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The aim of this work is to study the diffractive properties of a sinusoidal phase grating for incorporation as a pattern projection
element in a multisource and multicamera phase-shifting profilometric system. Two challenges should be overcome for successful
operation of such a system, which are connected to inherent limitations of the phase-shifting algorithm—requirements for a
sinusoidal fringe profile and for equal background and contrast of fringes in the recorded patterns. As a first task, we analyze
the frequency content of the projected fringes in the Fresnel diffraction zone for parallel and divergent light illumination at
different grating parameters and wavelengths. As a second task, we evaluate the systematical errors due to higher harmonics and
multiwavelength illumination. Finally, operation of the four-wavelength profilometric system is simulated, and the error of the
profilometric measurement evaluated. The results of test measurements are also presented.
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1. Introduction

Parallel acquisition of information as an inherent property of
optical methods stimulated development of various optical
techniques for noncontact measurement of surfaces of 3D
objects and scenes. Among existing techniques, the methods
which rely on a functional relationship of the sought object
data with the phase of a periodic fringe pattern (FP) pro-
jected onto and reflected from the object occupy a special
place as a metrological means with noncomplex setups and
processing algorithms that are suitable for outdoor imple-
mentation [1, 2].

Phase retrieval from a deformed FP, recorded as a
function of spatial coordinates and time, requires solution
of a nonlinear inverse problem based on fringe analysis of a
fringe profile [2]:
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where I0(�r, t) is a slowly varying background intensity,
IV (�r, t) is a fringe visibility which is also a low-frequency
signal, f [· · · ] is a periodic function, f ∈ [−1, 1], and
ϕ(�r, t) is a phase term related to the measured parameter,
for example, an object profile. The additional phase term
φ(�r, t) is optional, being introduced during the formation
of the waveform f or during the phase evaluation process.

As the phase retrieval involves nonlinear operations, many
algorithms need some constraints to be applied.

Over the years, a host of phase retrieval algorithms has
been proposed and tested [3]. From the point of view of
3D object capture, an ideal algorithm must ensure real-time
automatic precise calculation of the phase from generally
wideband FPs, which are recorded from complicated objects
with large depth variation and discontinuities such as steps,
holes, and protrusions. Real-time operation can be done by
phase retrieval from a single pattern (single-shot acquisition)
or from multiple patterns which are recorded at high
acquisition speed and processed by simple fast algorithms
[4]. Using Fourier transform [5–7] is a straightforward way
for phase retrieval from a single pattern, but it requires
introduction of a high carrier frequency within the FP and
also suffers from limitation on object height variation. In
addition, due to the global character of the transform, the
reconstructed surface is influenced by imperfections within
the whole FP. The approaches based on space-frequency
representations [8, 9] for phase retrieval from a single pattern
are still under development. Recently, the so-called spatial
analysis methods for phase retrieval from a single pattern
have been reported as regularized phase tracking which
involves time-consuming iterative procedures to solve a set
of linear equations [10, 11]: fitting-error modified spatial
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fringe modulation [12, 13], phase demodulation based on
fringe skeletonizing when an extreme map is introduced by
locating the fringes minima and maxima [14, 15], phase-
stepping recovery of objects by numerical generation of
multiple frames from a single recorded frame [16]. However,
spatial methods usually rely on a slow phase variation within
the FP, which hampers analysis of wideband FPs, or requires
time-consuming iterations. As it seems, fast acquisition of
multiple FPs is a more effective technical solution for the real-
time capture.

In the case of M recorded FPs, Im(x, y), m = 1, 2, . . . ,M,
which are equally shifted at a phase step φ, the object phase
is determined from the expression [2, 17]

ϕ(x, y) = arctan

∑M
m=1bmIm(x, y)

∑M
m=1amIm(x, y)

, (2)

where the coefficients am, bm depend on the phase step φ.
This phase-shifting technique is a very popular pointwise
approach for phase demodulation due to its high accuracy
and large dynamic range. It is widely applied in its temporal
modification with successive recording of the FPs in time,
thus being inapplicable for a real-time capture.

