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We address the problem of spectrum sharing where competitive operators coexist in the same frequency band. First, we model this
problem as a strategic non-cooperative game where operators simultaneously share the spectrum according to the Nash Equilibrium
(NE). Given a set of channel realizations, several Nash equilibria exist which renders the outcome of the game unpredictable.
Then, in a cognitive context with the presence of primary and secondary operators, the inter-operator spectrum sharing problem
is reformulated as a Stackelberg game using hierarchy where the primary operator is the leader. The Stackelberg Equilibrium (SE)
is reached where the best response of the secondary operator is taken into account upon maximizing the primary operator’s utility
function. Moreover, an extension to the multiple operators spectrum sharing problem is given. It is shown that the Stackelberg
approach yields better payoffs for operators compared to the classical water-filling approach. Finally, we assess the goodness of the
proposed distributed approach by comparing its performance to the centralized approach.
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1. Introduction

Spectrum sharing between wireless networks improves the
efficiency of spectrum usage where a migration toward
flexible spectrum management is paramount to alleviate
spectrum scarcity and its underutilization. In this respect
and motivated by the ever-increasing demands for wireless
services, several works have appeared in literature ([1–9]
among many others) wherein interestingly both theoretical
and practical (system-level) contributions, stemming from
pricing [1, 7], opportunistic power control [10] to resource
sharing [8], and others have been made.

In this paper, we study spectrum sharing between two
competing operators operating in the same frequency band
in which base stations communicate with their mobile
terminals. In this case, a transmitter T1 wants to send
information to its mobile R1, while at the same time
another base station T2 (from a competitive operator) wants
to transmit information to its mobile R2. These systems,
therefore, share the same medium where the communication
pairs (T1,R1) and (T2,R2) take place simultaneously and

on the same frequency band. This setup is known as the
interference channel (IFC) ([11–15] to mention a few).

There is a great deal of work on the IFC channel using
game theory. In [13], the problem of power allocation in a
frequency-selective multiuser interference channel is studied.
An iterative Water-Filling (WF) algorithm is proposed to
efficiently reach the Nash equilibrium. Moreover, it is found
that under suitable conditions, the iterative WF algorithm
for the two-user Gaussian interference game converges to
the unique Nash equilibrium from any starting point. In
their scenario, the Nash equilibria lead to nonefficient and
non pareto-optimal solutions. Similarly, in [11], the authors
consider the problem of spectrum sharing on the IFC for
flat-fading channels. The interference channel is viewed
as a noncooperative game and the Nash equilibrium is
characterized under a set of sufficient conditions. In [16], the
authors investigate the problem of simultaneous water-filling
solution for the gaussian IFC under weak interference. Moti-
vated by the pareto-inefficiency of the water-filling approach,
the authors propose a distributed algorithm to transform a
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symmetric system from simultaneously waterfilled to a fair
orthogonal signal space partitions.

In [17], the problem of two wireless networks oper-
ating on the same frequency band was considered. Pairs
within a given network cooperate to schedule transmissions
according to a random-access protocol where each network
chooses an access probability for its users. In [18], the
authors consider the problem of coordinating two competing
multiple-antenna wireless systems in the Multiple Input
Single Output (MISO) IFC. It turns out that if the systems
do not cooperate, then the corresponding equilibrium rates
are bounded regardless of how much transmit power the base
stations have available. Also, Nash bargaining solutions were
found to be close to the sum-rate bound. On the other hand,
in [19–21], the authors study the problem of maximizing
mutual information subject to mask constraints and transmit
power, for both simultaneous and asynchronous cases.
(Under this setup, some users are allowed to update their
strategy more frequently than the others. And, they might
even perform these updates using outdated information on
the interference caused by others.) The existence of the
Nash equilibrium is proven and sufficient conditions are
given for the uniqueness. Finally, in [20], distributed iterative
algorithms are proposed to reach the Nash equilibrium.

In most of these works, the existence of the Nash
equilibrium is easily demonstrated, whereas the uniqueness
is generally more complicated for which only sufficient
conditions are given. Because of the very hard problem of
the uniqueness of the Nash equilibrium points in the WF
game, Nash bargaining (NBS) solutions were considered in
[14]. However, NBS requires the knowledge of all channel
state information which is not always possible in practice.

Within the same framework of spectrum sharing but
under a different scenario, Stackelberg games [22] have
been applied in the context of cognitive radios where the
desirability of outcomes depends not only on their own
actions but also on other cognitive radios. It is worth
pointing out that the Stackelberg formulation naturally arises
in some contexts of practical interest: (a) when primary and
secondary systems share the spectrum, (b) when user have
access to the medium in an asynchronous manner, (c) when
operators deploy their networks at different times, and (d)
when some nodes have more power than others such as
the base station. Stackelberg is based on a leader-follower
approach in which the leader plays his strategy before the
follower, and then enforces it. In [23], a game theoretic
framework has been proposed in the context of fading
multiple-access channel where a Stackelberg formulation is
proposed in which the base station is the designated game
leader with the purpose to have a distributed allocation
strategy approaching all corners of the capacity region. In
[24], a two-level Stackelberg game is proposed for distributed
relay selection and power control for multiuser cooperative
networks. The objective is to jointly consider the benefits of
source and relay nodes in which the source node is modeled
as a buyer and the relay nodes as the sellers. Also, the energy-
efficient power control problem is investigated in [25].
Moreover, in [26], the authors investigate a similar power
allocation problem but solely focus on channel realizations in

which the Nash equilibrium of the game is unique. ( The case
with multiple Nash equilibria was not treated.) However,
this work differs in that the Stackelberg approach is mainly
motivated by the nonuniqueness of the Nash equilibrium
and unpredictability of the game.

