and passed through aNc-point inverse fast Fourier transform
and followed by the appending of a CP. The length of CP is
chosen to be long enough to remove the ISI completely. At
each receive antenna the CP is removed at first and then a fast
Fourier transform is applied. Hence the MIMO frequency
selective fading channel is decoupled into Nc parallel MIMO
flat fading channels.

To reduce system complexity while preserving both
diversity and coding gain, a MIMO-OFDM system typically
is partitioned into Ns MIMO-OFDM subsystems where
Ns ≥ 1. It is pointed out in [28] that the MIMO-
OFDM system capacity with grouping can approach the
channel capacity without grouping very closely. Hence the
performance of the system is evaluated by the averaged
performance of all subsystems. Here we consider a subsystem
with P subcarriers selected from a total of Nc subcarriers
where P is an arbitrary integer greater than Nt . The
subcarriers in the subsystem are equally separated from each
other with a positive integer interval δ. The optimization
process by tuning subcarrier interval δ was proposed in
[13]. However due to the limitations of implementation,
the subcarrier interval δ is fixed in a MIMO-OFDM
subsystem in this paper. Therefore, it is assumed that
δ = �Nc/P� where �a� denotes the largest integer less
than or equal to a so that the subcarriers are separated
as far as they can be in the subsystem. The rest of (Nc −
δP) < P subcarriers could be used as guard intervals to
separate OFDM symbols. Then a MIMO-OFDM system is
partitioned into Ns = δ MIMO-OFDM subsystems who
preserve exactly same second order characteristics. Hence
the proposed SFBC design only focuses on an arbitrary
MIMO-OFDM subsystem. For a multiuser scenario, each
user can be allocated one ormoreMIMO-OFDM subsystems
depending on the system complexity and requirement. The
block diagram of a MIMO-OFDM system is shown in
Figure 1.

The channel frequency response hmn(p) over the pth sub-
carrier in the MIMO-OFDM subsystem between transmit
antenna m where (m ∈ [1, . . . ,Nt]) and receive antenna n
where (n ∈ [1, . . . ,Nr]) is given by

hmn
(
p
) =

L∑

�=0
�mn,�e

− j2π((p−1)δ+1)τ�/Ts , (1)

where p ∈ [1, . . . ,P] and � ∈ [0, . . . ,L], τ� and �mn,�

are the delay and complex amplitude coefficient of the �th
path, respectively, and Ts is the OFDM symbol interval.
The channel frequency response between transmit and

receive antennas for the pth subcarrier in the MIMO-OFDM
subsystem is denoted by

H
(
p
) =

⎡

⎢
⎢
⎢
⎢
⎣

h11
(
p
) · · · h1Nr

(
p
)

... · · · ...

hNt1
(
p
) · · · hNtNr

(
p
)

⎤

⎥
⎥
⎥
⎥
⎦
, (2)

where each entry hmn(p) is given by (1). Then the PNt × Nr

channel matrix H̃ is constructed by stacking up these channel
matricesH(p) columnwisely and shown as

H̃ =
[
H(1)T , . . . ,H(P)T

]T
. (3)

Suppose that the transmitted symbol vector S is defined
as S = [s1,1, . . . , s1,Nt , . . . , sP,1, . . . , sP,Nt ] where two subscripts
denote specific subcarrier and transmit antenna, respectively.
Moreover, the transmission power of vector S is normalized
within each SFBC design and each MIMO-OFDM subsys-
tem. It is given by E[SS†] = P. Hence the receive signal of
each subsystem, a PNr × 1 vector Y, can be expressed as

Y =
√

ρ

Nt
Ŝ vec

(
H̃
)
+ Z , (4)

where Ŝ = {(INrP ⊗ 11×Nt ) ◦ (1NrP×Nr ⊗ S)}. The channel
state information H̃ is assumed to be perfectly known at
the receive end, but not known at the transmit end. ρ is the
average signal to noise ratio (SNR) at each receive antenna,
independent of the number of transmit antennas and receive
antennas. The noise vector Z is assumed to be additive white
Gaussian noise with zero mean and unit variance.

2.2. Correlation Structure of the MIMO-OFDM Subsystem.
The MIMO-OFDM subsystem is assumed to have arbitrary
spatial correlation structures at both transmit and receive
ends. The spatial correlation matrix between two ends is
separable because of independent outgoing and incoming
propagation [29, 30]. Furthermore, with the assumption that
the space, time, and frequency domains are independent
of each other [13], the correlation coefficient between the
channel frequency response hmn(p) and hm′n′(p′) is given by

E
{
hmn
(
p
)
h∗m′n′

(
p′
)} = RBS(m,m′)RMS(n,n′)RF

(
p, p′

)
,
(5)

where scalars RBS(m,m′), RMS(n,n′), and RF(p, p′) are
transmit spatial, receive spatial, and frequency correlation
coefficients respectively. They are defined as

RBS(m,m′) = E
{
hmn
(
p
)
h∗m′n

(
p
)}
,

RMS(n,n′) = E
{
hmn
(
p
)
h∗mn′

(
p
)}
,

RF
(
p, p′

) = E
{
hmn
(
p
)
h∗mn

(
p′
)} = wpRDw

†
p′ ,

RD(�, �′) = E
{

�mn,��
∗
mn,�′
}
.

(6)

Furthermore, the frequency correlation matrix RF is given by

RF =WRDW†. (7)
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Figure 1: SFBC block diagram for a MIMO-OFDM system.

The P × (L + 1) matrixW is shown as

W =
[
w0, . . . ,wL

]
=

⎡

⎢
⎢
⎢
⎢
⎣

w1

...
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⎤

⎥
⎥
⎥
⎥
⎦
=

⎡
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⎣
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... · · · ...

w0
P · · · wL

P

⎤

⎥
⎥
⎥
⎥
⎦
, (8)

where the entry w�
p in matrix W is defined as w�

p =
e j2π(p−1)δτ�/Ts . Moreover, the MIMO-OFDM subsystem has
an underlying assumption of 2πδτ�/Ts /= 2kπ +2πδτ�′ /Ts for
∀� /= �′, �, �′ ∈ [0, . . . ,L] and k ∈ Z. Otherwise the MIMO-
OFDM subsystem will suffer the loss of diversity gain.

Therefore, we have

E
[
vec
(
H̃
)
vec†

(
H̃
)]
= RMS ⊗ RF ⊗ RBS, (9)

where entries of correlation matrices RMS, RF , and RBS are
given by (6).

3. Analysis of SFBCDesign

In this section the basic design criteria of SFBC are reviewed
and distinct rotation/repetition patterns are revealed to show
the specialty of SFBC.

