
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 293952, 19 pages
doi:10.1155/2009/293952

Research Article

Multiresolution Analysis Adapted to Irregularly Spaced Data

Anissa Mokraoui1 and Pierre Duhamel (EURASIPMember)2
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This paper investigates the mathematical background of multiresolution analysis in the specific context where the signal is
represented by irregularly sampled data at known locations. The study is related to the construction of nested piecewise polynomial
multiresolution spaces represented by their corresponding orthonormal bases. Using simple spline basis orthonormalization
procedures involves the construction of a large family of orthonormal spline scaling bases defined on consecutive bounded
intervals. However, if no more additional conditions than those coming from multiresolution are imposed on each bounded
interval, the orthonormal basis is represented by a set of discontinuous scaling functions. The spline wavelet basis also has the
same problem. Moreover, the dimension of the corresponding wavelet basis increases with the spline degree. An appropriate
orthonormalization procedure of the basic spline space basis, whatever the degree of the spline, allows us to (i) provide continuous
scaling and wavelet functions, (ii) reduce the number of wavelets to only one, and (iii) reduce the complexity of the filter bank.
Examples of the multiresolution implementations illustrate that the main important features of the traditional multiresolution are
also satisfied.
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1. Introduction

Multiresolution theory has been extensively studied for more
than a decade (see, e.g., [1–4]). Initially, the multiresolution
theory has been mainly developed within the framework of
samples taken at regular sampling instants. Therefore the
scaling and wavelet bases are built under the assumptions
that the knots associated to the discrete signal are regularly
spaced. The scaling or wavelet basis is defined as a set of
translations and dilations of a single prototype function.
Thus, the obtained functions are similar to each other at
different scales.

However, the nonuniform sampling situation arises nat-
urally in many scientific fields such as geophysics, astronomy,
meteorology, medical imaging and computer vision where
data are often generated or measured at sparse and irregular
known positions. In the literature few works are available
in this context, compared to those developed in the case of
regularly spaced data. It is within this framework that we
have concentrated our study. The proposed approach can be
used to interpolate irregularly sampled signals in an efficient
way, by keeping the multiresolution strategy.

The nonequally spaced data assumption results in a
more general definition of the scaling and wavelet functions.
The development of the scaling and wavelet bases, provided
in this paper, focuses on piecewise polynomials, named
nonuniform B-spline functions. These functions are widely
used to model curves and surfaces in computer graphics
[5]. The spline functions were already successfully used in
the uniform spacing knot case leading to the construc-
tion of spline scaling and wavelet functions. An extensive
bibliography is available (see, e.g., [6–10]), while rela-
tively little works have been published about the construc-
tion of these functions on arbitrary nonuniformly spaced
knots.

The construction of the scaling and wavelet bases on
irregular spacing knots is more complicated than the tradi-
tional case (equally spaced knots). On a nonequally spaced
knots sequence, previous works (see, e.g., [11–18]) show
that the underlying concept of dilating and translating one
unique prototype function which allows the construction of
the scaling and wavelet bases is not valid any more. Some
important previous works, in relation to the subject of our
investigation are briefly summarized in the following pages.
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The authors of [11], review and discuss some techniques
and tools for constructing wavelets on an irregular set of
points by means of generalized subdivision schemes and
commutation rules. They have adapted Lemarié’s commu-
tation formula to an irregular setting [12]. Starting from a
coarse and irregular set of points, the subdivision technique
consists in iterating the upsampling process using a local
averaging function to refine and control the shape of a curve.
In this case, the wavelet and scaling functions from the
coarsest level are generated with a subdivision scheme using
new points provided by the finest level grid on which the data
was initially sampled. However, smoothness results in these
settings become much harder to obtain.

This strategy has been widely used in the two dimen-
sional case based on the triangulation plane of a function
[19] which is also based on the formalism of a commutation
approach for an irregular subdivision scheme. The authors
of reference [13] proposed as a sequel of paper [11] the
construction of an entire family of biorthogonal compactly
supported irregular knot B-spline wavelets.

In reference [15], Buhmann and Micchelli originally
presented a theoretical study to perform a multiresolution
analysis using spline spaces of arbitrary degree adapted to
nonuniform knot sequences. They proposed a generalization
of the cardinal spline approach to the wavelets which have
been extensively studied in the uniform spaced data case [3].
The proposed wavelet (named prewavelet in their paper) is
given as the (n + 1)th order derivative of the spline function
of degree 2n + 1. The existence of compactly supported
wavelets which decay exponentially has been shown. The
support of the wavelet depends on the degree n of the
spline function and is given by the interval [xi, xi+2n+1]
(where xk specifies the data position). Moreover, Buhmann
and Micchelli proved that the insertion of L multiple knots
between two consecutive knots belonging to the previous
coarse scale involves 2n + L wavelets.

On another hand, the authors of paper [14] investigated
the construction of a semiorthogonal spline wavelet basis
for nonuniform partitions on a bounded interval. They
proposed the construction of nonuniform B-spline functions
with multiple knots at each end point of the interval as
special boundary functions. They provided explicit expres-
sions of the nonuniform B-spline wavelets. Decomposition
and reconstruction algorithms using filter banks are also
proposed. However the dimension of the spline wavelet
space increases with the insertion of knots from one
resolution level to another. This situation increases the
computational complexity of the filter bank and moreover its
implementation.

In [17], Wang focused on the construction of com-
pactly supported wavelets on arbitrary partitions where
additional conditions were imposed on the end-points of the
cubic spline thereby obtaining a unique interpolating cubic
spline.

In [20], the spline basis orthonormalization process used
for constructing the orthonormal scaling and wavelet bases,
is defined separately on each bounded interval of the knots
sequence. This process introduces discontinuities of the
spline scaling functions at each end-point of the intervals.

The resulting spline wavelet basis functions are also affected.
The wavelet functions are not only discontinuous at each
end-point of the nonuniform B-spline intervals but are also
inside each interval. Moreover, the dimension of the spline
wavelet space is proportional to the degree of the spline
function.

In the framework of this paper, we have chosen to work
separately on each bounded interval of the real line and
to impose multiplicities of maximal order at end-points of
the B-spline function definition domain [21]. The generated
piecewise polynomial spaces allow an obvious scaling of
the spaces as required for a multiresolution construction.
Indeed, a piecewise polynomial of a given degree over a
bounded interval at any resolution level is also a piecewise
polynomial at another resolution level. Moreover, many
simple bases can be built for such piecewise polynomial
spaces.

The main objective of this paper is to propose a
basis orthonormalization procedure which allows for the
construction of suitable bases of the spline scaling and
wavelet spaces ensuring the continuities of all functions
whatever the degree of the spline function. By doing so,
some drawbacks inherent to the developed methods briefly
described above are improved. Whatever the partition of the
knots, we provide a generalization of the multiresolution
approach compared to the works provided in [11, 19].

In these references the process begins with a coarse
irregular subdivision where the refinement step is semi-
regular (i.e., the point is inserted in the middle of two
consecutive knots). In the present paper the support of the
wavelet function at each resolution level is fixed by the
initial partition of the knots, while in [15] it depends on
the spline function degree. Moreover, we show in the next
sections that the computational complexity is significantly
reduced because the number of spline wavelets is reduced
to only one, whatever the spline degree, while in [15] the
number of the wavelets depends on the inserted knots and
the fixed derivative order of the cardinal spline function. In
paper [14], the number of semi-orthogonal spline wavelet
functions increases with the refinement steps.

This paper is organized as follows. Section 2 focuses
on the multiresolution analysis concepts yielding to the
construction of the spline scaling and wavelet subspaces.
Section 3 describes the new spline scaling basis orthonormal-
ization procedure, which can be applied whatever the degree
of the spline function. Finally, Section 4 is concerned with
the construction of the orthonormal spline wavelet basis,
while the corresponding orthogonal decomposition scheme
is developed in Section 5. Multiresolution implementation
results are then discussed in Section 6 followed by Section 7
which concludes the work.