In essence, the fundamental questions we address in this
paper are the following.

(i) In the first operators’ deployment scenario, if both
operators simultaneously operate in a noncooperative
(i.e., selfish) manner: what are their power allocation
strategies across their carriers? Clearly, there is a
conflict situation where a good strategy for the
link (T1,R1) will generate interference for R2 and
viceversa. Hence, an equilibrium has to be found.

(ii) Given any set of channel realizations, is it possible to
predict the outcome of the game?, and if so, how to
characterize the Nash equilibria regions? Is the Nash
equilibrium unique?

(iii) In the second scenario of operators’ deployment in
which primary and secondary operators coexist in
the same spectral band, what is the outcome of the
game when a hierarchy exists between operators?
How does this approach compare with the selfish
approach (classical water-filling)?

(iv) How close is the distributed approach from the
centralized (sum-rate) power allocation?

The paper is organized as follows: the system model is
introduced in Section 2. In Section 3, the spectrum sharing
game between operators is formulated using noncooperative
game theory. In Section 4, a special case with two operators
transmitting on two carriers is investigated to gain insights
into the Nash equilibria regions. In Section 5, we formulate
the interoperator spectrum sharing problem as a Stackelberg
game where a hierarchy exists between operators as well as an
extension to the multiple operators case. Section 6 provides a
comparison between the distributed (selfish) and centralized
approach. Finally, we conclude this work in Section 7.

2. SystemModel

We suppose that K transmitters share a frequency band
composed of N carriers where each transmitter transmits
in any combination of channels and at any time. ( The
terms transmitter and operator are interchangeably used
throughout the paper.) On each carrier n = 1 · · ·N ,

transmitter k = 1 · · ·K sends the information xnk =
√
pnk s

n
k ,

where snk represents the transmitted data and pnk denotes the
corresponding transmitted power of user k on carrier n. The
received signal at the receiver i in carrier n can be expressed
as

rni =
K∑

j=1

hnjix
n
j + wn

i , i = 1, . . . ,K , n = 1, . . . ,N , (1)

where hnji is the fading channel gain on the nth carrier
between the pair (Ti,Rj). In addition, the noise process wn

i



EURASIP Journal on Advances in Signal Processing 3

h11T1

T2

Tk Rk

R2

h21

h12

h22

R1

hkk

...
...

Figure 1: K-user N-carriers interference channel under study.

is characterized by its received noise power on each carrier n,
by σ2

n .
For transmitter i, the transmit power pni is subject to its

power constraint:

N∑

n=1

pni ≤ Pi, i = 1, . . . ,K. (2)

At the receiver i, the signal to interference plus noise ratio
(SINR) on carrier n is given by

SINRn
i =

pni
∣∣hnii

∣∣2

σ2
n +

∑K
j=1, j /= i p

n
j

∣∣∣hnji
∣∣∣2 . (3)

Furthermore, assuming Gaussian codebook, the maxi-
mum achievable rate at receiver i is given by

Ri =
N∑

n=1

log2

(
1 + SINRn

i

)
. (4)

3. Noncooperative Spectrum Sharing Game

In this section, we model the interoperator spectrum sharing
problem from a noncooperative standpoint [27]. Figure 1
illustrates the spectrum sharing scenario under study for K
operators and N carriers.

3.1. Game Formulation. The noncooperative spectrum shar-
ing game is defined as ΓNCG � [K , {Pi}i∈K , {Ui}i∈K].
The players (from the set K � {1, 2, . . . ,K}) are defined
as the different links with a strategy pni ∈ Pi and the
payoffs are the achievable rates on each link ui(pni , pn−i) =
Ri(pni , pn−i) ∈ Ui, for i = 1, . . . ,K and n = 1, . . . ,N . Each
player competes against the others by choosing its transmit
power (i.e., strategy) to maximize its own utility subject to
some power constraints Pi. In this work, we assume full
channel state information in which operators know their
fading channel gains as well as other’s fading cross-channels.

Since the operators do not cooperate, the only reasonable
outcome of the spectrum conflict is an operating point
which constitutes a Nash equilibrium (NE) [28]. This is a
point where none of the players can improve their utilities
by unilaterally changing their strategies. One should note
that a Nash equilibrium is not an optimal or even desirable
outcome. However, it is an insightful point where one is likely
to end up operating at, if players are not willing to cooperate.

In a noncooperative approach, operator i selfishly maxi-
mizes his utility function subject to the power constraint Pi:

max
pni

Ri = max
pni

N∑

n=1

log2

⎛
⎜⎝1 +

∣∣∣hni,i
∣∣∣2
pni

σ2
n +

∑K
j /= i

∣∣∣hnj,i
∣∣∣2
pnj

⎞
⎟⎠

s.t.
N∑

n=1

pni ≤ Pi,

pni ≥ 0.