3.1. Design Criteria. The average pairwise error probability
(PEP) between the codeword C and C̃ over all channel
realizations can be upper bounded by [31]

P
(
C −→ C̃

)
≤
(

ρ

4Nt

)− rank(Λ)
⎛

⎝
rank(Λ)∏

i=1
λi(Λ)

⎞

⎠

−1

, (10)

where rank (Λ) and λi(Λ) are the rank and the ith nonzero
eigenvalue of the covariance matrix Λ, respectively. The
matrix Λ is further given by

Λ = E
[
ΔŜ vec

(
H̃
)
vec†

(
H̃
)
ΔŜ†
]

= ΔŜ{RMS ⊗ RF ⊗ RBS}ΔŜ†

= RMS ⊗
{(

ΔS̃RBSΔS̃†
)
◦ RF

}
,

(11)

where the P ×Nt matrix ΔS̃ is stacked up from ΔS and given
by

ΔS̃m = [(Δs1,m, . . . ,ΔsP,m
)]T ,

ΔS̃ =
[
ΔS̃1, . . . ,ΔS̃Nt

]
.

(12)

Each row vector of ΔS̃ is transmitted by Nt transmit
antennas through the same subcarrier, and each column
vector is transmitted by P subcarriers through the same
transmit antenna. Hence to improve system performance,
both coding gain and diversity gain should be optimized
by carefully designing (ΔS̃RBSΔS̃†) ◦ RF , but both gains are
independent of receive spatial correlation.

For instance, if RF ≈ 1P , for example, when the
subcarrier interval δ = 1 and the value of Nc is relatively
large, the design of SFBC has no difference with traditional
STBC in which the coding gain is optimized by a subsequent
structure of ΔS̃RBSΔS̃. If these P subcarriers are independent
from each other [17], then RF = IP . The design criterion
is simplified as maximizing

∏P
p=1(
∑Nt

m=1 ‖Δsp,m‖2). It has

a simple lowerbound, NP
t (
∏P

p=1
∏Nt

m=1‖Δsp,m‖)
2/Nt

which
could be optimized by linear dispersion codes [32].

3.2. Structure Analysis with Full Knowledge of PDP. Some
further assumptions are descripted in this section. It is
assumed that the knowledge of channel PDP is fed back
to the transmit antennas through uplink transmission or
data feedback. Therefore time delays τ� and corresponding
delay power σ2� are perfectly known at the transmit end. And
at the same time the receive end knows the channel state
information H̃ perfectly for the decoding process. The SFBC
design with limited knowledge of PDP will be discussed next
and compared with the scenario of full knowledge of channel
PDP.

The channel between the mth transmit antenna and the
nth receive antenna experiences frequency-selective fading
induced by L+1 independent wireless propagation paths. The
coefficient �mn,� is assumed to be an uncorrelated circularly
symmetric complex Gaussian random variable with zero
mean and variance σ2� given by the channel PDP, which is
sorted in a decreasing order so as to σ20 ≥ · · · ≥ σ2L . Hence we
have RBS = INt and RMS = INr . Furthermore, the matrix RD

is a diagonal matrix given by RD(�, �) = σ2� and
∑L

�=0 σ
2
� = 1.

The number of subcarriers in the MIMO-OFDM subsystem
is assumed to be P ≤ Nt(L + 1) and P > Nt. Therefore
equation (11) shows that the maximal achievable transmit
diversity is P.

By utilizing these assumptions and definitions, the
covariance matrix Λ in (11) is given by

Λ = INr ⊗
{(

ΔS̃ΔS̃†
)
◦ (WRDW†)

}
. (13)
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Therefore if the covariance matrix Λ has full rank, the
determinant of Λ is given by the following.

(1) If P = Nt(L + 1) (full spatial and frequency diversity
as achieved in [13]), or RD = (1/(L + 1))IL+1 (uniform PDP
as adopted in [12]), we have

det(Λ)=
⎛

⎝
L∏

�=0
σ2�

⎞

⎠

NtNr

‖det(Ω)‖2Nr , (14)

where Ω is a P × Nt(L + 1) complex square matrix and
reconstructed as

Ω =
[(
ΔS̃1 ◦w0

)
, . . . ,

(
ΔS̃Nt ◦w0

)
, . . . ,

(
ΔS̃1 ◦wL

)
, . . . ,

(
ΔS̃Nt ◦wL

)]
,

(15)

where ΔS̃m is themth column vector from matrix ΔS̃
(2) IfNt < P < Nt(L+1) and RD is not an identity matrix,

we have

det(Λ) =
{
det
(
ΩΩ†)}Nr

, (16)

where Ω is a P × Nt(L + 1) complex matrix that is
reconstructed as

Ω =
[(
σ0ΔS̃1 ◦w0

)
, . . . ,

(
σ0ΔS̃Nt ◦w0

)
, . . . ,

(
σLΔS̃1 ◦wL

)
, . . . ,

(
σLΔS̃Nt ◦wL

)]
.

(17)

Remark 1. Equations (14) and (16) show that the design
of SFBC is separable from the delay power σ� only if P =
Nt(L + 1) or RD is an identity matrix. Hence two types of
matrixΩ are given in (14) and (16) separately. The matrixΩ
in (14) is independent of σ� , andmore generally the matrixΩ
in (16) is embedded with σ� . Moreover, the matrix Ω reveals
the characteristics of repetition and rotation patterns of the
SFBC which do not exist in the traditional STBC design.
The matrix Ω is a pattern of ΔS̃ which is repeated L + 1
times within the matrix column by column. Each copy is also
rotated by a specific column vector w� and further shaped by
a scalar σ� for some cases. Hence if P = Nt(L+ 1), the matrix
Ω is a square matrix. The goal of the design is simplified
into optimizing Ω in (14) so that Ω should be full rank (full
spatial and frequency diversity) and‖det(Ω)‖ needs to be
maximized. If Nt < P < Nt(L + 1), the goal of design is to
optimizeΩ in (16) so thatΩΩ† has full rank of P (full spatial
diversity but partial frequency diversity) and ‖det(ΩΩ†)‖
needs to be maximized.

A similar expression to (11) can be found in [13]. But the
Hadamard product within (11) may conceal some valuable
characteristics. Hence proposed repetition and rotation
patterns shown in (14) and (16) can simplify the code design
process and give us an internal observation of each specific
SFBC. For example, the rate one SFBC in [12] with the
assumptions of L + 1 = 2, Nt = 2 and P = 4 is simplified
as optimizing the determinant of the following matrix:

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

w0
1Δs1,1 0 w1

1Δs1,1 0

0 w0
2α

1Δs2,2 0 w1
2Δs2,2

w0
3Δs3,1 0 w1

3Δs3,1 0

0 w0
4α

3Δs4,2 0 w1
4Δs4,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (18)

where Δs2,1 = Δs4,1 = Δs1,2 = Δs3,2 = 0 in [12]. Then
‖det(Ω)‖ = ‖1− φ2‖2‖Δs1,1Δs2,1Δs3,2Δs4,2‖ where φ =
e j2πδ(τ1−τ0)/Ts . The proposed SFBC in [12] will lose the diver-
sity gain for specific channel PDP or subcarrier interval δ, for
example, φ = ±1 when δ(τ1 − τ0)/Ts = 0.5. The problem
of diversity loss of the SFBC is not paid much attention
because of the relatively complex design structure involving
Hadamard products. In order to overcome diversity loss, an
optimization process was proposed to adjust the subcarrier
interval δ in [13].