2. Concepts for theMultiresolution Analysis
Adapted to Irregularly Sampled Data

This section focuses on the multiresolution analysis concepts
according to the nonequally sampled discrete signal. Before
we are going to introduce the basic definitions and properties
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of the nonuniform B-spline function necessary for our later
developments.

2.1. Basic Nonuniform Spline Space. Among the large family
of polynomials, the nonuniform B-spline functions have
been selected in this paper since they provide many interest-
ing properties which will be used later for the multiresolution
approach [21].

Let start with some notations. The knots sequence is
composed of known knots corresponding to the locations of
the available data representing the discrete signal. This knots
sequence is organized according to an increasing order:

t0 < t1 < · · · < ti < ti+1 < · · · ∀i ∈ N. (1)

The nonuniform B-spline function definition has been
initially proposed by Curry and Schoenberg [22]. Given
a set of d + 2 samples located at arbitrary known knots.
The ith nonuniform B-spline function of degree d, denoted
by Bd

i,[ti,ti+d+1](t), is considered as a piecewise polynomial
of degree d defined on a compact support [ti, ti+d+1]. As
originally proposed in [21], it is given by the following
formula:

Bd
i,[ti ,ti+d+1](t) = (ti+d+1 − ti)[ti, . . . , ti+d+1](· − t)d+, (2)

where (x−t)+ = max(x−t, 0) represents the truncated power
function and [ti, ti+d+1] is the (d + 1)th divided difference
operator applied to the function (·− t)d+. Remember that the
divided difference operator is defined as follows:

[ti, . . . , ti+d+1](· − t)d+

= (ti+d+1 − ti)
−1
(

[ti+1, . . . , ti+d+1](· − t)d+

−[ti, . . . , ti+d](· − t)d+
)
.

(3)

If any arbitrary knot tk, belonging to the sequence ti < · · · <
ti+d+1, has a multiplicity of order μk + 1 (i.e., the knot occurs
μk + 1 times) then the divided difference definition (see (3))
applied to the function g = (· − t)d+ becomes

[
t0, . . . , tμk

]
g = gμk (t0)

μk!
if t0 = · · · = tμk . (4)

The number of times (rk − 1) that the B-spline function is
continuously differentiable at the knot tk is directly related to
the multiplicity (μk + 1) imposed on the knot tk:

rk + μk = d + 1. (5)

Thus, the B-spline function regularity is Cd−μk . It was proven
in reference [21] that the n nonuniform B-spline functions
set {Bd

i,[ti,ti+d+1], . . . ,B
d
i+n−1,[ti+n−1,ti+n+d]} defined on the knots

sequence a = ti < ti+1 < · · · < ti+d+n = b, generates
a basis for the piecewise polynomials space of degree d.
The spline space restricted to the interval [a, b] is a closed
subspace of L2(R) and is denoted Vd

0 [a, b]. The dimension n
of the spline basis depends on the multiplicities imposed on
each knot of the sequence [21]. Hence, for a fixed degree of

the spline function, several bases of various dimensions can
be constructed for the corresponding piecewise polynomial
space.

In previous work we studied the influence of the
dimension of the spline basis on the interpolation error.
The comparison of the upper bounds of the interpolation
error shows that the smallest one is given for the smallest
dimension, that is, d + 1 [18]. This imposes a multiplicity
of order d + 1 on each knot of the sequence. Thus, the
B-spline functions are defined between two consecutive
knots of the considered sequence. This strategy is generally
used to construct special boundary functions in an interval.
These particular B-splines are also known in the literature
as Bernstein polynomials when the bounded interval is
restricted to [. . . , 0, 0, 1, 1, . . .]. The corresponding basis is
well know in CAGD as the Bernstein-Bézier Form (BBF).
Our study is based on this configuration of knots.

In the following sections, any knot of multiplicity order
d + 1 is denoted indifferently ti or τd+1

i . Whatever the spline
degree, the generalized expression of the nonuniform B-
spline function is given by [5, 21]

Bd
k,[ti ,ti+d+1](t) = Ck

d

(
ti+1 − t

ti+1 − ti

)d−k( t − ti
ti+1 − ti

)k

for ti ≤ t ≤ ti+1, 0 ≤ k ≤ d ∀i ∈ N,

(6)

where Ck
d is the binomial coefficient. The basic spline

subspace of dimension d + 1, denoted Sd
0[ti, ti+1], is defined

as follows:

Sd
0[ti, ti+1] =

⎧⎨
⎩ f : f (t) =

d∑

k=0

ak,[ti,ti+1]B
d
k,[ti,ti+1](t)

for ti ≤ t ≤ ti+1, ak,[ti,ti+1] ∈ l2

⎫⎬
⎭ ∀i ∈ N,

(7)

where f (t) is the spline function of degree d and the set
{ak,[ti ,ti+1]} represents the B-spline coefficients of the spline
function. The basic spline space of the global sequence,
denoted Sd

0 , is given as the union of the closed subspaces as
follows:

Sd
0 =

∞⋃

i=0

Sd
0[ti, ti+1]. (8)

Figure 1 presents the spline basis elements of the basic
space Sd

0[0, 2] for four spline degrees d = 1, d = 2, d = 3 and
d = 4 defined on the bounded interval [τd+1

0 = 0, τd+1
1 = 2].

Let us point out that the spline basis functions are naturally
symmetrical by pair, in reference to the coordinate of the
mid point tsi = (ti + ti+1)/2, except for this single function
Bd
d,[ti,ti+1](t) when the spline degree is even. This last function

is itself symmetric with respect to tsi . Therefore the set of
�(d − 1)/2� + 1 B-spline functions are easily deduced as
follows:

Bd
d−k,[ti,ti+1](t) = Bd

k,[ti ,ti+1](ti + ti+1 − t)

for k = 0, . . . ,
⌊

(d − 1)
2

⌋
,

(9)
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Figure 1: Nonuniform spline bases for d = 1,d = 2,d = 3 and d = 4.

where �·� is the floor function. These suitable properties are
emphasized since they will be used in what follows.

2.2. Multiresolution Analysis Concepts. Classically, a mul-
tiresolution analysis consists of approximating a given signal
at different resolution levels, and of providing recurrence
relations which allows to go from one resolution to the next
(see, e.g., [1–4]).

Let us assume that the nonequally spaced knots partition,
given by (1), is a finite sequence t0 < t1 < · · · < ti <
ti+1 < · · · < tN , where N represents an integer multiple of 2J

with J corresponding to a fixed lower resolution level. This
sequence, denoted S0, is considered as the finest sequence
where a multiplicity of order μ = d + 1 is imposed at
each knot of the sequence. We should first introduce the
bounded interval, denoted I j,i at any given resolution level j,
as follows:

I j,i =
[
t2 j i, t2 j (i+1)

]
=
[
τd+1

2 j i , τd+1
2 j (i+1)

]
∀i, j ∈ N. (10)

At any resolution level j, the corresponding sequence Sj is
thus built from the union of bounded intervals I j,i as defined
below:

Sj =
N−1⋃

i=0

I j,i ∀i, j ∈ N. (11)

Going from the resolution level j − 1 (fine resolution) to
the resolution level j (coarse resolution of scale) consists of
removing one knot out of two in the sequence Sj−1. This is
obtained by means of several intermediate steps in removing
d + 1 multiplicities on these knots. This results in a set of
embedded sub-sequences as follows:

S0 ⊃ S1 · · · ⊃ Sj−1 ⊃ Sj ⊃ · · · ⊃ SJ . (12)

The approximation of the signal y(t) at resolution level j,
on each bounded interval I j,i, is denoted yIj,i(t). In order
to minimize the approximation error (‖y(t) − yIj,i(t)‖),
the approximation of the signal y(t) at resolution level
j is traditionally defined as its orthogonal projection on
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Figure 2: Orthonormal linear (left graphs) and quadratic (right graphs) piecewise polynomial scaling functions at j = 0, 1, 2.

the subspace on which it belongs. This subspace, which will
be defined later, is known as its approximation or scaling
subspace.