(5)

Furthermore, the channel realization set h is defined as

h =
{
hni j : i, j = 1, . . . ,K , n = 1, . . . ,N

}
. (6)

The solutions to (5) are given by the water-filling power
allocation solutions:

pni =

⎛
⎜⎝ 1
μi
−

σ2
n +

∑
i

∣∣∣hn−i,i
∣∣∣2
pn−i∣∣∣hni,i

∣∣∣2

⎞
⎟⎠

+

i = 1, . . . ,K , n = 1, . . . ,N ,

(7)

where (x)+ = max{x, 0} and μi > 0 is the Lagrangian
multiplier chosen to satisfy the power constraint:

∑N
n=1 p

n
i =

Pi. Note that the equality follows from the concavity of the
objective function in pi.

4. A Special Case of Two Operators and
Two Carriers

In order to gain insight into the properties of the Nash
equilibria for our interoperator spectrum game, let us focus
on the case where two operators transmit over two carriers
(i.e., K = N = 2).

4.1. Notations. (i) For the ease of notation and readability
that will prove helpful in the sequel, we introduce the
following notations: gni j = Pi|hni j|2/σ2

n , c1 = g1
11/g

2
11, and

c2 = g1
22/g

2
22.

(ii) The pair (α1,α2) means that user 1 transmits with
power (p1

1, p2
1) = (α1P1, (1− α1)P1) on carrier 1 and 2 while

user 2 transmits with power (p1
2, p2

2) = (α2P2, (1− α2)P2) on
carriers 1 and 2, respectively.

Figure 2 depicts the space of the 9 Nash equilibria of the
game obtained upon solving (7), the details of which are
given in Appendix A. Given a set of channel realizations h,
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Figure 2: Illustration of the Nash equilibria space where (α1,α2)
denotes the power allocation strategy for both operators 1 and 2, in
the first carrier.

the game converges to different equilibrium points. Figure 3
illustrates one possible representation of the Nash equilibria
space. Depending on the quantities (1 + g1

21)/(1 + g2
11), (1 +

g1
11)/(1 + g2

21), and (1 + g1
22)/(1 + g2

12), (1 + g1
12)/(1 + g2

22)
(see Appendix A), four different representation of the regions
are possible. These regions are depicted in Figure 4 whose
purpose is to reflect the 8-dimensional problem related to
the channel realization set h.

It turns out that given certain channel realizations, the
Nash equilibrium is unique (white rectangle areas) while
some of the grayish rectangle regions exhibit at least one
Nash equilibria.

4.2. Existence of the Nash Equilibria. The existence of the
Nash equilibria is proven using the theorem in [29] within
the context of noncooperative concave games. Hence, the
game defined in (5) admits at least one Nash equilibrium.

4.3. Uniqueness of the Nash Equilibria. In [13], the authors
give sufficient conditions for the uniqueness of the NE but
do not precisely state which NE are obtained for any given
channel realization set h. Therefore, building on these results,
a full characterization of the Nash equilibria region for the
2-operators 2-carriers case is herein given. Beside, the proof
of the uniqueness when both operators transmit in both
carriers (full-spread) is given in Appendix B.

Remark 4.1. The operators were assumed to be noncoop-
erative hence operating at the Nash Equilibrium was their
best response in a selfish context (one-shot game). It was
also shown that under certain channel realizations, the
spectrum sharing game is predictable with a unique Nash
equilibrium. However, in other regions and given a set of
channel realizations, nonunique Nash equilibria exist. In this
case, the spectrum sharing game is no longer predictable.

Remark 4.2. We note that the sufficient conditions given for
the flat-fading case studied in [11] are depicted in Figure 3
for the low-interference regime (X ,Y) where g1

2,1/g
1
1,1 < 1 and

g1
1,2/g

1
2,2 < 1.

Remark 4.3. In the multioperators case, the results for the 2
operator and 2 carriers case carry over where the sufficient
conditions for the uniqueness are given by

∀n ∈ {1, . . . ,N},
K∑

i=1, j /= i

∣∣∣hnji
∣∣∣2

∣∣hnii
∣∣2 < 1. (8)

This result comes from the Karush-Kuhn-Tucker conditions
of the optimization problem of the set of data rates. Addi-
tionally, the physical meaning of (8) is that the uniqueness
of the Nash equilibrium is ensured if the links are sufficiently
far from each other.

Remark 4.4. We note that when one of the cross-gain
|h−i,i|2 = 0, the IFC becomes a Z-channel [30] where the
NE exists and is unique (the characterization of the Nash
equilibria region for the Z-channel follows the same lines as
the IFC).

5. Introducing Hierarchy
(Stackelberg Game Approach)

In this section, we look at the interoperator spectrum sharing
problem where the concept of hierarchy is accounted for.
This situation is inherent in situations where primary and
secondary operators share the same spectrum. In what
follows, we formulate and solve the interoperator spectrum
sharing problem (with hierarchy) for the 2-operators 2-
carriers case then provide insights for the case with more
than 2 operators.

A Stackelberg game ΓSG � [K , {Pi}i∈K , {Ui}i∈K] is
proposed to model the spectrum sharing problem where one
of the two operators is chosen to be the leader (primary
operator). The Stackelberg Equilibrium (SE) [22] is the best
response where a hierarchy of actions exists between players.
Backward induction [27] is applied assuming that players can
reliably forecast the behavior of other players and that they
believe that the other player can do the same. For this reason,
the key point in this setup is the capability of the follower
of sensing the environment and, therefore, the power level of
operator 1 (the leader).

5.1. Problem Formulation. Without loss of generality, we
assume that primary operator 1 is the leader and secondary
operator 2 is the follower. First, we give a definition of the
Stackelberg equilibrium as follows.