Recently, there have been some reports on real-time
recording/processing of phase-shifted patterns [4, 18–20].
A single-shot measurement by simultaneous projection of
three colour patterns (red, green, and blue) on the object at
different angles and Fourier analysis of the deformed image
recorded by a single CCD camera are described in [18, 19]. A
phase-stepping method for measuring the 3D surface profile
of a moving object by projection of a sinusoidal grating
pattern and continuous intensity acquisition by three phase-
shifted linear array sensors positioned along the projected
stripes is proposed in [20]. The method is restricted to
objects moving at a constant speed. High-resolution 3D
measurement of absolute coordinates using three phase-
shifted fringe patterns coded with three primary colors and
recorded at data acquisition speed of 90 fps is presented in
[4].

In [21], we proposed a technical solution of a single-shot
pattern projection profilometric system with simultaneous
projection and recording of four phase-shifted FPs which
are generated at four different wavelengths. The system
includes a pattern projection module with four projection
elements irradiated by four near-infrared diode lasers and a
registration module with four CCD cameras. As candidates
for a projection element, a sinusoidal phase grating and a
holographic optical element which reconstructs two point
sources have been discussed [21]. Technical simplicity of
setup, easy manufacturing, reproducibility of the desired
modulation and spacing, high efficiency, minimization of
the phase-shifting error, and independence of the spatial
period of the diffraction pattern on the wavelength advocated
strongly the choice of the phase grating. This solution
determines the aim of this work which is to study the
diffractive properties of a sinusoidal phase grating for incor-
poration as a pattern projection element in a multisource and
multicamera profilometric system. Two challenges should
be overcome for successful operation of such a system,

which are connected to inherent limitations of the phase-
shifting algorithm—requirements for a sinusoidal fringe
profile and for equal background and contrast of fringes in
the recorded FPs. As a first task, we analyze the frequency
content of the projected fringes in the Fresnel diffraction
zone for parallel and divergent light illumination at different
grating parameters and wavelengths. As a second task, we
evaluate the systematical errors due to higher harmonics and
multiwavelength illumination. Finally, operation of the four-
wavelength profilometric system is simulated, and the error
of the profilometric measurement is evaluated. The results of
test measurements are also presented.

2. Four-Wavelength Pattern
Projection System

Optical arrangement of the four-wavelength profilometric
system is presented in Figure 1. The fringe pattern generation
module consists of 4 blocks corresponding to four different
wavelengths (λ1–λ4) as shown in Figure 1, where DL1–DL4
are 20 mW CW single-mode diode lasers, and G1–G4 are
identical sinusoidal phase gratings. The diode lasers emit
in NIR spectral region at wavelengths of λ1 = 790 nm, λ2

= 810 nm, λ3 = 850 nm, and λ4 = 910 nm. The pattern
generation module ensures simultaneous projection of four
sinusoidal patterns of equal spacing that are phase-shifted
at π/2. To optimize the optical efficiency of wavelength
mixing, the different interference mirrors (IM1–IM3) are
used as follows: the mirror IM1 transmits λ1 and reflects
λ2, the mirror IM2 transmits λ1, λ2 and reflects λ3, λ4, and
the mirror IM3 transmits λ3 and reflects λ4. The object
is illuminated by the four patterns simultaneously using a
projection objective.

The registration module consists of four synchronized
CCD cameras for simultaneous capture of the FPs which
have been deformed by the measured surface. The spectral
separation of the individual patterns is provided by a second
set of interference mirrors, that is, IM1–IM3. The recorded
FPs are further processed by a four-step phase-shifting
algorithm with M = 4 and φ = π/2 in (2). The precise
positioning and adjustments of cameras and optical elements
are required to avoid possible systematic errors and to ensure
parallel recording of the phase-shifted patterns, modulated
by the object surface.