In this paper, the functions belonging to the new basic
space, denoted Vd

0 , is nothing other than a subspace of piece-
wise polynomials of degree d over each bounded interval I0,i.
Satisfying some additional properties as it will be described
in the following section. Due to the specific embedded
subsequence structure (12), the functions defined on any
interval I j,i are therefore obviously piecewise polynomials of
degree d. Consequently, the new scaling subspaces are also
nested as follows:

Vd
0 ⊃ Vd

1 · · · ⊃ Vd
j−1 ⊃ Vd

j ⊃ · · ·Vd
J , (13)

where Vd
j =

⋃N−1
i=0 Vd

j [I j,i] for all j ∈ N.
The successive approximations, on each bounded inter-

val, of any signal at two successive resolutions j − 1 and j are
obtained from the orthogonal projections on the respective
approximation subspaces Vd

j−1[I j−1,i]
⋃

Vd
j−1[I j−1,i+1] and

Vd
j [I j,i]. In order to represent the necessary “details” which

allow us to improve the signal approximation from sub-
space Vd

j [I j,i] to subspace Vd
j−1[I j−1,i]

⋃
Vd

j−1[I j−1,i+1], one

introduces the orthogonal complement of subspace Vd
j [I j,i]

in subspace Vd
j−1[I j−1,i]

⋃
Vd

j−1[I j−1,i+1]. The orthogonal

subspace, known as detail or wavelet subspace is denoted by
Wd

j [I j,i]. Hence, we have

Vd
j−1

[
I j−1,i

]⋃
Vd

j−1

[
I j−1,i+1

]
= Vd

j

[
I j,i
]⊕

Wd
j

[
I j,i
]

∀ j ≥ 1.
(14)

Since the approximation subspaces Vd
j [I j,i] are spanned by

specific piecewise polynomials, the detail subspace Wd
j [I j,i]

is also a piecewise polynomial wavelet subspace at any
resolution level j.

In order to meet the classical conditions used in a
multiresolution approach, this paper concentrates on the
orthogonalization of the nonuniform spline basis of the basic
spline space Sd

0 . The normalization of the orthogonal basis
is also an important step since the normalization factor
maintains the same signal energy at each scale. Hence the
new basic piecewise polynomial space Vd

0 is defined on the
real line S0, as follows:

Vd
0 =

⎧⎨
⎩ f : f (t) =

∑

k

ckϕ
d
k
(t) for ck ∈ l2, t ∈ S0

⎫⎬
⎭, (15)

where the set {ϕd
k
(t)} represents the orthonormal scaling

basis functions which will be constructed in Sections 5 and 6.
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Figure 3: Orthonormal linear spline wavelet basis at resolution levels j = 1, 2.

Our study shows that there are several possible ways of
orthonormalizing the nonuniform spline basis of the basic
space Vd

0 . Before presenting the new basis orthonormal-
ization procedure, Section 2.3 summarizes the previous
procedure described in [20] and points out some weaknesses
of the resulting scaling and wavelet functions.

2.3. Review of the Previous Orthonormalization Procedure.
In the previous orthonormalization procedure provided in
[20], the classical Gram-Schmidt method has been applied
to orthonormalize the nonuniform spline basis of the basic
spline space Sd

0[I0,i], separately on each bounded interval
I0,i. A large family of orthonormal spline scaling basis can
be constructed since the Gram-Schmidt method allows us
to choose various functions as the reference one, thus
generating several bases.

As an example of the previous orthonormalization
method, Figure 2 presents the linear and quadratic orthonor-
mal spline scaling basis functions carried out on the initial
finest knot sequence S0 = [τd+1

0 = 0, τd+1
1 = 2, τd+1

2 =
3, τd+1

3 = 7, τd+1
4 = 8]. The left graphs correspond to

the linear case while the right ones correspond to the
quadratic case. Three resolution levels are plotted for j = 0
(graphs (a)), j = 1 (graphs (b)) and j = 2 (graphs (c)).
Figure 2 clearly shows that the constructed scaling functions,
at any resolution level j, are not continuous at the end-points
of adjacent intervals of the knots sequence Sj . However, the
continuity feature for many applications is considered as an
important characteristic to be satisfied.

The resulting orthonormal wavelet basis developed in
[5] is constructed according to the specific traditional
multiresolution conditions applied independently on each of
the knot sequence’s bounded intervals without imposing any
additional condition. The dimension of the wavelet subspace
(Wd

j [I j,i]) on each bounded interval I j,i is equal to d + 1.
Figure 3 presents an example of the two linear polynomial
wavelet functions at resolution levels j = 1 (graphs (a)) and
j = 2 (graphs (b)), on the preceding finest sequence S0.
This example shows that the wavelet functions are neither
continuous, that is to say, inside the bounded interval on
which they belong, nor at the end-points of two adjacent
intervals.
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(t) k = 0, . . . ,d;∀ j ∈ N

Figure 4: Global orthonormalization scheme.

3. Piecewise Polynomial Scaling Basis Using
NewOrthonormalization Procedure

The lack of continuity, as shown in the previous section,
is clearly a drawback in many applications. Indeed the
approximation error may increase particularly at the points
where the fonction presents discontinuities. In some cases,
this situation can influence application performances. This
section proposes a unified construction of the orthonormal
basis of the basic scaling space Vd

0 in such a way that the
functions of the basis are continuous at the end-points of
consecutive intervals.

In this paper, the orthonormalization procedure strategy
is mainly based on the introduction of additional freedom
parameters (named shifting and weighting parameters) on
which the procedure controls the partial orthogonality and
the continuity of the scaling functions at each end-point
of their definition domain. A gradual orthonormalization
procedure is proposed where the main steps are summarized
by the global scheme in Figure 4.

The procedure is divided into four main parts (see
Figure 4). The first one corresponds to pre-processing trans-
formations applied to the spline elements, the second one
considers the transformed spline basis orthogonalization
problem, the third one deals with continuity and the last
one is concerned with the normalization. In order for the
presentation to be as general as possible, the basis is directly
constructed for any scaling subspace Vd

j , based on the
property that the scaling subspaces are nested (see (13)).

3.1. First Step: Transformations Using Shifting and Weighting
Parameters. Rather than working directly on the initial
elements of the spline basis, as suggested in [20], we propose
a pre-processing step. This step is a partial orthogonalization
procedure which ensures two by two orthogonality and the
continuity of the extreme and central transformed B-spline
functions. This strategy is based on the remark pointed out
in Section 2 that the spline basis functions are symmetrical
by pair, except for one B-spline if the degree of the piecewise

polynomial is even (see Figure 1 and (9)). In this context,
one can imagine a large family of transformations preserving
the property of a basis. However, in this paper the choice
is guided by transformations which (i) maintain the initial
shapes of the spline elements, and (ii) reduce the number of
parameters (controlling the continuity) to be updated during
the multiresolution analysis. Trying to be in accordance with
points (i) and (ii), we propose the following transformations.
The initial B-splines are transformed by shifting parameters
({sdk,I j,i}) and weighting parameters ({md

k,I j,i}) as described
above.