Moreover when comparing STBC and SFBC designs,
the STBC could be considered as special applications of
the SFBC with highly correlated subcarriers in the MIMO-
OFDM subsystem. Hence we have w0 = w� = wL. Then
the matrix Ω has the maximal diversity gain Nt (spatial
diversity only). Therefore the frequency diversity of the
MIMO-OFDM system is achieved by a SFBC with properly
designed repetition/rotation patterns shown in equation (14)
and (16).

The minimum value of ‖det(Λ)‖ over all possible code-
word error matrices ΔC = C̃ − C, for specific constellation
A, is denoted as coding gain ξ and given by:

ξ = min
ΔC

1
√
Nt

[det(Λ)]1/2PNr . (19)

3.3. Structure Analysis with Limited Knowledge of PDP. The
channel PDP is assumed to be perfectly known by the
transmit antennas in [13] for the purpose of optimization,
and also in [8] for the purpose of high transmission rate.
This assumption might be feasible for an indoor propagation
scenario with relatively slow variation of channel-second
order statistics. However, it is infeasible for an outdoor
propagation scenario in which there are moving surrounding
scatterers with large channel orders, for example, L + 1 = 20
in [16]. Moreover for a multiuser scenario, each user has its
own particular channel PDP, which increases the burden of
feedback significantly. Hence it is more reasonable to assume
that only partial PDP, for example, a limited number of paths
with dominant delay power, is known by transmit antennas
through data feedback or uplink transmission. The SFBC
design with limited PDP can reduce both design complexity
and system complexity. Therefore it is assumed that limited
knowledge of PDP, only the first largest σ2� and corresponding
delays τ� where � ∈ [0, . . . ,Γ − 1], is known by the transmit
antennas and Γ < L + 1.

For simplicity P is assumed to be an integer multiple
of Nt (not a prerequisite) and P = NtΓ. Therefore (16)
should be a starting point. The first P column vectors
within the matrix Ω defined in (16) are chosen to form
a new matrix Ω1. The remaining Nt(L + 1) − P column
vectors of Ω form a matrix Ω2. Therefore, both matrices
Ω1 and Ω2 are subblock matrices of Ω. The column vector
permutation will not change the determinant of ΩΩ† so
that det(ΩΩ) = det(Ω1Ω

†
1 + Ω2Ω

†
2 ). Let eigenvalues λi(A)

of an arbitrary matrix A be arranged in increasing order.
Since ΩΩ†, Ω1Ω

†
1 and Ω2Ω

†
2 are Hermitian matrices and

also positive semidefinite, λi(ΩΩ†) = λi(Ω1Ω1
† +Ω2Ω2

†) ≥
λi(Ω1Ω1

†) ≥ 0 where i ∈ [1, . . . ,P] [33]. Therefore we have
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det(ΩΩ†) ≥ det(Ω1Ω
†
1 ) = ‖det(Ω1)‖2. Then the determi-

nant of ΩΩ† has a lowerbound which can be expressed as

∥
∥
∥det

(
ΩΩ†)

∥
∥
∥ ≥ ‖det(Ω1)‖2 =

⎧
⎨

⎩

Γ−1∏

�=0
σ2�

⎫
⎬

⎭

Nt

‖det(Ψ)‖2, (20)

where the matrixΨ is shown as

Ψ =
[
ΔS̃1 ◦w0, . . . ,ΔS̃Nt ◦w0, . . . ,

ΔS̃1 ◦wΓ−1, . . . ,ΔS̃Nt ◦wΓ−1
]
.

(21)

Therefore the coding gain lowerbound ξ̆ for specific
SFBC can be expressed as

ξ ≥ ξ̆ = 1
√
Nt
‖det(Ψ)‖1/P

Γ−1∏

�=0
σ1/Γ� . (22)

This shows that the design of SFBC can be converted into
optimizing the matrix Ψ in (20) so as to improve the
coding gain lowerbound ξ̆ given in (22). Perfect knowledge
of channel PDP may not be required (or even be infeasible),
but full transmit diversity order of P can be guaranteed
always by optimizing the coding gain lowerbound. Generally
the powers of delay paths are less important than the time
delays in an SFBC design because the construction of the
matrix Ψ is independent to the delay power. The SFBC
designs proposed in this paper are based on the coding gain
lowerbound with limited knowledge of PDP.

4. Rate OneMatched Rotation Precoding

In this section a rate one SFBC with MRP is proposed. The
rate one MRP has a relatively simple structure and easy
optimization process when compared to the high rate SFBC.
The corresponding optimization process is also discussed.

4.1. Rate One SFBC. The construction of the rate one MRP
is proposed here to optimize the coding gain lowerbound ξ̆

in (22) . Assuming that sp,m = spe jφp,m and S = [s1, . . . , sP]
T,

we have Δsp,m = Δspe jφp,m and

ΔS̃m = ΔS ◦Φm, (23)

where ΔS = [Δs1, . . . ,ΔsP]
T, Φm = [e jφ1,m , . . . , e jφP,m]

T
, and

m ∈ [1, . . . ,Nt]. Then the matrix Ψ in (22) can be expressed
as

Ψ =
[
ΔS ◦Φ1 ◦w0, . . . ,ΔS ◦ΦNt ◦w0, . . . ,

ΔS ◦Φ1 ◦wΓ−1, . . . ,ΔS ◦ΦNt ◦wΓ−1
]
.

(24)

The P × Nt matrix Φ is defined as Φ = [Φ1, . . . ,ΦNt ].
Hence each specific rotation angle φp,m in Φ is assigned to
the pth subcarrier and the mth transmit antenna. Then we
have

det
(
ΨΨ†) = det

(
VV†

) P∏

p=1

∥
∥
∥Δsp

∥
∥
∥
2
, (25)

where the square matrix V and the Hermitian matrix VV†

are shown as follows:

V =

⎡

⎢
⎢
⎢
⎢
⎣

w0
1e

jφ1,1 · · · w0
1e

jφ1,Nt · · · wΓ−1
1 e jφ1,1 · · ·wΓ−1

1 e jφ1,Nt

... · · · ... · · · ... · · · ...

w0
Pe

jφP,1 · · · w0
Pe

jφP,Nt · · · wΓ−1
P e jφP,1 · · ·wΓ−1

P e jφP,Nt

⎤

⎥
⎥
⎥
⎥
⎦
,

(26)

VV† =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ
Γ−1∑

�=0
e− j2πδτ�/Ts

Γ−1∑

�=0
e− j4πδτ�/Ts · · ·

Γ−1∑

�=0
e− j2(P−1)πδτ�/Ts

Γ−1∑

�=0
e− j2πδτ�/Ts Γ

Γ−1∑

�=0
e− j2πδτ�/Ts

...
Γ−1∑

�=0
e j2π(P−2)δτ�/Ts

...
...

...
...

...