3. Frequency Content of Diffraction Pattern
from a Sinusoidal Phase Grating

3.1. Theory. If the phase-shifting algorithm (2) is applied
for phase retrieval, violation of the assumption f [· · · ] =
cos (· · · ) in (1) leads to systematic errors in the evaluated
phase. Pure sinusoidal fringes can be created by two-
beam interference in an interferometer. However, inevitable
environmental noise and complexity of the setup jeopardize
outdoor application of such a system. This motivates the
implementation of other approaches for sinusoidal pattern
projection such as using spatial light modulators [22] or



EURASIP Journal on Advances in Signal Processing 3

DL 3
G3

λ3

IM 3

DL 1

G1

λ1

IM 1

DL 2
G2

λ2

IM 2

DL 4

G4

λ4

L

Z

α

X

Z′

X′

Objective

CCD 3

λ3

λ4

IM 3 CCD 4

IM 1
λ1

CCD 1
IM 2

CCD 2

λ2

Figure 1: Optical arrangement of the four-wavelength pattern projection system—DL1-4: diode lasers, G1-4: diffraction gratings, IM1-3:
interference mirrors.

diffraction gratings [23], however at the expense of higher
harmonics in the projected pattern.

Over the years, the systematic errors caused by the
nonlinearity of phase-shifters and recording devices or by
the presence of higher harmonics have been comprehensively
studied [23, 24] and, as a result, rather elaborated error-
compensating algorithms have been proposed. The short-
coming of these algorithms is their controversial behavior:
the more efficient they are in suppressing the systematic
error, the more vulnerable they become to random errors.
Quite often, the solution is found in presuming that the
higher harmonics are negligible in the projected pattern
[24], but one could hardly take this assumption for granted
without analysis of the frequency content of the projected
fringes. For example, higher harmonics are unavoidable in
the fringe profile f (x, y) created by a defocused Ronchi
grating which is a popular way to generate sinusoidal fringes
[25, 26]:

f (x, y) = a0 +
Q∑

q=1

sin c
(
πq

2

)
J1(2πqb/2)
πqb/2

cos
(

2πqx
L

)
,

(3)

where a0 is the average value, Q is the number of harmonics,
L is the grating spacing, and b is defocusing parameter; the
grating lines are parallel to the y-axis.

A thin sinusoidal phase grating located in the (X ,Y) plane
with grating lines parallel to the y-axis is characterized with
transmittance [27]:
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where m is the modulation parameter, L is the grating
spacing along the x-axis, and Jq is a Bessel function of the

first kind (order q). At illumination with a unit-amplitude
normally incident plane wave, the Fresnel diffraction pattern
at distance z behind the grating is a structure that is periodic
along the directions x and z. A complex amplitude U(x, y, z)
in this case can be found using the transfer function
approach [26], with the transfer function being valid for
Fresnel diffraction:
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which yields
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(6)

In the above expressions, λ is the wavelength, and fx, fy are
the spatial frequencies in the plane of observation which is
parallel to the grating and located at distance z from it. The



4 EURASIP Journal on Advances in Signal Processing

factor exp( jkz) is omitted as representing a constant phase
delay at all spatial frequencies, and the equality J−q(m) =
(−1)qJq(m) is taken into account. The finite extent of the
grating aperture is neglected. As can be seen, the intensity
distribution I(x, y, z) = UU∗ obtained from the expression
(6) is not sinusoidal. The amplitudes of different harmonics
and hence the profile of the projected fringes along the x- and
z-axes depend on the grating spacing (L), the wavelength (λ),
and the modulation parameter (m).

Along the x- and z-axes, the diffraction pattern consists
of alternating zones with a phase-reversed contrast. Along
the x-axis, due to the limited aperture of the objectives
used for projection and recording of fringes, we can freely
assume that we project a part of the diffraction pattern that
contains only fringes with equal contrast. The fact that the
fringe spacing does not depend on the wavelength can be
used to illuminate the object by spatially similar fringes at
different wavelengths in order to record simultaneously the
deformed FPs by separate CCD cameras and to overcome the
main drawback of the temporal phase-shifting profilometry
in which acquisition of patterns is made successively in time.