Definition 5.1 (Stackelberg Equilibrium [27]). A strategy
profile (pSE

1 ,pSE
2 ) is called a Stackelberg Equilibrium if pSE

1

maximizes the utility of the leader (operator 1) and pSE
2 is

the best response of operator 2 to operator 1.

The Stackelberg spectrum sharing game can be formu-
lated as follows. First, in the high-level problem (9), primary
operator 1 maximizes his own utility function. Then, in
the low-level problem (10), secondary operator 2 (follower)
maximizes his own utility taking into account the optimal
power allocation of operator 1 (pSE

1 ). By denoting (pSE
1 , pSE

2 )
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Figure 3: Characterization of the Nash equilibria regions given a set of channel realizations h.
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Figure 4: All four cases are depicted: (I) when (1 + g1
11)/(1 + g2

21) >
(1 + g1

21)/(1 + g2
11) and (1 + g1

22)/(1 + g2
12) > (1 + g1

12)/(1 + g2
22), (II)

when (1 + g1
11)/(1 + g2

21) < (1 + g1
21)/(1 + g2

11) and (1 + g1
22)/(1 + g2

12) >

(1 + g1
12)/(1 + g2

22), (III) when (1 + g1
11)/(1 + g2

21) > (1 + g1
21)/(1 + g2

11)

and (1 + g1
22)/(1 + g2

12) < (1 + g1
12)/(1 + g2

22), and finally when (IV)

(1 + g1
11)/(1 + g2

21) < (1 + g1
21)/(1 + g2

11) and (1 + g1
22)/(1 + g2

12) <

(1 + g1
12)/(1 + g2

22).

as the Stackelberg Equilibrium, the rate optimization prob-
lem for operator 1 (leader) is written as

max
pn1

N∑

n=1

log2

(
1 +

∣∣hn11

∣∣2
pn1

σ2
n +

∣∣hn21

∣∣2
pn2
(
pn1
)
)

N∑

n=1

pn1 ≤ P1,

pn1 ≥ 0.

(9)

The rate optimization problem for operator 2 (follower) is
written as

max
pn2

N∑

n=1

log2

(
1 +

∣∣hn22

∣∣2
pn2

σ2
n +

∣∣hn12

∣∣2(
pn1
)SE

)

N∑

n=1

pn2 ≤ P2,

pn2 ≥ 0,

(10)

where pSE
2 = BR2(pSE

1 ).
Using backward induction and given the best response of

operator 2 (the follower), (10) can be rewritten as

max
pn1

N∑

n=1

log2

⎛
⎜⎝1+

∣∣hn11

∣∣2
pn1

σ2
n +
∣∣hn21

∣∣2
(

1/μ2−(σ2
n +
∣∣hn12

∣∣2
pn1 )/

∣∣hn22

∣∣2
)+

⎞
⎟⎠

N∑

n=1

pn1 ≤ P1,

pn1 ≥ 0.
(11)

The Stackelberg sharing game, therefore, boils down to
solving (11) where several cases are considered. In our
spectrum sharing problem (K = N = 2), the power strategies
of operator 2 take 3 values. In the first case, operator 2
transmits with maximum power P2 in carrier 1 (p1

2 =
P2, p2

2 = 0). In the second case, operator 2 transmits with
P2 in carrier 2 (p1

2 = 0, p2
2 = P2), and finally in the third case,

operator 2 transmits on both carriers (full spread) with (p1
2 =

x, p2
2 = P2 − x), 0 < x < P2. Therefore, the leader maximizes

his utility function given the best response of the follower.
In the following, all of the three cases are investigated. For
simplicity sake, we assume P1 = P2 = 1.
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5.1.1. Operator 2 Transmits Only in Carrier 2 (p1
2 = 0, p2

2 = 1).
Under this setup, p2

2 > 0 ⇒ p1
1 ≥ β1 where

β1 = σ2
2 /
∣∣h2

22

∣∣2
+
∣∣h2

12

∣∣2
/
∣∣h2

22

∣∣2 − σ2
1 /
∣∣h1

22

∣∣2
+ 1∣∣h1

12

∣∣2
/
∣∣h1

22

∣∣2
+
∣∣h2

12

∣∣2
/
∣∣h2

22

∣∣2 , (12)

where β1 depends on the set of channel realizations.
Furthermore, the maximization problem for the leader is

written as

max
p1

1

log2

⎛
⎝1 +

∣∣h1
11

∣∣2
p1

1

σ2
1

⎞
⎠ + log2

⎛
⎝1 +

∣∣h2
11

∣∣2
(
P1 − p1

1

)

σ2
2 +

∣∣h2
21

∣∣2

⎞
⎠,

max
(
β1, 0

) ≤ p1
1 ≤ P1,

(13)

the KKT conditions are given such that

λ∗1
((

p1
1

)∗ −max
(
β1, 0

)) = 0, λ∗1 ≥ 0,

λ∗2
((

p1
1

)∗ − P1

)
= 0, λ∗2 ≥ 0,

∂L1

∂p1
1
= 0,

(p1
1)
∗ ≤ P1,

(
p1

1

)∗ ≥ max
(
β1, 0

)
,

(14)

where λ∗1 , λ∗2 are the Lagrangian multipliers associated with
the constraints

L1 = log2

⎛
⎝1 +

∣∣h1
11

∣∣2
p1

1

σ2
1

⎞
⎠ + log2

⎛
⎝1 +

∣∣h2
11

∣∣2
(
P1 − p1

1

)

σ2
2 +

∣∣h2
21

∣∣2

⎞
⎠

− λ1
(
p1

1 −max
(
β1, 0

))
+ λ2

(
p1

1 − P1

)
,

∂L1

∂p1
1
= 0

=⇒ h1
11

σ2
1 + h1

11p
1
1
− h2

11

σ2
2 + h2

21 + h2
11

(
P1 − p1

1

) = λ1 − λ2.