Γ−1∑

�=0
e j2π(P−1)δτ�/Ts

Γ−1∑

�=0
e j2π(P−2)δτ�/Ts · · · · · · Γ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

◦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Nt

Nt∑

m=1
e j(φ1,m−φ2,m) · · ·

Nt∑

m=1
e j(φ1,m−φP,m)

Nt∑

m=1
e j(φ2,m−φ1,m) Nt · · ·

Nt∑

m=1
e j(φ2,m−φP,m)

...
...

...
...

Nt∑

m=1
e j(φP,m−φ1,m)

Nt∑

m=1
e j(φP,m−φ2,m) · · · Nt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Rδ ◦ Rφ.

(27)
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The matrix Rδ in (27) is a Hermitian Toeplitz matrix and
related to time delays τ� of dominant paths, where � ∈
[0, . . . ,Γ − 1], and given subcarrier interval δ. The matrix
Rφ = ΦΦ† is a Hermitian matrix and related to rotation
angles φp,m.

The principle of the MRP is to construct a proper
rotation matrix Rφ to match with matrix Rδ so as to
maximize the coding gain lowerbound. It should be pointed
out that the matrix Rδ is not a channel frequency correlation
matrix, although they are similar. Thus rotation angles φp,m

of Φ are determined by both time delays of propagation
and subcarrier interval of subsystems. Furthermore the
precoding process demonstrated in [12] can be regarded as a
special application of rotation and power normalization for
Φ given by

Φ1 = √2
[
1 0 1 0

]T
, Φ2 = √2

[
0 1 0 1

]T
, (28)

and the precoding process demonstrated in [13] can also be
summarized as

Φ1 = √2
[
1 1 0 0

]T
, Φ2 = √2

[
0 0 1 1

]T
, (29)

along with the extra optimization process of subcarrier
interval δ for given channel PDP.

It is also evident in (25) that the question of maximizing
the coding gain lowerbound in (22) yields two independent
optimization problems: maxA

∏P
p=1‖Δsp‖ for specific con-

stellation A and maxφ‖det(VV†)‖ for specific correlation
matrix Rδ . Hence, we denote that

ξ̆A = max
A

P∏

P=1

∥∥
∥Δsp

∥∥
∥
1/P

, (30)

ξ̆ECG = 1
√
Nt
‖det(V)‖1/P

Γ−1∏

�=0
σ1/Γ� , (31)

which is also called as extrinsic coding gain (ECG) in [13],
and is always less than one. Therefore the coding gain
lowerbound can be expressed as

ξ̆ = ξ̆Aξ̆ECG. (32)

To maximize ξ̆A for a given constellation A, a linear
dispersion constellation code is proposed for flat fading
channels [9] and adopted by some SFBCs [12, 13, 17]. The
codeword C is precoded by a complex unitary square matrix
Θ so that

S = CΘ, (33)

where the codeword C = [c1, . . . , cP] is a 1 × P vector. And
c1, . . . , cP are complex scalars chosen from a particular r-PSK
or r-QAM constellation A. It is assumed that both the real
parts and the imaginary parts of c1, . . . , cP have a variance of
1/2 and are uncorrelated, so we have E[cic∗i ] = 1 and E[c2i ] =
0 where, i ∈ [1, . . . ,P].

We will not discuss construction details of Θ here. The
matrix Θ is assumed to be a Vandermonde matrix and is
given by

Θ = 1√
P

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 · · · 1 · · · 1

θ1 · · · θi · · · θP

...
...

...
...

...

θP−11 · · · θP−1i · · · θP−1P

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (34)

where for a QAM constellation and P = 2t (t ≥ 1), the
parameters θi are given by θi = e j((4i−3)/2P)π where i ∈
[1, . . . ,P]. Moreover, if P = 2t3q (t ≥ 1, q ≥ 1), the
parameters θi are given by θi = e j((6i−5)/3P)π . Therefore we
have ξ̆A = Δmin/β where Δmin is the minimum Euclidean
distance in constellation A and β2 = P if P is an Euler
number or a power of two; otherwise β2 = 1/(21/P − 1).

4.2. Optimization Process. The optimization process of the
rate one MRP will focus on ξ̆ECG given by (31). Therefore
a proper rotation matrix Φ is designed to maximize the
coding gain lowerbound ξ̆ for a given correlation matrix Rδ .
In contrast, the optimization in [13] can be regarded as an
optimization process of matrix Rδ by adjusting the value
of δ but fixing rotation matrix Φ. Adjusting the subcarrier
interval δ is an efficient way of improving the subsystem
performance. However, it also raises a difficulty of subcarrier
grouping which must balance the averaged performance of
all subsystems and the optimal performance of individual
subsystem because of the conflict of subcarrier allocation.

The construction method of rotation angles φp,m might
not be unique, but here for simplicity we assume that φ2,1 = 0
and φp,m = (p−1)φ2,m for∀p,m. Therefore, the determinant
of VV† is a function with Nt − 1 variables φ1,m where m ∈
[2, . . . ,Nt]. Therefore, the coding gain lowerbound for the
proposed rate one MRP is given as

ξ̆ = ξ̆Aξ̆ECG = Δmin

β
√
Nt

Γ−1∏

�=0
σ1/Γ�

×
∏

�>l′(m>m′)

∥
∥∥
∥2 sin

(
πδτ�
TS

− πδτ�′

Ts
+
φ1,m − φ1,m′

2

)∥∥∥
∥

1/P

≤
√
ΓΔmin

β

Γ−1∏

�=0
σ1/Γ� ≤ Δmin

β
,

(35)

where �, �′,m,m′ are integrals, �, �′ ∈ [0, . . . ,Γ − 1], and
m,m′ ∈ [1, . . . ,Nt]. The first upperbound of (35) can be
achieved only with certain conditions and specific channel
PDP. For instance, if P = NtΓ = 10, propagation delays must
be uniform and given by τ� = (3�Ts)/(Pδ). Then rotation
angles given by φ2,m = 6(L + 1)(m − 1)π/Pcan achieve this
upperbound. Moreover the second upperbound (35) can be
achieved with a further condition of uniform delay power so
that σ2� = 1/Γ for all � ∈ [0, . . . ,Γ− 1].
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As an example, the case of P = 4 and Nt = 2 is
considered. A limited number of suboptimal rotation angles
φ2,2 can be derived by differentiation of (35) and are given by

φ2,2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kπ

2arccos

√
1
2
+
1
2
cos2
(
πδ

Ts
(τ0 − τ1)

)
+ kπ,

(36)

where k ∈ Z. Then the optimal rotation angle φ2,2 can be
obtained by comparing the coding gain lowerbound using
these derived candidates.