3.1.1. Shifting Parameters. Each of the d + 1 initial nonuni-
form B-spline functions {Bd

k,I j,i(t)} of (7) follows shift
transformations provided by (16), (17) and (18):

bdk,I j,i(t) = sdk,I j,i + Bd
k,I j,i(t) for k = 0, k = d, (16)

bdk,I j,i(t) = sdk,I j,i + Bd
k,I j,i(t), bd−kk,I j,i(t) = −sd

k,I j,i + Bd−k
k,I j,i(t)

for k = 1, . . . ,
⌊

(d − 1)
2

⌋
,

(17)

where �·� is the floor function. Moreover, when d is even,
one additional transformation is applied as follows:

bdk,I j,i(t) = sdk,I j,i + Bd
k,I j,i(t), for k = d

2
. (18)

In the first step, the shifting parameters are computed
in order to ensure, in each bounded interval of the knot
sequence Sj , the orthogonality conditions between

(i) all functions of (16) and (18):

〈
bd0,I j,i(t), bdd/2,I j,i(t)

〉
= 0;

〈
bd0,I j,i(t), bdd,I j,i(t)

〉
= 0,

〈
bdd,I j,i(t), bdd/2,I j,i(t)

〉
= 0 ∀i, j ∈ N

(19)
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Figure 5: Orthonormal scaling spline bases at resolution levels j = 0, 1, 2 from top to bottom d = 1 (top left graphs), d = 2 (top right
graphs) d = 3 (bottom left graphs), and d = 4 (bottom right graphs) on the finest sequence S0 = [0, 2, 3, 7, 8].

(ii) the two symmetrical functions given by (17) resulting
in

〈
bdk,I j,i(t), bdd−k,I j,i(t)

〉
= δk(d−k)

for k = 1, . . . ,
⌊
d − 1

2

⌋
∀i, j ∈ N,

(20)

where 〈·, ·〉 represents the inner product.

It is easy to prove that conditions (19) impose the
subsequent relation sd0,I j,i = sdd,I j,i . Moreover, these values

are independent of the intervals leading therefore to the
following equality sd0 = sdd.

The resolution of the system of equations provided
by the second conditions (20) shows that each shifting
parameter associated to the corresponding transformed B-
spline function is also the same constant value on each
bounded interval. So, the shifting parameters are renamed
as follows:

sdk,I j,i = sdk for k = 0, . . . ,
⌊
d

2

⌋
∀ j ∈ N. (21)
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Figure 6: Normalized linear (left graphs) and quadratic (middle and right graphs) spline wavelet functions at j = 1, 2.

3.1.2. Weighting Parameters. For the second transformation,
we introduce some weighting parameters (md

k,I j,i) as freedom
parameters in the transformed B-spline functions given
by (17) to control the continuity of the new orthogonal
functions at the end-points of adjacent intervals (in step 4).
The transformed spline functions are given as follows:

bk,I j,i(t) = sdk + md
k,I j,iB

d
k,I j,i(t);

bd−k,I j,i(t) = −sdk + md
d−k,I j,iB

d
d−k,I j,i(t)

for k = 1, . . . ,
⌊

(d − 1)
2

⌋
.

(22)

The particular transformed B-spline functions, given by (16)
(i.e., the extreme and central (if d is even) ones), do not
require weighting parameters. Indeed they naturally ensure
the continuity conditions with their neighbors. According to

the particular values of the B-spline functions at the end-
points of their definition domain (see Figure 1), the func-
tions bd0,I j,i(t), bdd,I j,i(t) and bdd/2,I j,i(t) (if d is even), evaluated
at the end-points of two consecutive intervals I j,i and I j,i+1

are given by the following relations:

bd0,I j,i(t2 j i) =bdd,I j,i

(
t2 j (i+1)

)
= bd0,I j,i+1

(
t2 j (i+1)

)
= sd0 + 1;

bd0,I j,i

(
t2 j (i+1)

)
= bdd,I j,i(t2 j i) = bdd,I j,i+1

(
t2 j (i+1)

)
= sd0 ,

bdd/2,I j,i(t2 j i) = bdd/2,I j,i

(
t2 j (i+1)

)
= bdd/2,I j,i+1

(
t2 j (i+1)

)
= sdd/2

if d is even ∀i, j ∈ N.
(23)

From these equations, we deduce that the continuity of the
functions at common end-points of adjacent intervals is
naturally satisfied if we swap between the functions bd0,I j,i(t)
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Figure 7: Normalized quadratic spline wavelet functions at resolution level j = 1 satisfying the following conditions: (i) regularity C0 with
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Figure 9: Original discrete signal irregularly spaced “o”.

and bdd,I j,i(t) and from one interval to another. As for the

function bdd/2,I j,i(t) (if d is even), it is clear that the continuity
is naturally ensured on consecutive intervals. The first two
or three (according to the parity of d) elements of the
orthogonal basis (see (16)) are now renamed for writing
convenience reasons as follows:

bd0,I j,i(t) = bd0,I j,i(t); bdd/2,I j,i(t) = bdd/2,I j,i(t);

bdd,I j,i(t) = bdd,I j,i(t) if d is even, ∀i, j ∈ N

bd0,I j,i(t) = bd0,I j,i(t); bdd,I j,i(t) = bdd,I j,i(t)

if d is odd ∀i, j ∈ N.

(24)

3.2. Second Step: Global Orthogonalization. The second step
takes care of the other orthogonality conditions. We use
the classical Gram Schmidt algorithm to supplement the
orthogonalization of the piecewise polynomial basis on each
bounded interval. The extreme (bd0,I j,i(t), bdd,I j,i(t)) and or

the central (bdd/2,I j,i(t)) functions according to the parity of
d, already satisfying the orthogonal conditions are chosen
as reference components for the Gram Schmidt orthogo-
nalization algorithm. Using the remaining parameterized
functions given by (22), the Gram Schmidt method thus
complements the construction of the orthogonal scaling
basis in a traditional way. The resulting functions are denoted
bdk,I j,i(t). They are obviously orthogonal and parameterized

by the weighting factors md
k,I j,i introduced earlier which are

computed in the following step.

3.3. Third Step: Continuity between Adjacent Intervals. Step
3 is interested in the continuity of other functions of the
orthogonal basis (bdk,I j,i(t) for k = 1, . . . , �(d − 1)/2)� than
those given by (24). The weighting parameters, introduced
in step 1, are computed in order to guarantee the continuity

Table 1: Shifting and weighting parameters

d Shifting parameters Weighting parameters

1 s1
0 = −0.78 not required

2 s2
0 = −0.612, s2

0 = −0.373 not required

3 s3
0 = −0.485, s3

0 = −0.253 m3
1 = 1.925, m3

2 = 5.07

4 s4
0 = −0.395, s4

0 = −0.282, m4
0 = −0.159 m4

1 = 0.21, m4
2 = 0.594

of each function bdk,I j,i(t) at the common end-points of
adjacent intervals. For this purpose, we impose the following
conditions:

bdk,I j,i(t2 j i) = bdd−k,I j,i+1

(
t2 j (i+1)

)

for k = 1, . . . ,
⌊

(d − 1)
2

⌋
∀i, j ∈ N.

(25)

For a given spline function degree, the resolution of the sys-
tem of equations provided by (25) shows that the weighting
parameters are independent of the intervals whatever the
resolution level j, leading to the following relation:

md
k,I j,i = md

k for k = 1, . . . ,
⌊

(d − 1)
2

⌋
∀i, j ∈ N. (26)

Table 1 provides the shifting and weighting parameters
retained for the orthogonal piecewise polynomial scaling
basis for different spline function degrees d = 1, 2, 3, 4.