(15)

Assume that p1
1 = max(β1, 0. ), then, λ∗1 ≥ 0, λ∗2 = 0 and

h1
11

σ2
1 + h1

11 max
(
β1, 0

) − h2
11

σ2
2 + h2

21 + h2
11

(
P1 −max

(
β1, 0

)) ≥ 0.

(16)

Now assuming that p1
1 = P1, then λ∗1 = 0, λ∗2 ≥ 0 and

h1
11

σ2
1 + h1

11P1
− h2

11

σ2
2 + h2

21
≤ 0. (17)

Finally, assuming that max(β1, 0) < p1
1 < P1, then λ∗1 = λ∗2 =

0 and

p1
1 =

σ2
1

∣∣h1
11

∣∣2 − σ2
2

∣∣h2
11

∣∣2
+
∣∣h1

11

∣∣2
(∣∣h2

21

∣∣2
+
∣∣h2

11

∣∣2
P1

)

2
∣∣h1

11

∣∣2∣∣h2
11

∣∣2 .

(18)

5.1.2. Operator 2 Transmits Only in Carrier 1 (p1
2 = 1, p2

2 = 0).
Under this setup, p1

2 > 0 ⇒ p1
1 ≤ β2, where

β2 = σ2
2 /
∣∣h2

22

∣∣2
+
∣∣h2

12

∣∣2
/
∣∣h2

22

∣∣2 − σ2
1 /
∣∣h1

22

∣∣2 − 1∣∣h1
12

∣∣2
/
∣∣h1

22

∣∣2
+
∣∣h2

12

∣∣2
/
∣∣h2

22

∣∣2 . (19)

Furthermore, the maximization problem for the leader is
written as

max
p1

1

log2

⎛
⎝1 +

∣∣h1
11

∣∣2
p1

1

σ2
1 +

∣∣h1
21

∣∣2

⎞
⎠ + log2

⎛
⎝1 +

∣∣h2
11

∣∣2
(
P1 − p1

1

)

σ2
2

⎞
⎠

0 ≤ p1
1 ≤ min

(
β2,P1

)
.

(20)

Likewise, to derive the KKT conditions, form the Lagrangian
denoted as L2 :

L2 = log2

⎛
⎝1 +

∣∣h1
11

∣∣2
p1

1

σ2
1 +

∣∣h1
21

∣∣2

⎞
⎠

+ log2

⎛
⎝1 +

∣∣h2
11

∣∣2
(
P1 − p1

1

)

σ2
2

⎞
⎠

− λ1p
1
1 + λ2

(
p1

1 −min
(
β2,P1

))

(21)

the KKT conditions are

λ∗2
((

p1
1

)∗ −min
(
β2,P1

))
= 0, λ∗2 ≥ 0,

λ∗1
((

p1
1

)∗) = 0, λ∗1 ≥ 0,

∂L2

∂p1
1
= 0,

(
p1

1

)∗ ≥ 0,
(
p1

1

)∗ ≤ min
(
β2,P1

)
,

(22)

where λ∗1 , λ∗2 are the Lagrangian multipliers associated with
the constraints

∂L2

∂p1
1
= 0

=⇒ h1
11

σ2
1 + h2

21 + h1
11p

1
1
− h2

11

σ2
2 + h2

11

(
P1 − p1

1

) = λ∗1 − λ∗2 .

(23)

Assume that p1
1 = 0, λ∗1 ≥ 0, then λ∗2 = 0 and, furthermore,

h1
11

σ2
2 + h2

21
− h2

11

σ2
1 + h2

11P1
≥ 0. (24)

Assuming that p1
1 = min(β2,P1), λ∗2 ≥ 0, then λ∗1 = 0 and,

furthermore,

h1
11

σ2
1 + h2

21 + h1
11 min

(
β2,P1

) − h2
11

σ2
2 + h2

11

(
P1 −min

(
β2,P1

))

= λ∗1 − λ∗2 .
(25)
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Figure 5: Power allocation strategies of the Stackelberg game in
which 6 cases exist depending on the variables β1 and β2. The X-
axis depicts the strategy space for the leader (p1

1).

Finally, assume that 0 < p1
1 < min(β2,P1), then λ∗1 = λ∗2 = 0

and

p1
1 =

h1
11

(
σ2

1 + h2
11P1

)
− h2

11

(
σ2

2 + h1
21

)

2h1
11h

2
11

. (26)

5.1.3. Operator 2 Transmits in Both Carriers (p1
2 = x, p2

2 =
1− x).

max
p1

1

log2

⎛
⎝1 +

∣∣h1
11

∣∣2
p1

1

σ2
1 +

∣∣h1
21

∣∣2
x

⎞
⎠

+ log2

⎛
⎝1 +

∣∣h2
11

∣∣2
p2

1

σ2
2 +

∣∣h2
22

∣∣2
(1− x)

⎞
⎠

p1
1 + p2

1 ≤ P1,

p1
1, p2

1 ≥ 0,

β2 < p1
1 < β1.