For the case that P is not an integer multiple of Nt and
P < NtΓ, the process of optimization is not much different.
The matrix Ω1 in (20) is constructed by truncating first P
column vectors from thematrixΩ and then yields the coding
gain lowerbound ξ̆. Therefore the matrix V will be similar to
(26), but the coding gain lowerbound ξ̆ given by (35) will
be slightly different. For example, if P = 3 and Nt = 2, the
targetedmatrixV in the optimization process for the rate one
MRP is given by

V =

⎡

⎢
⎢
⎢
⎣

w0
1e

jφ1,1 w0
1e

jφ1,2 w1
1e

jφ1,1

w0
2e

jφ2,1 w0
2e

jφ2,2 w1
2e

jφ2,1

w0
3e

jφ3,1 w0
3e

jφ3,2 w1
3e

jφ3,1

⎤

⎥
⎥
⎥
⎦
. (37)

The corresponding optimal rotation angle φ2,2 is given by

φ2,2 = kπ − πδ

Ts
(τ0 − τ1), (38)

where k ∈ Z.

4.3. Optimization Visualization. The optimization process
for the rate one MRP can be visualized by diagrams. It would
be interesting to observe the optimization process for the case
of P = 4 andNt = 2 through Figure 2(a) which describes two
delay paths as two points in the unit circle located in the first
quadrant. Each point represents one dominant delay path.
After being rotated by a certain angle φ2,2 clockwise, two
points are then moved into the second quadrant. Hence the
optimization process is to look for a best rotation angle φ2,2
that can maximize the product of lengths of the four dashed
lines connecting these four points in Figure 2(a). Through
the visualization of optimization process, it is feasible to get
optimal rotation angles instinctively for some cases without
complicated calculation. For example, it is easy to obtain
the optimal rotation angle φ2,2 = π through Figure 2(a)
and another optimal rotation angle φ2,2 = π/2 through
Figure 2(b).

The visualization of optimization contains two simple
steps. The first step is to put Γ points in the unit circle whose
angles, 2πδτ�/Ts where � ∈ [0, . . . ,Γ − 1], are determined
by corresponding time delays and subcarrier interval. The
second step is to rotate these points simultaneously with
a same rotation angle φ2,m where m ∈ [1, . . . ,Nt]. And
such rotations are repeated Nt times and each time creates
a new set of Γ points. Therefore after these rotations, a
total of Nt sets corresponding to NtΓ points are created and

+φ2,2
πδτ1

Ts

+φ2,2
2πδτ0

Ts

2πδτ1

Ts

2πδτ0

Ts

(a)

+

+φ2,2

φ2,2

2πδτ0

Ts

2πδτ1

Ts

2πδτ1

Ts

2πδτ0

Ts

(b)

Figure 2: Visualization of optimization for the case P = 4 and Nt =
2.

spread around the unit circle. Therefore there are Γ2Nt(Nt −
1)/2 lines connecting these points among different sets, for
example, four lines in Figure 2. Beware that the connection
lines between points within a same set are irrelevant to the
optimization process because these lines are unchangeable
(determined by the time delays of channel). The angle φ2,1
is assumed to be zero here so that only Nt − 1 rotations are
optimized.

The optimization process is to maximize the prod-
uct of lengths of these connection lines. The optimal
case is that total NtΓ points are uniformly distributed
around the unit circle with an exact separation angle
2π/(NtΓ). This case gives the best performance for the
specific subsystem and achieves the coding gain upperbound
derived in (35) and [12]. Moreover, the STBC proposed
in [34] has some similarity with the rate one MRP in
terms of optimization strategy. The optimal constellation
rotation in [34] is designed for a particular constellation
with a single rotation and space diversity, but the rate
one MRP is designed for particular propagation channel
(independent of constellation) with multiple rotations and
space-frequency diversity. Hence the rate one MRP can
be visualized as a SFBC optimizing “channel Euclidean
distance.”

4.4. Examples. As an example we determine optimal rotation
angles for a multipath fading model, COST207 six-ray power
delay profile for typical urban scenario [27] described in
Table 1. The power of delays of COST207 is sorted in
a decreasing order. The MIMO-OFDM system has two
transmit antennas, 512 subcarriers and a bandwidth of
16MHz. The subcarrier interval δ in the MIMO-OFDM
subsystem is assumed to be δ = �512/P�. Then the MRP
has only one unknown variable φ2,2, and φp,2 = (p − 1)φ2,2
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Table 1: COST207 typical urban six-ray power delay profile.

Time delay (μs) 0.2 0.5 0 1.6 2.3 5.0

Delay power 0.379 0.239 0.189 0.095 0.061 0.037

Table 2: Optimal rotation angle for COST207.

P φ2,2 ξ̆ECG

3 107π/180 0.6865

4 π 0.7566

5 129π/180 0.5228

6 141π/180 0.7082

for all p ∈ [1, . . . ,P]. It is assumed that only limited PDP
of COST207 MIMO channel, that is, time delay τ� shown
in Table 1 where � ∈ [0, . . . ,Γ − 1], is actually known by
the transmit antennas. It is also assumed that Γ = �P/Nt�
where �a� denotes the smallest integer greater than or equal
to a. Hence if P = 3, 4, then Γ = 2 delays are known
by the transmit antennas. And if P = 5, 6 then Γ =
3.

Since the proposed rate one MRP is composed of two
independent optimization processes and ξ̆A is only related
to the constellationA, we focus on ξ̆ECG only which is highly
related to the specific channel PDP known by the transmit
antennas. Figure 3 shows the variations of ξ̆ECG of the MRP
for a variety of values of φ2,2 and P. All peak points in
Figure 3 with corresponding coordinates of φ2,2 and ξ̆ECG
are summarized in Table 2. The optimization of coding gain
lowerbound ξ̆ can be used to search for an approaching
optimal performance since only partial PDP is known. But
full transmit diversity can always be guaranteed. Moreover,
full transmit diversity is achieved for same cases even if
the coding gain lowerbound ξ̆ equals to zero. Hence the
condition that the lowerbound ξ̆ should be greater than zero
is a sufficient condition to achieve full transmit diversity. The
optimal rotation angle φ2,2 is varied from case to case. At last
the selection of column vectors for Ω1 will affect the design
process and results of optimization. But it is known that if
more column vectors are built insideΩ1 (it also means better
knowledge of PDP at the transmit end), the optimization
process will be closer to optimal.

On the other hand the optimization process of subcarrier
interval δ is still feasible for the proposed rate one MRP.
Figure 4 shows the changes of the ξ̆ECG of the rate one
MRP for a variety of values of φ2,2 and δ. For arbitrary
subcarrier interval δ, the rotation angle φ2,2 can be adjusted
to achieve the optimal performance. Subcarrier interval δ
is fixed to �Nc/P� in this paper considering limited choices
of subcarrier interval δ because of the conflict of subcarrier
allocation if the performance of all users in a multiuser
scenario needs to be optimized simultaneously by adjusting
subcarrier interval.