3.4. Fourth Step: Normalization Factors. The main objective
of the normalization step is to conserve the global finite
energy (in L2(R) norm) of the original signal at each
resolution level. In order to preserve the continuity of the
scaling functions (bdk,I j,i , in step 3), we propose to replace
the local factor normalizations performed on each bounded
interval with a global factor normalization Nd

j,k, computed

on the global sequence Sj =
⋃N−1

i=0 I j,i at each resolution level
j, as follows:

ϕd
j,0

(t) =
(∑N/2

i=0 b0,I j,2i(t) +
∑N/2

i=0 b0,I j,2i+1
(t)
)

Nd
j,0

,

ϕd
j,d/2

(t) =
(∑N/2

i=0 bd/2,I j,2i(t) +
∑N/2

i=0 bd/2,I j,2i+1
(t)
)

Nd
j,d/2

,

ϕd
j,k

(t) =
(∑N/2

i=0 bk,I j,2i(t) +
∑N/2

i=0 bd−k,I j,2i+1
(t)
)

Nd
j,k

,

ϕd
j,d−k(t) =

(∑N/2
i=0 bd−k,I j,2i(t) +

∑N/2
i=0 bk,I j,2i+1

(t)
)

Nd
j,d−k

,

ϕd
j,d

(t) =
(∑N/2

i=0 bd,I j,2i(t) +
∑N/2

i=0 b0,I j,2i+1
(t)
)

Nd
j,d

,

for k = 1, . . . ,
⌊
d − 1

2

⌋
, ∀ j ∈ N,

(27)

where ϕd
j,k

(t) is the kth global normalized piecewise poly-

nomial scaling function at resolution level j. The basic
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Figure 10: Orthogonal decomposition; “∗” approximated signals, “o” irregularly discrete samples, “+” residual signals at respective
resolution levels j = 1, 2 from linear and quadratic orthonormal piecewise polynomial scaling and wavelet bases.
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piecewise polynomial scaling space, whatever the degree of
the spline function, is represented as

Vd
0 =

⎧⎨
⎩ f : f (t) =

d∑

k=0

ckϕ
d
0,k

(t) for t ∈ S0 ∀ck ∈ l2

⎫⎬
⎭.

(28)

For convenience, the normalized basis functions are
renamed as Bd

k,I j,i(t) = bdk,I j,i(t)/nj,k where the new orthonor-
malization factors nj,k are introduced according to the parity
index i of the bounded interval I j,i as follows:

if i is even: nij,k = Nj,k;

if i is odd: nij,0 = Nj,d; nij,k = Nj,d−k, nij,d−k = Nj,k and

nij,d = Nj,0 for k = 1, . . . , �(d − 1)/2�.

The orthonormal piecewise polynomial scaling basis is
thus represented by

ϕd
j,0

(t) =
N/2∑

i=0

B0,I j,2i(t) +
N/2∑

i=0

B0,I j,2i+1
(t),

ϕd
j,d/2

(t) =
N/2∑

i=0

Bd/2,I j,2i(t) +
N/2∑

i=0

Bd/2,I j,2i+1
(t),

ϕd
j,k

(t) =
N/2∑

i=0

Bk,I j,2i(t) +
N/2∑

i=0

Bd−k,I j,2i+1
(t),

ϕd
j,d−k(t) =

N/2∑

i=0

Bd−k,I j,2i(t) +
N/2∑

i=0

Bk,I j,2i+1
(t),

ϕd
j,d

(t) =
N/2∑

i=0

Bd,I j,2i(t) +
N/2∑

i=0

B0,I j,2i+1
(t),

for k = 1, . . . ,
⌊
d − 1

2

⌋
, ∀ j ∈ N.

(29)

Based on this new basis orthonormalization procedure,
Figure 5 presents four examples (d = 1, 2, 3, 4) of the
orthonormal spline scaling bases of the respective spaces Vd

0 ,
Vd

1 and Vd
2 for the shifting and weighting parameters given

in Table 1. The layouts are based on this finest knot sequence
S0 = [τd+1

0 = 0, τd+1
1 = 2, τd+1

2 = 3, τd+1
3 = 7, τd+1

4 = 8]. The
top right graphs of Figure 5 present the continuous quadratic
piecewise polynomial scaling functions. The dashed lines, on
each resolution levels (graphs (a), (b), (c)), correspond to the
function ϕ2

j,1
(t). The solid lines are concerned with the func-

tion ϕ2
j,1

(t) at each resolution level. Finally, the marked lines

(+) represent the function ϕ2
j,0

(t) at each resolution level.

The proposed scaling functions are continuous everywhere.
The regularity of the scaling functions is of order zero at all
joining intervals. This is inherent to the multiplicity which
has been imposed on each knot of the considered sequence
(see (5)).

4. Piecewise PolynomialWavelet Basis Using
NewOrthonormalization Procedure

The following section is devoted to a unified orthonor-
mal piecewise polynomial wavelet basis construction of
the detail subspace whatever the degree of the spline
function. Due to the multiplicity of the knots, we are
going to show in the following pages that one can work
with a single wavelet. Moreover, the continuity of the
wavelet function being ensured again by relaxing the tra-
ditional normalization procedure (i.e., going to a normal-
ization on each interval to a normalization on the global
sequence).

4.1. Piecewise Polynomial Wavelet Subspace Dimension. Let
us consider two consecutive intervals I j−1,i

⋃
I j−1,i+1 at

resolution level j − 1. As seen in Section 2, the scaling
and wavelet subspaces are linked by (14). The piecewise
polynomial scaling subspace Vd

0[I0,i]
⋃

Vd
0[I0,i+1] contains

Wd
1[I1,i]. Therefore, any wavelet function ψd

k,I1,i
(t) ∈ Wd

1[I1,i]
defined on the bounded interval I1,i can be decom-
posed using the orthonormal basis of the scaling subspace
Vd

0[I0,i]
⋃

Vd
0[I0,i+1] as follows:

ψd
k,I1,i

(t) =
2i+1∑

m=2i

d∑

n=0

gm,n
1,k B

d
n,I0,i

(t) ∀i, k ∈ N. (30)

This wavelet function is parameterized by 2(d + 1) coeffi-
cients, denoted {gm,n

1,k }, which must be computed.

As the multiplicity μ of the knot to remove (τd+1
2 j−1(i+1))

decreases, the dimension of the piecewise polynomial scaling
subspace, restricted to any interval I j−1,i

⋃
I j−1,i+1, decreases

progressively leading to the nested scaling subspaces:

Vd
j−1

[
τd+1

2 j−1i, τ
d+1
2 j−1(i+1)

]⋃
Vd

j−1

[
τd+1

2 j−1(i+1), τ
d+1
2 j−1(i+2)

]

⊃ Vd
j−1

[
τd+1

2 j−1i, τ
d
2 j−1(i+1), τ

d+1
2 j−1(i+2)

]

⊃ · · · ⊃ Vd
j−1

[
τd+1

2 j−1i, τ
1
2 j−1(i+1), τ

d+1
2 j−1(i+2)

]

⊃ Vd
j−1

[
τd+1

2 j−1i, τ
d+1
2 j−1(i+2)

]
∀i ∈ N, j ≥ 1.

(31)

According to (14), the piecewise polynomial wavelet
subspace dimension, restricted to I j,i, is deduced as follows:

dim
(
Wd

j

[
I j,i
])
= dim

(
Vd

j−1

[
I j−1,i

]⋃
Vd

j−1

[
I j−1,i+1

])

− dim
(
Vd

j

[
I j,i
])

,

(32)

where the dimension of the scaling subspace (dim(Vd
j [τ

d+1
2 j i ,

τd+1
2 j (i+1)]) at resolution level j is equal to d + 1. According to
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(31), the dimension of the scaling subspace at resolution level
j − 1 is given as follows:

dim
(
Vd

j−1

[
τd+1

2 j−1i, τ
1
2 j−1(i+1), τ

d+1
2 j−1(i+2)

])

≤ dim
(
Vd

j−1

[
I j−1,i

]⋃
Vd

j−1

[
I j−1,i+1

])

≤ dim
(
Vd

j−1

[
τd+1

2 j−1(i+1), τ
d+1
2 j−1(i+2)

[⋃

Vd
j−1

[
τd+1

2 j−1(i+1), τ
d+1
2 j−1(i+2)

])
∀i ∈ N, j ≥ 1.