, (27)

Since p1
2 = x = 1/μ2 − (σ2

1 + |h1
12|2p1

1)/|h1
22|2 > 0

depends on p1
1, the objective function (27) of operator 1 is

nonconvex in p1
1 (the KKT conditions can be written in the

same way as done for the previous cases and the problem is
solved numerically). Figure 5 depicts all the 6 different cases
depending on the values of β1 and β2 (note that β2 < β1). The
X-axis depicts the strategy space for the leader (p1

1).
As can be seen, in the first case (β2 > 1, β1 > 1) the

leader has to perform one maximization over the interval
[0, 1]. In the second case (0 < β2 < 1, β1 > 1), the leader
has to perform 2 maximizations ([0,β2] and [β2, 1]) and pick
the power allocation that maximizes his payoff. Similarly,

the leader has 3 maximizations to perform in the third case
([0,β2], [β2,β1], and [β1, 1]), where 0 < β1 < 1, 0 < β2 < 1
and likewise for the remaining cases. In essence, in all these
cases, the leader (operator 1) forces the follower to adopt a
strategy that maximizes the leader’s payoff. In this way, using
backward induction, the Stackelberg equilibrium is unique,
solving thereby the problem of nonuniqueness encountered
in the noncooperative approach of Section 4. Additionally,
one should note that there exist Stackelberg solutions that
are non-Nash equilibria of the noncooperative game.

Another similar approach for solving the Stackelberg
equilibrium is used in [31] where an explicit expression of
pn2 (function of pn1 ) needed to analytically find the SE is given
as

pn2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝P2 +

k∑

i=1

(
σ2
π−1(i) +

∣∣∣hπ−1(i)
12

∣∣∣
2
pπ

−1(i)
1

)⎞
⎠

−σ2
2 −

∣∣hn12

∣∣2
pn1 , π(i) ≤ k,

0, π(i) > k,
(28)

where π is a permutation function ranking all channels
according to their noise plus interference and k can be found
from the following condition: ϕk < P2 ≤ ϕk+1 and ϕt =∑k

i=1(σ2
π−1(i) + |hπ−1(i)

12 |2pπ−1(i)
1 ), ∀t ∈ {1, . . . ,n}.

5.2. Extension to the Multiple Operators’ Case. The inter-
operator spectrum sharing in the context of two operators
can be extended to the more general case with K operators
sharing the same spectrum. The problem is formulated in the
same way where the leader’s optimization problem is written
as

max
pn1

N∑

n=1

log2

⎛
⎜⎝1 +

∣∣hn11

∣∣2
pn1

σ2
n +

∑K
j /= 1

∣∣∣hnj1
∣∣∣2
pnj
(
pn1
)

⎞
⎟⎠,

N∑

n=1

pn1 ≤ P1,

pn1 ≥ 0,

(29)

and pSE
j = BR j(pSE

1 , . . . , pSE
− j) is a function of pn1 .

Solving (29) becomes much more involved in the general
case in which the utility function of the primary operator
is nonconvex (pnj is function of pn1 ). Nevertheless, there
exist suboptimal and low-complexity methods to solve the
problem. To this end and motivated by the work of [32],
we use lagrangian duality theory wherein the duality gap
[33] provides a nice tool for solving nonconvex optimization
problem.
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initialize λ,P1,P2, . . . ,PK

repeat
for n = 1, . . . ,N

set pn1 = argmax
pn1

N∑
n=1

log2

⎛
⎝1 +

|hn11|2pn1
σ2
n +

∑K
j /= 1 |hnj1|2pnj (pn1 )

⎞
⎠ + λ(P1 −

N∑
n=1

pn1 )

by keeping p1
1, . . . , pn−1

1 , pn+1
1 , pN1 fixed.

end
until (p1

1, . . . , pN1 ) converges
update λ using subgradient [32] method until it converges.

Algorithm 1

The lagrangian of (29) is given by

g(λ) = max
pn1

L
(
pn1 , λ

)

= max
pn1

N∑

n=1

log2

⎛
⎜⎝1 +

∣∣hn11

∣∣2
pn1

σ2
n +

∑K
j /= 1

∣∣∣hnj1
∣∣∣2
pnj

⎞
⎟⎠

+ λ

⎛
⎝P1 −

N∑

n=1

pn1

⎞
⎠,

(30)

where λ is the lagrangian dual variable associated with the
power constaint.

Consequently, solving the Stackelberg problem is done
by locally optimizing the lagrangian function (30) via
coordinate descent [33]. For each fixed set of λ, we find
the optimal p1

1 while keeping p2
1, . . . , pN1 fixed, then find the

optimal p2
1 keeping the other pn1 (n /= 2) fixed, and so on.

Such process is guaranteed to converge because each iteration
strictly increases the objective function. Finally, λ is found
using subgradient [32] method. The algorithm is depicted in
Algorithm 1.

Finally, in the case of multiple primary and secondary
operators, the optimization problem in (29) becomes a
multiobjective optimization problem. In this case, the issue
of cooperation is at stake where primary operators i can
operate at feasible points yielding rates that dominate the
noncooperative equilibrium rate (Ri ≥ RNE). On the
other hand, the secondary operators will adopt the same
noncooperative and selfish approach (iterative water-filling).