Remark 2. The rate one MRP with limited PDP is pro-
posed for the circumstance that the transmit antennas have
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Figure 3: ξ̆ECG of rate one MRP versus rotation angle φ2,2 for a
MIMO-OFDM system with δ = �512/P�, Nt = 2, Nc = 512, and
given COST207 typical urban six-ray power delay profile.
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Figure 4: ξ̆ECG of the rate one MRP versus rotation angle φ2,2 and
δ for a MIMO-OFDM system with P = 4, Nt = 2, Nc = 512, Γ =
P/Nt = 2 and given COST207 typical urban six-ray power delay
profile.

only partial or the imperfect knowledge of the channel
PDP through the feedback from the receive antennas or
uplink transmission. It is capable of reducing both system
complexity and SFBC design complexity significantly. Better
optimization process requires more knowledge of channel
PDP. Moreover, the rate one MRP can overcome the
drawback of diversity loss in [12] for specific propagation
scenarios, and mitigate the limitations of subcarrier interval
and subcarrier grouping. It can always achieve full transmit
diversity and approach to optimal performance.

5. Multirate Matched Rotation Precoding

In this section, the multirate SFBC with MRP is proposed. It
has better spectral efficiency when compared to the rate one
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MRP, and better performance if the same bit transmission
rate is assumed. It also can achieve relatively smooth balance
between the performance and the transmission rate without
a significant configuration change. The optimization process
of the proposed multirate MRP is also discussed.

5.1. Multirate SFBC. The multirate MRP is proposed here
to optimize the coding gain lowerbound ξ̆ denoted in (22).
Assuming that sp,m = sp,me jφp,m and S

m = [s1,m, . . . , sP,m]
T ,

we have Δsp,m = Δsp,me jφp,m and

ΔS̃m = ΔS
m ◦Φm, (39)

where ΔS
m = [Δs1,m, . . . ,ΔsP,m]

T , Φm = [e jφ1,m , . . . , e jφP,m]
T

and m ∈ [1, . . . ,Nt]. The matrix Ψ in (22) can be expressed
as

Ψ =
[
ΔS

1 ◦Φ1 ◦w0, . . . ,ΔS
Nt ◦ΦNt ◦w0, . . . ,

ΔS
1 ◦Φ1 ◦wΓ−1, . . . ,ΔS

Nt ◦ΦNt ◦wΓ−1
]
.

(40)

ThenΨΨ† is shown in (41) as follows:

ΨΨ† =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ
Γ−1∑

�=0
e− j2πδτ�/Ts

Γ−1∑

�=0
e− j4πδτ�/Ts · · ·

Γ−1∑

�=0
e− j2(P−1)πδτ�/Ts

Γ−1∑

�=0
e j2πδτ�/Ts Γ

Γ−1∑

�=0
σ2� e

− j2πδτ�/Ts · · ·
Γ−1∑

�=0
e− j2π(P−2)δτ�/Ts

...
...

...
...

...

Γ−1∑

�=0
e j2(P−1)πδτ�/Ts

Γ−1∑

�=0
e j2π(P−2)δτ�/Ts · · · · · · Γ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

◦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Nt∑

m=1

∥∥Δs1,m
∥∥2

Nt∑

m=1

(
� s1,mΔs

∗
2,me

j(φ1,m−φ2,m)
)
· · ·

Nt∑

m=1

(
Δs1,mΔs

∗
P,me

j(φ1,m−φP,m)
)

Nt∑

m=1

(
Δs2,mΔs

∗
1,me

j(φ2,m−φ1,m)
) Nt∑

m=1

∥
∥Δs2,m

∥
∥2 · · ·

Nt∑

m=1

(
Δs2,mΔs

∗
P,me

j(φ2,m−φP,m)
)

...
...

...
...

Nt∑

m=1

(
Δs1,mΔs

∗
P,me

j(φP,m−φ1,m)
) Nt∑

m=1

(
ΔsP,mΔs

∗
2,me

j(φP,m−φ2,m)
)
· · ·

Nt∑

m=1

∥
∥ΔsP,m

∥
∥2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Rδ ◦ Rψ.

(41)

The rotation matrixΦR for the symbol transmission rate
R is denoted asΦR = [Φ1, . . . ,ΦNt ].

The Hermitian matrix ΨΨ† is the Hadamard product
of two matrices Rδ and Rψ denoted in (41). The matrix
Rδ is related to both time delays τ� of paths and subcarrier
interval δ. But the matrix Rψ of the multirate MRP is more
complicated than the matrix Rφ denoted in (27). It is related
to the proposed rotation matrix ΦR and also the specific
constellationA.

Supposed that the vector S is defined as S =
[(S

1
)
T
, . . . , (S

Nt )
T
]. The precoding process of the multirate

MRP with transmission rate R is given by

S = CΘR, (42)

where the codeword C = [c1, . . . , cQ] is a 1×Q vector where
c1, . . . , cQ are complex scalars chosen from a particular r-PSK
or r-QAM constellation A. The symbol transmission rate is

denoted as R = Q/P. It is assumed that both the real parts
and the imaginary parts of c1, . . . , cQ have a variance of 1/2
and are uncorrelated, so we have E[cic∗i ] = 1 and E[c2i ] = 0
where i ∈ [1, . . . Q].

The matrix ΘR is an Q × NtP complex coding matrix
satisfying the following power normalization equation:

trace
(
ΘRΘ

†
R

)
= NtP. (43)

Hence the codeword C is dispersed from Q dimensional
vector to NtP transmission data across both frequency and
space domains. The value of integer Q can be chosen from 1
to NtP so that the symbol transmission rate R can be varied
from 1/P up to Nt .

When the MIMO-OFDM subsystem achieves the highest
transmission rate R = Nt , then Q = NtP. The matrix ΘNt
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is a unitary square matrix and assumed to a Vandermonde
matrix given by (34). Hence we have

ΘNt = Θ. (44)

When the bit error rate (BER) performance of the
MIMO-OFDM subsystem is worse than the expected perfor-
mance, the transmission rate R can be reduced to achieve
better BER performance without decreasing constellation
size or significantly changing the coding structure. Thus
when R ≤ Nt, Q = RP and ΘR is a RP × NtP matrix. The
coding matrix ΘR can be obtained by simply truncating first
RP row vectors from the coding matrix ΘNt and applying
power normalization using (43). Hence the matrix ΘR is
given by

ΘR =
√

Nt

R
ΘQ×PNt , (45)

where ΘQ×PNt is a truncated matrix from ΘNt .
Matrices ΘR and ΦR are key matrices for the multirate

MRP where the rate R ranges from 1/P to Nt . They can even
summarize coding structures of most existing SFBCs as a
variety of matrix pairs ΘR and ΦR. The matrix ΘR can dis-
perse the information of a codeword C into NtP subchannels
but it cannot guarantee full diversity gain or the optimal
performance. The matrix ΦR can guarantee full transmit
diversity and optimize the coding gain simultaneously for
specific channel PDP known by transmit antennas. Hence it
is strongly related to constellation A, correlation matrix Rδ

and designed matrix ΘR.

Remark 3. The rotation matrix ΦR for arbitrary rate R can
be assumed to be the same as the matrix ΦNt designed for
the highest rate Nt , that is, ΦR = ΦNt for all R. Therefore
if matrices ΘNt and ΦNt can achieve full transmit diversity
P at the highest rate Nt for the MIMO-OFDM subsystem;
full transmit diversity can be guaranteed at each transmission
rate R if the matrices ΘR are derived from ΘNt and ΦR =
ΦNt . Hence the multirate MRP can generate a series of lower
rate SFBCs and reduce design complexity significantly. The
explanation is the following.