(33)

Then it translates into

d + 2 ≤ dim
(
Vd

j−1

[
I j−1,i

]⋃
Vd

j−1

[
I j−1,i+1

])

≤ 2(d + 1) ∀i ∈ N, ∀ j ≥ 1.
(34)

According to (32) and (34), we deduce that the dimen-
sion of the wavelet subspace, restricted to I j,i, lies between
one and d + 1:

1 ≤ dim
(
Wd

j

[
I j,i
])
≤ d + 1 ∀i ∈ N, ∀ j ≥ 1. (35)

This last equation means that we have the possibility
of choosing several wavelet bases of various dimensions.
Remember that the wavelet function ψd

k,I1,i
(t) is parameter-

ized by 2(d + 1) coefficients {gm,n
1,k } (see (30)). In order to

minimize the computational cost due to these coefficients,
the smallest subspace dimension is retained. In theory, this
choice requires to process the scaling subspace of dimension
d + 2 at resolution level j − 1. However, it is easy to note
that the approximated signal at the knot τ

μ
2 j−1(i+1) (with 1 ≤

μ ≤ d + 1) in any piecewise polynomial scaling subspaces
at resolution level j − 1 is the same value due to the chosen
interpolation method used in this paper. Hence the quality
of the detail signal at the knot τ

μ
2 j−1(i+1) (with 1 ≤ μ ≤ d + 1)

is not affected by any particular selected scaling subspace
dimension.

For computational simplicity, we choose the scaling
subspaces of dimension 2(d+1) rather than d+2. The scaling
functions belonging to the subspace of dimension 2(d + 1)
are easily computed since generalization formulas have been
provided in [19]. Thus, at any resolution level j, equation
(30) becomes

ψd
1,I j,i(t) =

2i+1∑

m=2i

d∑

n=0

gm,n
j,1 Bd

n,I j,i(t) ∀i ∈ N, ∀ j ≥ 1. (36)

4.2. Computation of the Wavelet Coefficients Using Traditional
Conditions. The wavelet function (see (36)) requires the
computation of 2(d + 1) unknown coefficients {gm,n

j,1 }. For
this purpose, we impose two sets of conditions. The first nec-
essary set is directly related to the traditional multiresolution
concept. On each interval of the knot sequence the wavelet
subspace must be as follows:

(i) orthogonal to the scaling subspace, at any resolution
level ( j ≥ 1) resulting in
〈
ψd

1,I j,i(t),Bd
k,I j,i(t)

〉
= 0 for k = 0, . . . , ∀i ∈ N, ∀ j ≥ 1

(37)

(ii) orthogonal to the wavelet subspaces at all and cross
scales, resulting in
〈
ψd

1,I j,i(t),ψd
1,Ik,p

(t)
〉
= αδjkδip ∀i, p ∈ N, ∀ j, k ≥ 1, (38)

where α is a multiplicative constant; δpq is the Kronecker
symbol which is equal to 1 if p = q and to 0 if p /= q.

Since conditions (37) and (38) do not fully determine
2(d + 1) unknown coefficients {gm,n

j,1 }, we introduce a second
category of conditions. This category is concerned with
additional useful conditions imposed on the wavelet so that
the function satisfies the most significant desirable features
often required for a “good” wavelet function (continuity,
even differentiability, vanishing moments).

4.3. Computation of the Wavelet Coefficients Using Additional
Conditions. These additional conditions have been studied
extensively. We propose to establish condition priorities
gathered in different classes depending on the degree of the
spline function.

4.3.1. Continuity inside the Interval. In this category, we start
with the first class of requirements ensuring the C0 wavelet
function regularity inside each interval I j,i at the particular
knot t2 j−1(i+1) as follows:

d∑

n=0

g2i,n
j,1 Bd

n,I j−1,i

(
t2 j−1(i+1)

)
=

d∑

n=0

g2i+1,n
j,1 Bd

n,I j−1,i

(
t2 j−1(i+1)

)

∀ i, k ∈ N, ∀ j ≥ 1.
(39)

If the number of unknown coefficients {gm,n
1,k } for a given

degree d is less than the number of requirements, more
conditions are necessary as described below.

4.3.2. Continuity at the Boundary Points of Consecutive
Interval. The second class of conditions proposes to follow
the C0 regularity of the wavelet functions now on the
global sequence Sj at any resolution level j. In order to
impose the continuity of the wavelets between different
end-points of consecutive intervals, we suggest keeping one
specific coefficient among the different coefficients {gm,n

j,1 }
to guarantee the link between two consecutive intervals I j,i
and I j,i+1. The selected coefficient in the interval I j,i+1 is then
related to the selected coefficient in the preceding interval I j,i
using the relationship deduced from the following equation:

ψd
1,I j,i

(
t2 j (i+1)

)
= ψd

1,I j,i+1

(
t2 j (i+1)

)
∀i ∈ N, ∀ j ≥ 1. (40)

When going from one interval to the adjacent one, the
selected coefficient (e.g., gm,n′

j,1 with 0 ≤ n′ ≤ d) in I j,i+1 is
then updated. If the number of unknown coefficients {gm,n

1,k }
for a given degree d is less than the number of requirements,
more conditions are necessary as follows.

4.3.3. Controlling the Shape of the Wavelet Function on the
Interval. The third class of conditions is primarily concerned
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with the shape of the wavelet on any bounded interval I j,i.
One can choose one among the four conditions to control
the number of vanishing moments according to the desired
shape of the wavelet function as given below:

ψd
1,I j,i(t2 j i)

=

⎧⎪⎨
⎪⎩
±ψd

1,I j,i

(
t2 j (i+1)

)
∀i ∈ N, ∀ j ≥ 1,

ψd
1,I j,i

(
t2 j (i+1)

)
± ψd

1,I j,i

(
t2 j−1(i+1)

)
∀i ∈ N, ∀ j ≥ 1.

(41)

Once again if the number of unknown coefficients {gm,n
1,k } for

a given degree d is less than the number of requirements,
more conditions are necessary as described below.

4.3.4. Continuity of the First Derivative inside the Interval.
The fourth class of conditions guarantees the C1 wavelet
function regularity inside any interval I j,i. The continuity
conditions of the first derivative of the wavelet function, at
the particular knot t2 j−1(i+1) inside any interval I j,i in which
the function belongs results in

∂
∑d

n=0 g
2i,n
j,1 Bd

n,I j−1,i

(
t2 j−1(i+1)

)

∂t

=
∂
∑d

n=0 g
2i+1,n
j,1 Bd

n,I j−1,i

(
t2 j−1(i+1)

)

∂t
∀i ∈ N,∀ j ≥1.

(42)

We keep increasing the list of conditions until reaching
the maximum number of conditions, that is, 2(d + 1). In
this basis orthonormalization procedure we have chosen to
ensure primarily the continuity of all achievable derivatives
of the wavelet function at the particular point t2 j−1(i+1) inside
the interval Ij,i. Then we complete with the derivatives
continuity conditions of the function at the end-points of I j,i
if necessary.

4.3.5. Normalization on the Global Sequence. To preserve the
C0 regularity of the wavelet function as described previously,
a global normalization factor is applied to the complete
sequence Sj . Remember that one coefficient (e.g., gm,n′

j,1 with
0 ≤ n′ ≤ d) is used to ensure the C0 wavelet regularity on Sj .

The initial value of the coefficient g0,n′
j,1 (in the first interval

Ij,0) is computed in such a way that the wavelet function is
globally normalized on Sj once for all.