6. Numerical Evaluation

In this section, numerical results are presented to validate
the theoretical claims. Figure 6 depicts the average achievable
rate of both operators for the Stackelberg approach. In the
simulations, we let the individual power constraint P1 =
P2 = P = 1, SNR = P/σ2 and channel fading realizations
are independent and identically distributed (i.i.d) Rayleigh
distributed.
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Figure 6: Average achievable rate for both users versus the signal-
to-noise ratio for the centralized and Stackelberg approach. More-
over, the best and worst Nash equilibria for the non-cooperative
game are illustrated.

It is important to quantify the performance loss from the
optimal solution provided by the centralized strategy. To this
end, we compare the Stackelberg rates with the rates obtained
by sum-rate maximization (which are Pareto-optimal):

max
pn1 ,pn2

K∑

i=1

N∑

n=1

log2

(
1 +

∣∣hn11

∣∣2
pn1

σ2
n +

∣∣hn21

∣∣2
pn2

)
,

N∑

n=1

pn1 ≤ P1,
N∑

n=1

pn2 ≤ P2,

pn1 ≥ 0, pn2 ≥ 0, n = 1, . . . ,N.

(31)

The objective function is nonconvex in the power variables
pn1 and pn2 . To solve (31), the maximization problem is trans-
formed into a convex optimization problem using Geometric
Programming [33]. Additionally, Figure 6 depicts the best
and worst NE where the best NE refers to the equilibrium
maximizing the sum-rate of both operators whereas the
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worst NE case minimizes it. It is also worth noting that the
worst Nash equilibrium acts like a lower-bound for the Nash
equilibrium. Furthermore, the Stackelberg approach is closer
to the centralized approach as compared to the selfish case.
This is due to the fact that in the Stackelberg approach, oper-
ators take into account other operators’ strategies whereas in
the selfish case, operators behave carelessly by using water-
filling. Figure 7 shows the achievable rate region for both
operators in which the Nash and Stackelberg equilibria are
illustrated. Since primary operator 1 is the leader, his rate
is higher with the Stackelberg approach. Also, interestingly,
the rate of operator 2 is also better off with the Stackelberg
approach. As a result, both operators have strong incentives
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Figure 10: Cumulative distribution function (CDF) of the ratio of
the rates between the hierarchical (Stackelberg) and noncooperative
(selfish) approaches RSE
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in adopting the hierarchical (Stackelberg) approach. Finally,
Figure 8 depicts the probability P (RSE

1 − RNE
1 ≥ γ), that

is, when the Nash equilibrium approach is worse than the
Stackelberg’s for operator 1, for several SNR values where it is
seen that the Stackelberg approach outperforms the classical
water-filling approach.

On the other hand, Figure 10 depicts the cumulative dis-
tribution function (cdf) of the ratio between the achievable
rates of the hierarchical and noncooperative approaches. In
this scenario, we assume K = 4 operators with 1 primary
operator and 3 secondary wireless operators sharing the
same spectrum composed of N = 5 carriers. As can be
seen, the primary operator (operator 1) always improves
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his achievable rate compared to the selfish approach. The
cumulative distribution function of the secondary operators
also provides insights on their achievable rates.

7. Conclusion

In this paper, we studied the problem of spectrum sharing
between operators from two different perspectives. First, a
one-shot game was studied where operators play simulta-
neously, operating at the NE point which exhibits different
behaviors according to the set of channel realizations. Then,
in a second approach, a hierarchical game is examined where
the primary operator is the leader and the secondary operator
is the follower, wherein their sum-rates are further improved
compared to the water-filling approach. Simulation results
show incentives for operators to behave cleverly by adopting
the hierarchical (Stackelberg) approach. In our future work,
we will use the concept of hierarchy to investigate power
control schemes for femtocells networks [34].

Appendices

A.

We derive the a set of 9 inequalities for the Nash equilibria
when K = 2 operators transmit over N = 2 carriers, for the
noncooperative game ΓNC.

Recall that gni j = Pi|hni j|2/σ2, c1 = g1
11/g

2
11, and c2 =

g1
22/g

2
22.

It holds that (α1,α2) = (0, 0) is a Nash Equilibrium

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1 ≤ 1
1 + g2

11 + g2
21

,

c2 ≤ 1
1 + g2

22 + g2
12

,

(α1,α2) = (1, 0) is a Nash Equilibrium

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1 ≥
1 + g1

11

1 + g2
21

,

c2 ≤
1 + g1

12

1 + g2
22

,

(α1,α2) = (0, 1) is a Nash Equilibrium

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1 ≤
1 + g1

21

1 + g2
11

,

c2 ≥
1 + g1

22

1 + g2
12

,

(α1,α2) = (1, 1) is a Nash Equilibrium

⇐⇒
⎧⎨
⎩
c1 ≥ 1 + g1

11 + g1
21,

c2 ≥ 1 + g1
22 + g1

12,

(α1,α2) = (x, 1) is a Nash Equilibrium

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2g1
22g

1
11 ≤ c2g

1
11

(
1 + g2

12

)− 2g1
11 −

(
c2g

2
12 + g1

12

)

×(c1 − 1 + c1g
2
11 − g1

21

)
,

1 + g1
21

1 + g2
11
≤ c1 ≤ 1 + g1

11 + g1
21,

(A.1)

where x = 1/2− 1/2g1
11 − g1

21/2g
1
11 + 1/2g2

11,

(α1,α2) = (1, x) is a Nash Equilibrium

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2g1
11g

1
22 ≤ c1g

1
22

(
1 + g2

21

)− 2g1
22 −

(
c1g

2
21 + g1

21

)