The codeword error ΔC for the transmission rate R can
be obtained by assigning zeros to the last (Nt − R)P symbols
of ΔC for the transmission rate Nt . Thus the set of ΔC for
the rate R actually becomes a subset of ΔC for the rate Nt .
Therefore, for the lower transmission rate R, the size of subset
of ΔC is smaller giving a larger coding gain and better BER
performance. The rotation matrix ΦR can be either specially
designed for a specific rate R and symbol constellation A,
or kept unchanged as ΦNt for simplicity. The matrix ΘR can
be obtained by simply truncation and power normalization
from the matrix ΘNt . Full transmit diversity of P is always
guaranteed in the multirate MRP.

5.2. Optimization Process. The optimization process of the
multirate MRP will be more complicated than the rate
one MRP. The determinant of ΨΨ† given by (41) is
affected by elements of both matrix Rδ and matrix Rψ . The

subcarrier interval is fixed to δ = �Nc/P� so that the matrix
Rδ is unchanged. The matrix Rψ is related with specific
constellation A, designed matrix ΘR, and rotation matrix
ΦR. The optimization process adjusts both matrices ΘR and
ΦR simultaneously.

The matrix ΘR is given by (44) and (45) according to the
transmission rate R. And for the simplicity, we assume that
φp,m = (p−1)(m−1)φ2,2 for all p,m inΦR. The determinant
ofΨΨ† given by (41) is a polynomial equation with only one
variable φ2,2 and det(ΨΨ†) = ‖det(Ψ)‖2. The optimization
process of the multirate MRP has only one unknown variable
φ2,2 for an arbitrary MIMO-OFDM subsystem.

Remark 4. If e jφ2,2 is an algebraic number of degree greater
than NtP2 over K which is the extension field containing
all the entries of ΘR, the ring of complex integers Z( j), and
e j2πδτ�/Ts where � ∈ [0, . . . ,Γ− 1], then full transmit diversity
P is guaranteed for all QAM constellation. This property can
be derived from the determinant expression of Ψ denoted in
(41).

The high rate SFBC proposed in [8] has a similar
rule as to above. But the proposed multirate MRP has
utilized a rotation matrix ΦR designed for the scenario with
limited channel PDP, and also defined a smaller extension
field K compared to [8]. Moreover, despite relatively high
complexity and difficulty in the optimization process, the
multirate MRP always takes advantage of a portion of
information about propagation paths for arbitrary channel
PDP, so that it is feasible to generate a decision table for
optimization in advance at the transmit end. Therefore such
a table can be stored and reused without the requirement of
another calculation.

5.3. Examples. As an example the optimal rotation angle φ2,2
is generated for COST 207 typical urban scenario defined
in Table 1. The propagation channel knowledge is assumed
to be limited so that only τ� , where � ∈ [0, . . . ,Γ − 1],
are perfectly known by the transmit antennas where Γ =
2. The MIMO-OFDM system has two transmit antennas,
512 subcarriers, and a bandwidth 16MHz. Each MIMO-
OFDM subsystem has four well-separated subcarriers and
the subcarrier interval is assumed to δ = 128.

For a QPSK constellation, the coding gain lowerbound
ξ̆ of the multirate MRP is maximized by a computer search
over φ2,2 varying from 0 to π. The step size is π/180 so that
the algebraic degree meets the condition of Remark 4. The
optimal rotation angles φ2,2 for a variety of transmission rates
R are shown in Table 3. Moreover the optimal rotation angle
φ2,2 = 168π/180 gives the largest coding gain lowerbound
at the highest transmission rate R = 2. Hence the rotation
angle φ2,2 can be fixed to 168π/180 without jeopardizing
the transmission diversity according to Remark 3. Therefore
the coding gain lowerbound ξ̆ corresponding to φ2,2 =
168π/180 for different rates R are also included in Table 3
for comparison.

It is also feasible to yield a decision table for the multirate
MRP in advance since only a limited number of propagation
paths are needed for the optimization process. Figure 5 is
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Table 3: Transmission rate R versus optimal rotation angle φ2,2 and
corresponding coding gain lowerbound ξ̆ for the Multirate MRP in
a MIMO-OFDM subsystem with P = 4, Nt = Γ = 2, and QPSK for
COST 207 Typical urban six-ray power delay profile.

R φ2,2 ξ̆ ξ̆ when φ2,2 = 168π/180

1/4 π 1.07 1.0626

2/4 π 0.7566 0.7514

3/4 164π/180 0.5660 0.3493

4/4 154π/180 0.4231 0.3025

5/4 95π/180 0.3048 0.2706

6/4 99π/180 0.2641 0.2337

7/4 165π/180 0.2076 0.2004

8/4 168π/180 0.1874 0.1874

0 0

1.511
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3
2

3
4
0

20
40
60
80

100
120
140
160
180

φ
2,

2

2πτ0δ/Ts
2πτ1δ/Ts 0.5

2.5
3.5

Figure 5: Decision table of the optimal rotation angle φ2,2 for
multirate MRP in a MIMO-OFDM subsystem with P = 4, R =
Nt = Γ = 2, and BPSK constellation.

an example of a decision table for a BPSK constellation and
the transmission rate R = 2. The z-axis in the figure shows
the optimal rotation angle φ2,2 for a specmific channel PDP
which has two dominant delays marked by corresponding
x and y coordinates. Hence it would be easy to determine
the optimal rotation angle φ2,2 for an arbitrary MIMO-
OFDM subsystem and channel PDP once such a decision
table has been generated. It is also shown that if 2πτ0δ/Ts =
2πτ1δ/Ts + 2kπ where k ∈ Z, the coding gain lowerbound ξ̆
would be equal to zero with a potential loss of diversity gain.

6. Simulation Results

To illustrate the performance of the rate one MRP and the
multirate MRP, we performed some simulations and made
comparisons with existing SFBC given in [12]. For example,
if P = 3, transmitted symbols Ŝ (P × Nt matrices) using
the rate one MRP and the SFBC in [12] are given by the
following, respectively,

Ŝ =

⎡

⎢
⎢
⎢
⎣

s1 s1

s2 s2e jφ2,2

s3 s3e2 jφ2,2

⎤

⎥
⎥
⎥
⎦
, Ŝ =

⎡

⎢
⎢
⎢
⎣

√
2s1 0

0
√
2s2√

2s3 0

⎤

⎥
⎥
⎥
⎦
, (46)
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SFBC in [12]
Rate one MRP
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Figure 6: Performance of the rate one MRP and the SFBC in [12]
for the MIMO-OFDM system with Nt = 2, Nr = 1, Nc = 512,
and δ = 128 in the propagation scenario with uniform PDP of two
paths.

where S = [s1, s2, s3] = CΘ. The constellation A of the
codeword C is chosen to be quaternary phase-shift keying
(QPSK) or 16QAM. The precoding matrix Θ is given by
(34). The optimal rotation angles φ2,2 of the rate one MRP
are given by the second column of Table 2. The channel
state information H̃ and the rotation angles φ2,2 are perfectly
known by the receive antennas. However limited knowledge
of channel PDP is available at the transmit side. The decoding
process is unified at first in all simulations according to [35].
The same sphere decoding [36, 37] is used at the receive
antennas for each subsystem and each SFBC. The bit error
rate (BER) performance is averaged over all MIMO-OFDM
subsystems and channel realizations.