4.3.6. Discussions. As seen above, a large family of piecewise
polynomial wavelet basis can thus be constructed. But these
wavelets are not all used to implement the multiresolution
approach since they generate stability problems depending
on a particular configuration of the knots in the sequence.
Particular attention concerning the wavelet stability must be
given when constructed. The stability problem occurs when
the wavelet ψd

1,I j,i(t) evaluated at the knot t2 j−1(i+1) inside the
interval I j,i or at the end-point t2 j (i+1) of the same interval
is equal to zero. If the wavelet function is equal to zero at

the point t2 j (i+1), the chosen parameter gm,n′
j,1 is automatically

equal to zero therefore leading to wavelet functions ψd
1,I j,i(t)

which are null on each interval of the considered sequence
(see (40)). To overcome the stability problems, the wavelet
function must meet the following requirements:

ψd
1,I j−1,i

(t) /= 0, ψd
1,I j−1,i

(t) /= 0, gm,n
j,1 /= 0 ∀ j ≥ 1. (43)

The wavelet, denoted by ψd
j (t), of the detail subspace Wd

j is
now deduced as follows:

ψd
j (t) =

N−1∑

i=0

ψd
1,I j,i(t) ∀ j ≥ 1. (44)

With this wavelet basis orthonormalization procedure, the
wavelet regularity inside the interval is Cd−1 for d > 2.
Increasing the spline function degree allows us to ensure the
wavelet derivatives continuity everywhere.

Figure 6 presents the linear (left graphs) and quadratic
(middle and right graphs with different relationships at
the boundary points) piecewise polynomial wavelet at two
resolution levels j = 1 (graph (a)) and j = 2 (graph
(b)) constructed on the previous finest initial knot sequence:
S0 = [0, 2, 3, 7, 8]. The number of wavelet functions initially
equal to two for d = 1 and three for d = 2, as
described in Section 2.3, is reduced to only one function on
each bounded interval. Moreover, the quadratic wavelet is
continuous inside the bounded interval (regularity C0) and
at the end-point of adjacent intervals. It is possible to increase
the regularity of the quadratic wavelet inside each bounded
interval if the condition (41) is replaced by the continuity
condition of the wavelet first derivatives at the point inside
the considered interval. Examples are given by the second
and fourth graphs of Figure 7 where the continuity of the
quadratic wavelet first derivative at the point 0 is ensured.
Rather than satisfying the condition given by (40), one can
increase the number of vanishing moments of the wavelet
such as illustrated by the first graph of Figure 7. However,
conditions (41) are useful for decomposing any discret signal
regularly sampled. Although the wavelet basis is orthogonal,
the proposed wavelet becomes symmetric and compactly
supported (see the graphs (b), (c) and (d) of Figure 7).

5. Orthogonal Decomposition Algorithm

This section is concerned with the orthogonal decompo-
sition of a signal y(t) represented by its discrete samples
irregularly spaced y(ti). We assume that this signal lives in
the basic spline space Vd

0 . The approximation of the signal
y(t) at resolution level j, on each bounded interval I j,i,
is denoted yIj,i(t). This signal belongs to the scaling space

Vd
j [I j,i]. As seen earlier, the piecewise polynomial scaling and

wavelet subspaces satisfy the orthogonal property given by
(14). Therefore, one can decompose any signal yIj−1,i(t) +

yIj−1,i+1 (t) ∈ Vd
j−1[I j−1,i]

⋃
Vd

j−1[I j−1,i+1], according to the
relation

yIj−1,2i(t) + yIj−1,2i+1 (t) = yIj,i(t) + rIj,i(t) ∀i ∈ N, ∀ j ≥ 1,
(45)
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where rIj,i(t) is the detail or residual signal at resolution
level j, defined on the interval I j,i. The residual signal
belongs to the wavelet space Wd

j [I j,i]. Since the signal yIj,i(t)

belongs to the scaling space Vd
j , one can decompose it using

the orthonormal scaling basis of the corresponding space
Vd

j [I j,i] as follows:

yIj,i(t) =
d∑

k=0

cij,kϕ
d
k,I j,i

(t) ∀i ∈ N, ∀ j ≥ 1. (46)

For the same reasons, the residual signal rIj,i(t) can be

expressed using the wavelet basis of the space Wd
j [I j,i] as

follows:

rIj,i(t) = dij,1ψ
d
1,I j,i(t) ∀i ∈ N, ∀ j ≥ 1. (47)

Thus, the approximated signal yIj−1,i(t) ∈ Vd
j−1[I j,i] is given

by the following relation:

yIj−1,2i(t) + yIj−1,2i+1 (t) =
d∑

k=0

cij,kϕ
d
k,I j,i

(t) + dij,1ψ
d
1,I j,i(t)

∀i ∈ N, ∀ j ≥ 1,

(48)

where the weighted coefficients cij,k (resp., dij,1) are given
by the orthogonal projection of yIj,i(t) (resp., rIj,i(t)) on the

scaling subspace Vd
j [I j,i] (resp., Wd

j [I j,i]).

Going from (48), the set of coefficients cij,k (level j) are

closely related to coefficients cij−1,k (level j − 1) by means of

the coefficients set, denoted hl,kj,n, on each bounded interval
I j,i, as follows:

cI j,i = HI j,icI j−1,i
with

cI j−1,i
=
(
c2i
j−1,0 c2i

j−1,1 · · · c2i
j−1,d c2i+1

j−1,0 c2i+1
j−1,1 · · · c2i+1

j−1,d

)t
,

cI j,i =
(
c2i
j−1,0 c2i

j−1,1 · · · c2i
j−1,d

)t ∀i ∈ N, ∀ j ≥ 1.

(49)

Due to the basis orthonormalization procedure (see (29)),
the decomposition matrix HI j,i depends on the parity of the
index i corresponding to the interval I j,i in the sequence as
follows:

If i is even then HI j,i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h2i,0
j,0 h2i,1

j,1 · · · h2i,d
j,0 h2i+1,0

j,0 h2i+1,1
j,0 · · · h2i+1,d

j,0

h2i,0
j,1 h2i,1

j,1 · · · h2i,d
j,1 h2i+1,0

j,1 h2i+1,1
j,1 · · · h2i+1,d

j,1
...

...
...

...
...

...
...

...

h2i,0
j,d−1 h2i,1

j,d−1 · · · h2i,d
j,d−1 h2i,0

j,d−1 h2i,1
j,d−1 · · · h2i,d

j,d−1

h2i,0
j,d h2i,1

j,d · · · h2i,d
j,d h2i,0

j,d h2i,1
j,d · · · h2i,d

j,d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∀ j ≥ 1, (50)

If i is odd then HI j,i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h2i,0
j,d h2i,1

j,d · · · h2i,d
j,d h2i,0

j,d h2i,1
j,d · · · h2i,d

j,d

h2i,0
j,d−1 h2i,1

j,d−1 · · · h2i,d
j,d−1 h2i,0

j,d−1 h2i,1
j,d−1 · · · h2i,d

j,d−1

...
...

...
...

...
...

...
...

h2i,0
j,1 h2i,1

j,1 · · · h2i,d
j,1 h2i+1,0

j,1 h2i+1,1
j,1 · · · h2i+1,d

j,1

h2i,0
j,0 h2i,1

j,1 · · · h2i,d
j,0 h2i+1,0

j,0 h2i+1,1
j,0 · · · h2i+1,d

j,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∀ j ≥ 1. (51)

The matrix dimensions are given below:

dim
(
cI j,i
)
= (d + 1)× 1,

dim
(
HI j,i

)
= (d + 1)× 2(d + 1),

dim
(
cI j−1,i

)
= 2(d + 1)× 1.