×(c2 − 1 + c2g
2
22 − g1

12

)
,

1 + g1
12

1 + g2
22
≤ c2 ≤ 1 + g1

22 + g1
12,

(A.2)

where x = 1/2− 1/2g1
22 − g1

12/2g
1
22 + 1/2g2

22,

(α1,α2) = (0, x) is a Nash Equilibrium

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2
(
1 + g2

12

)
+ g1

22 − 1

2g1
22

≥ c1
(
1 + g2

21 + g2
11

)− 1

g1
21 + c1g

2
21

,

1
1 + g2

22 + g2
12
≤ c2 ≤

1 + g1
22

1 + g2
12

,

(A.3)

where x = 1/2 + g2
12/2g

2
22 − 1/2g1

22 + 1/2g2
22,

(α1,α2) = (x, 0) is a Nash Equilibrium

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1
(
1 + g2

21

)
+ g1

11 − 1

2g1
11

≥ c2
(
1 + g2

12 + g2
22

)− 1

g1
12 + c2g

2
12

,

1
1 + g2

11 + g2
21
≤ c1 ≤

1 + g1
11

1 + g2
21

,

(A.4)

where x = 1/2 + g2
21/2g

2
11 − 1/2g1

11 + 1/2g2
11,

(α1,α2) = (x, y
)

is a Nash Equilibrium

⇐⇒
⎧⎨
⎩

0 < x < 1,

0 < y < 1,

x =
(
2g1

21

(
c1
(
1 + g2

12 + g2
21

)− 1
)−A

)
(
4g1

11g
1
22 −

(
c2g

2
12 + g1

12

)(
c1g

2
21 + g1

21

)) ,

y =
(
1/
(
2g2

22

))− 1/
(
2g1

22

)
+
(
(1− x)g2

12

)
(
2g1

22

)− ((g1
12x
)
/2g1

22 + 1/2
) ,

(A.5)

where A denotes (c1g
2
21 + g1

21)(c2(1 + g2
12) + g1

22 − 1).
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B.

In this setup, the utility functions become

R1(α1,α2) = log2

⎛
⎜⎝1 +

∣∣∣h1
1,1

∣∣∣2
α1

σ2
1 +

∣∣∣h1
2,1

∣∣∣2
α2

⎞
⎟⎠

+ log2

⎛
⎜⎝1 +

∣∣∣h2
1,1

∣∣∣2
(1− α1)

σ2
2 +

∣∣∣h2
2,1

∣∣∣2
(1− α2)

⎞
⎟⎠,

R2(α1,α2) = log2

⎛
⎜⎝1 +

∣∣∣h1
2,2

∣∣∣2
α2

σ2
1 +

∣∣∣h1
1,2

∣∣∣2
α1

⎞
⎟⎠

+ log2

⎛
⎜⎝1 +

∣∣∣h2
2,2

∣∣∣2
(1− α2)

σ2
2 +

∣∣∣h2
1,2

∣∣∣2
(1− α1)

⎞
⎟⎠.

(B.1)

We will give now sufficient conditions that guarantee the
uniqueness of the NE. By analyzing the first-order derivatives
of the payoff functions, we can find explicit relations for the
best response functions (BR):

BR1(α2) =
−B− ∣∣h2

11

∣∣2
+
∣∣h1

11

∣∣2
(

1 +
∣∣h2

21

∣∣2
+
∣∣h2

11

∣∣2
)

2
∣∣h1

11

∣∣2∣∣h2
11

∣∣2 ,

BR2(α1) =
−C− ∣∣h2

22

∣∣2
+
∣∣h1

22

∣∣2
(

1 +
∣∣h2

12

∣∣2
+
∣∣h2

22

∣∣2
)

2
∣∣h1

22

∣∣2∣∣h2
22

∣∣2 ,

(B.2)

whereB denotes [|h2
11|2|h1

21|2+|h1
11|2|h2

21|2]α2 andC denotes
[|h2

22|2|h1
12|2 + |h1

22|2|h2
12|2]α1.

We observe that the functions BRi(α−i) are linear with
respect to α−i. Thus, the intersection of the BR functions is
either a unique point or an infinity of points. Therefore, the
sufficient conditions that ensure the uniqueness of the NE are
the following:

∣∣h2
11

∣∣2∣∣h1
21

∣∣2
+
∣∣h1

11

∣∣2∣∣h2
21

∣∣2

2
∣∣h1

11

∣∣2∣∣h2
11

∣∣2

/= 2
∣∣h1

22

∣∣2∣∣h2
22

∣∣2

∣∣h2
22

∣∣2∣∣h1
12

∣∣2
+
∣∣h1

22

∣∣2∣∣h2
12

∣∣2 ,

−∣∣h2
11

∣∣2
+
∣∣h1

11

∣∣2
(

1 +
∣∣h2

21

∣∣2
+
∣∣h2

11

∣∣2
)

2
∣∣h1

11

∣∣2∣∣h2
11

∣∣2

/=
−∣∣h2

22

∣∣2
+
∣∣h1

22

∣∣2
(

1 +
∣∣h2

12

∣∣2
+
∣∣h2

22

∣∣2
)

∣∣h2
22

∣∣2∣∣h1
12

∣∣2
+
∣∣h1

22

∣∣2∣∣h2
12

∣∣2 .

(B.3)

If these conditions are met, the unique point at the inter-
section of the BRs describes the Nash equilibrium. This is
illustrated in Figure 9.
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