6.1. Diversity Loss. The SFBC without optimization pro-
cess might lose the diversity gain for specific propagation
scenario. It has not been completely recognized but this
problem can be overcome by adjusting subcarrier interval
δ or applying proposed MRP. We assume that the MIMO-
OFDM system has Nt = 2, Nr = 1, 16MHz Bandwidth,
and Nc = 512 subcarriers. Each subsystem has P = 4 well-
separated subcarriers and a fixed subcarrier interval δ = 128.
The propagation scenario has only two delay paths or two
dominant delay paths. It is shown in (14) that for this kind
of system setting and propagation scenario, the powers of
paths are irrelevant to the SFBC design process. Hence it is
assumed that the wireless channel has uniform delay power
and σ2� = 1/2 for simplicity. The time delays are assumed to
τ0 = 0 and τ1 = 2Ts/Nc. The rate one MRP is compared with
the SFBC in [12] with an exactly same system configuration.
The optimal rotation angle φ2,2 of the rate one MRP for this
specific propagation scenario is π/2 which can be seen in
Figure 2(b).
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Figure 6 shows clearly the improvement of the rate one
MRP. The SFBC in [12] cannot achieve full transmit diversity
for this specific propagation scenario but the proposed
rate one MRP can provide a significant improvement.
The Hadamard product in (11) might conceal the loss of
frequency diversity. Hence we should be cautious about
judging the performance of specific SFBC, which might be
good for some cases but lose diversity gain for the others.
The optimization process is important for all existing SFBCs
because of potential diversity loss, through either adjusting
subcarrier interval δ, or applying the proposed MRP, or even
both.

6.2. Rate One MRP. To show the performance of the rate
one MRP with limited feedback, a more practical scenario
COST207 typical urban six-ray PDP is considered and
defined in Table 1. The MIMO-OFDM system has Nt = 2,
Nr = 1, 16MHz Bandwidth, and Nc = 512 subcarriers.
Each subsystem has P well-separated subcarriers and a fixed
subcarrier interval δ = �512/P�. The rest unallocated
subcarriers (<P) could be used as subcarrier guard interval.
Limited knowledge of channel PDP is fed back to the
transmit antennas. So it is assumed that only time delays τ�
where � ∈ [0, . . . ,Γ−1] are known by the transmit antennas.
It is also assumed that Γ = �P/Nt�.

It is shown in Figure 7 that the performance of the rate
one MRP has better performance than the SFBC in [12]
when P = 3 and 6, and the same performance when P =
4 for COST207 typical urban scenario. The performance
gain of the rate one MRP is roughly about 0.5 dB at a
BER of 10−3 when P = 3. And the performance gain
is about 0.2 dB when P = 6. The performances of both
SFBCs are same when P = 4 but we could observe the
advantage of the rate one MRP for other channel PDP from
Figure 6. The observation confirms that the rate one MRP
does improve BER performance by optimizing coding gain
lowerbound ξ̆ for some cases, even when the knowledge
of channel PDP is limited. Therefore the rate one MRP
is capable of providing more design freedom and better
system performance compared to [12, 13]. Furthermore
the information required by the optimization process can
be mitigated by the proposed SFBC design with limited
knowledge of PDP.

6.3. Multirate MRP. The multirate SFBC following the
coding matrix (39) is investigated in Figure 8 for the MIMO-
OFDM system with Nt = 2, Nr = 2, P = 4, δ = 128,
and Nc = 512. The constellations of QPSK and 16QAM
are applied. For example, transmitted symbols Ŝ (P × Nt

matrices) using the multirate MRP are given by

Ŝ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

s1,1 s1,2

s2,1 s2,2e jφ2,2

s3,1 s3,2e2 jφ2,2

s4,1 s4,2e3 jφ2,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (47)

where S is precoded by the matrix ΘR which is specified by
(44) and (45). And the rotation angle φ2,2 of multirate MRP
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Figure 7: Performance of the MRP marked by Δ and the SFBC in
[12] marked by ∗ for the MIMO-OFDM system with Nt = 2, Nr =
1, Nc = 512, and δ = �512/P� in COST207 typical urban scenario.
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Figure 8:MultirateMRP simulationsmarked byΔwith the optimal
rotation angle φ2,2 and the SFBC in [12] marked by ∗ for a MIMO-
OFDM system with Nt = 2, Nr = 2, Nc = 512, P = 4 and, δ = 128
in COST207 typical urban scenario.

is specified by the second column in Table 3 for a variety of
transmission rates R.

It is shown in Figure 8 that with the decrease of
transmission rate, the coding gain lowerbound ξ̆ is increased
and consequently the BER performance is better. The SNR
gain is roughly 1 dB for each decrement of transmission rate.
Hence the coding matrix (39) shows a flexible structure so
that targeted BER performance can be achieved by smoothly
reducing the transmission rate. Moreover, in Figure 8 the
multirate SFBC is also compared with the rate one SFBC
in [12] with QPSK and 16QAM constellation. The SFBC in
[12] with 16QAM is compared with the multirate SFBC with
R = 2 since both SFBCs have the same spectral efficiency of
4 bps/Hz. It is shown that the multirate SFBC with R = 2 has
about 4 dB gain. On the other hand the SFBC in [12] with
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QPSK is compared with the multirate SFBC with R = 1 since
both SFBCs have same spectral efficiency of 2 bps/Hz. It is
shown that the multirate SFBC with R = 1 has about 0.2 dB
gain of BER performance. Hence the multirate MRP achieves
better spectral efficiency and a smoother balance between the
transmission rate and BER performance.

7. Conclusion

A rate one MRP and a multirate MRP are proposed for
MIMO-OFDM systems. Both MRP, are capable of achieving
full transmit diversity for an arbitrary number of trans-
mit antennas, subcarrier grouping, and subcarrier interval.
Moreover, the proposed rate one MRP and multirate MRP
demonstrate the feasibility of the SFBC design even if the
transmit antennas do not have full knowledge of channel
PDP, or if the channel PDP is dominated by a limited number
of delays. Both of SFBCs have more design freedom, mitigate
the requirement upon subcarrier interval and subcarrier
grouping, and also overcome the potential loss of diversity
for specific propagation channels. The proposed rate one
MRP has a relatively simple optimization process, which can
be visualized directly, while the proposed multirate MRP has
better spectral efficiency and provides a relatively smooth
balance between system performance and transmission rate.
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