(52)

The extension of (49) to the sequence Sj is easily obtained
and becomes

c j = H jC j−1 with
(
cI j,0 cI j,1 · · ·

)t
,

H j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

HI j,0 [0] [0] [0]

[0] HI j,1 [0] [0]

... [0]
. . . [0]

[0] [0] [0] HI j,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(53)
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The computation of the detail coefficients at any resolution
level j, on the interval I j,i, are also given by the following
relation:

dI j,i = GI j,icI j−1,i
with

cI j−1,i
=
(
c2i
j−1,0 c2i

j−1,1 · · · c2i
j−1,d c2i+1

j−1,0 c2i+1
j−1,1 ... c2i+1

j−1,d

)t
,

GI j,i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�2i,0
j,0 �2i,1

j,1 · · · �2i,d
j,0 �2i+1,0

j,0 �2i+1,1
j,0 · · · �2i+1,d

j,0

0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∀i ∈ N, ∀ j ≥ 1.
(54)

The dimensions of the matrices are equivalent to those
provided in (52). The main important difference between
the previous basis orthonormalization procedure of the
piecewise polynomial scaling and wavelet basis (see [21]) is
that the matrix dI j,i is reduced from d + 1 values to only one

value dij,1 (different from zero) on each bounded interval
I j,i. Moreover, the number of coefficients of the filter GI j,i ,

previously equal to 2(d + 1)2 coefficients, is reduced to only
2(d + 1) coefficients. Reducing therefore the multiresolution
filter banks complexity. Equation (54), valid on each interval,
is extended to the sequence Sj as follows:

D j = G jC j with D j =
(
dI j,0 dI j,1 · · ·

)t ∀ j ≥ 1,

(55)

whereG j is the extension of the matrix decomposition GI j,i to
the sequence Sj equivalent to HI j,i . Since the decomposition
is orthogonal, the reconstruction matrices are deduced from
the decomposition matrices H j and G j . These matrices are
sparse, which allows efficient decomposition and reconstruc-
tion steps. The traditional filters bank are replaced by a
set of filters (GI j,i ,HI j,i) which depend on the position of
the knots in the sequence Sj . Figure 8 presents the global
multiresolution scheme for two consecutive resolution levels.

6. Implementation of
theMultiresolution Approach

This section addresses the implementation of the proposed
multiresolution approach in the context of irregularly
spaced data. The orthogonal decomposition, as seen earlier,
processes approximation coefficients C j at each resolution
level. Therefore an initialization step is required to find the
first initial coefficients set C0. The computation of these
coefficients needs the manipulation of the continuous signal
y(t). However, the signal is represented only by its irregularly
spaced samples y(ti) with ti ∈ S0. For this purpose, we
assume that this signal belongs to the basic spline space Vd

0

spanned by the spline basis provided by (6) in Section 2. We
propose to interpolate the discrete signal, on each bounded

interval I0,i, using the nonuniform B-spline functions {Bd
k,I0,i
}

of the basic space Vd
0 [I0,i] according to the relation

yI0,i(t) =
d∑

k=0

ak,I0,iB
d
k,I0,i

∀i ∈ N, (56)

where the computation of the weighted coefficients {ak,I0,i}
has been extensively studied in previous works (see, e.g.,
[18]). Recall that the basic spline space Vd

0 is also represented
by the orthonormal piecewise polynomial scaling basis
{ϕ

k,I0,i(t)
}. The orthogonal projection of the signal yI0,i (t), on

the basic spline space Vd
0 [I0,i] allows the computation of the

approximation coefficients C0 as follows:

ci0,k =
〈
yI0,i(t),ϕd

k,I0,i

�
for k = 0, . . . ,d, ∀i ∈ N. (57)

The coefficients C0 are thus provided by replacing yI0,i(t) in
the previous expression as follows:

ci0,k =
d∑

l=0

al,I0,i

〈
Bd
l,I0,i

(t),ϕd
k,I0,i

(t)
�

for k = 0, . . . ,d, ∀i ∈ N.

(58)

The computation of the coefficients set C0 given by (58) uses
the B-spline coefficients values provided by Table 2 for d = 1
and d = 2 (see [18]). In the quadratic case, the coefficient
al,I0,i requires the first derivative value of the signal yI0,i(t)
evaluated at the knot ti (see Table 2). Let us point out that
the quality of the multiresolution approach depends closely
on the computation method from which the first derivative
y′I0,i

(t) is evaluated. We propose to construct a quadratic
polynomial which passes through three consecutive known
samples yI0,i(ti), yI0,i(ti+1), and yI0,i(ti+2). It is then easy to
deduce the first derivative value taken at the knot ti.

Figure 9 provides the original signal represented by its
129 samples irregularly spaced. This signal, randomly sub-
sampled, corresponds to line 24 of the Lena image (512 ×
512 pixels). In order to analyze the results, the magnitude
of the original signal has been scaled by a factor of 50.
The retained samples are marked by the symbol “o.” This
signal is decomposed using both the orthonormal linear
and quadratic piecewise polynomial scaling and wavelet
bases developed in the preceding sections (see Figures 5
and 6). The graphs in the left column (resp., of the right
column) of Figure 10 present the discrete approximated
signals and residual signals using linear (resp., quadratic)
spline scaling and wavelet bases for two resolution levels.
The corresponding available samples at resolution j are
represented by the symbol “o,” and the approximated signals
use the symbol “∗”at each resolution level. The residual
signals are represented by the symbol “+.” A large number
of the wavelet transform detail samples turn out to be
very small in magnitude, as shown in Figure 10. One can
clearly notice that increasing the degree of the piecewise
polynomial scaling and wavelet function results in a smaller
variance of the residual signal. The most interesting case
corresponds to piecewise polynomial of degrees greater than
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Table 2: B-spline coefficients.

d a0,I0,i

1 a0,I0,i = yI0,i (ti), a1,I0,i = yI0,i (ti+1)

2
a0,I0,i = yI0,i (ti), a2,I0,i = yI0,i(ti+1),

a1,I0,i = yI0,i (ti) + y′I0,i
(ti)(ti+1 − ti)/2

one (linear case). The linear case is a commonplace case.
Indeed, we do not need to use the developed theory since
one knows how to connect directly two consecutive points by
a line. For degrees higher than one, it is necessary however to
evaluate the derivatives of corresponding order of the signal.
Moreover, as already stated, the better the approximation
of these derivatives, the smaller the variance of the residual
signal.

7. Conclusion

This paper explored the underlying mathematical framework
of the one-dimensional multiresolution analysis based on the
nonequally spaced samples environment. The study shows
that the scaling and wavelet functions are not respectively
given by dilating and translating one unique prototype
function as in the traditional case. The specification of
the multiresolution spaces involves the construction of
the corresponding scaling and wavelet bases. As shown
in previous work, the orthonormalization procedure has
affected the regularity of the piecewise polynomial scaling
and wavelet functions. This paper has proposed a new basis
orthonormalization procedure which (i) reduces the number
of the wavelets to a single one per interval (depending
on the localization of the samples) and (ii) satisfies the
continuity conditions of the scaling and wavelet functions
on the considered knot sequence. Moreover the orthogonal
decomposition is implemented using filter banks.

The implementations of the orthogonal decomposition
using linear and quadratic piecewise polynomial scaling
and wavelet bases showed that the main important classical
characteristics of the traditional multiresolution approach
(i.e. regular spaced samples) are still maintained. Among
these characteristics, the provided simulations illustrated
that (i) the smallest variance of the residual signal is obtained
when there is a decrease in the resolution and (ii) increasing
the spline function degree results in a decrease of the
variance of the residual signal. Once this theory has been
explained, one can now use the corresponding framework for
traditional applications such as denoising, compression.

Among the proposed wavelet functions, the particular
one with regularity Cd−1 and equal values at the end-
points of the interval presents many interesting and desirable
properties in the specific context of uniformly spaced data.
Indeed this wavelet is compactly supported, symmetrical
and its regularity can be controlled almost everywhere when
acting on the spline function degree. It would be quite
interesting to study the features of the corresponding filter
banks in future investigations.
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