The spatial period of the first harmonic along the x-
axis depends only on the grating spacing. The spatial period
of the first harmonic along the z-axis depends on all three
parameters L, λ, and m. The alternating zones with a phase-
reversed contrast along the z-axis are located between the
planes which correspond to

zn = 2nL2

λ
, n = 0, 1, 2, . . . ,

z′n =
(2n + 1)L2

λ
, n = 0, 1, 2, . . .

(7)

The planes located at zn and z′n, n = 1, 2, . . . , contain a
“perfect” grating image with uniform intensity distribution
equal to unity. These planes correspond to Talbot images
[27]. The length of the zone along the z-axis with a phase-
constant contrast of fringes for the first harmonic is equal
to dz1 = z′n − zn = L2/λ, respectively. The length of this
zone for the second harmonic is dz2 = L2/2λ, and for the
qth harmonic it is dzq = L2/qλ. This means that the second
harmonic is eliminated in the planes parallel to the grating
and located at

z′′n =
(

2n +
1
2

)
L2

λ
, n = 0, 1, 2, . . . . (8)

However, the amplitude of the third harmonic is maximal
in these planes. As should be expected, the modulation
parameter m affects intensely the frequency content of the
diffraction pattern. We evaluated its influence in the interval
from 0.1 up to 1.6. The first-order harmonic dominates
at all values of m. The degrading effect of higher-order
harmonics becomes unacceptable at m, being greater than
0.3. The zones that are close to the distances, z = z′′n ,
n = 0, 1, 2, . . . , appear to be optimal for fringe projection
because, at least theoretically, the energy in the first harmonic
reaches the maximum for m, up to 0.6–0.8 at z = z′′n , whereas
the second harmonic is missing. As it seems, by a proper
choice of the modulation parameter (m) and the distance
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Figure 2: Spatial variation of energy concentrated in the first
harmonic along the z-axis in the Fresnel zone at plane-wave
illumination of a sinusoidal phase grating.

(z), the influence of the higher diffraction orders could be
minimized. However, location of these optimal planes along
the z-axis varies with the wavelength. Figure 2 depicts spatial
variation of the energy concentrated in the first harmonic
along the z-axis for the wavelengths 790 nm and 910 nm for
a grating spacing L = 0.025 cm and m = 0.2.

Obviously, the difference between the values of z′′n cor-
responding to wavelengths λ1, λ2 increases as
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)
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2

)
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(

1
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− 1
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)
, n = 0, 1, 2, . . . ,

(9)

along with the distance from the grating. In practical
realization of the system, the four gratings are located at the
same distance from the projective lens. This means that it will
be difficult to ensure the same contrast and spectral content
of the FPs projected at different wavelengths if the distance
between the gratings and the projective lens is too large.
Theoretically, at L = 0.25 cm, z′′0 (790 nm) − z′′0 (910 nm) =
0.52 cm, whereas z′′1 (790 nm) − z′′1 (910 nm) = 2.6 cm. If the
distance from the grating is chosen within the above intervals
and the modulation parameter is kept low, one could expect a
practically sinusoidal profile of the same contrast for fringes
projected at 790, 810, 850, and 910 nm. This conclusion is
confirmed by Figure 3 which gives the intensity distribution
and the spatial frequency spectrum as a function of the
wavelength at z = 10.5 cm.

A phase diffraction grating at coherent illumination
creates fringes which are focused at any distance from the
grating. However, rapidly varying contrast of the fringes
due to the Talbot effect makes it impossible for pattern
projection profilometry to have large-scale objects at plane-
wave illumination. Indeed, the distance between the Talbot
planes at plane-wave illumination is on the order of several
centimeters. To increase the spatial zone of equal contrast,
the grating should be illuminated by a divergent beam. If
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Figure 3: The intensity distribution and spatial frequency spectrum
of the light transmitted by a sinusoidal phase grating with L =
0.025 cm in the Fresnel zone as a function of the wavelength at
z = 10.5 cm for a plane-wave illumination. For convenience, the
part of the spectrum at the fundamental frequency is omitted.

this beam is created by a point source at distance s from
the grating, the fringe spacing is magnified according to the
geometrical formula (similar triangles):

Λ(z) = 1 +
z

s
, (10)

where Λ denotes the magnification. In this case, the Talbot
planes of grating self-imaging can be found at [28]

1
zT

+
1
s
= λ

nL2
, (11)

where zT is the z-coordinate of a Talbot plane, and n is an
integer. Figure 4 gives the intensity distribution behind the
grating with L = 0.025 cm along the x- and z-axes depending
on the distance (s) between the point source and the grating.
The diffraction pattern is calculated for illumination with
a spherical wave at paraxial approximation [29] for λ =
790 nm. As can be seen, at s = 7 cm there is no Talbot plane,
at s = 12 cm the plane is only one, whereas at s = 30 cm the
Talbot planes are three. Hence, by using a divergent beam it is

possible to ensure an equal contrast of fringes within a large
3D volume.

3.2. Experiment. To find the frequency content of the
pattern created by a sinusoidal phase grating, we per-
formed test measurements at different wavelengths using
the optical arrangement in Figure 5. The divergent light
beam (expanded by the lens L1) from the diode laser
DL illuminates the grating SDG. The distance between
the light source and the grating remained fixed. We
recorded the FPs projected onto the ground glass screen
GGS at varying distance z (as indicated in Figure 5)
for three different positions of the projector lens L2 with
respect to the grating. Recording the phase gratings on
a high-resolution holographic plate HP-650, laboratory
production of CLOSPI-BAS (Bulgaria) was accomplished
by an interferometric optical arrangement with an He-Ne
laser (λ = 632.8 nm, 30 mW). An interference pattern was
generated using an adjustable Michelson interferometer
which provided equidistant sinusoidal fringes, whose period
could vary in broad limits. The chemical processing of the
holographic plates [30] was realized with a fixing developer
which ensured formation of colloidal silver grains, practically
phase recording, low level of noise, and high diffraction
efficiency up to 70% in NIR. The required modulation of
the recorded interference patterns was achieved by proper
selection of exposures to fall into the dynamic range 0.5–
1.5 mJ/cm2.

Figures 6(a), 6(b), 6(c), and 6(d) show 1D Fourier spectra
of the projected fringes at z = 70 cm depending on the
distance d (see Figure 5) and the wavelength. Each spectrum
is averaged over the whole registered FP. As can be seen,
the frequency content of the FPs at different wavelengths is
rather close for a divergent beam illumination. The distance
d = 10 cm in Figure 5 seems to be optimal for generation of
sinusoidal fringes.

4. Systematic Errors of Phase Retrieval

The analysis in the previous section shows that the systematic
errors in phase determination are caused not only by the
higher frequency content in the projected FPs but also by
the fact that the spectra of the fringes generated at the four
wavelengths differ from each other. This difference results
in different contrast of the projected FPs, thus creating
an additional source of errors. To evaluate the systematic
error of phase retrieval, we simulated reconstruction of a
plane surface from M = 4 FPs by a four-step phase-shifting
algorithm. The patterns were generated using the expression
for the complex amplitude (6) at a given value of z. Deviation
from a pure sinusoidal profile leads to periodical elevations
and depressions in the reconstructed plane surface. Hence,
to characterize the systematic error, we took the maximum
deviation of the retrieved phase from its real value in radians,
and plotted it as a function of z. Figure 7(a) illustrates
the case when the phase is retrieved from four patterns
generated at λ = 790 nm with plane-wave illumination, that
is, when the error is induced only by the higher frequency
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Figure 4: The intensity distribution of the light transmitted by a sinusoidal phase grating with L = 0.025 cm in the Fresnel zone for a
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Figure 5: Optical arrangement for determination of frequency content of patterns projected by a sinusoidal phase grating—DL: diode laser,
L1, L2: lenses, SDG: sinusoidal phase grating, GGS: ground glass screen.

content in the fringes. As can be seen, the error has a
periodical distribution along the z-axis and is quite small for
a modulation m ≤ 0.3. Figure 7(b) gives the systematic error
in the case when the four FPs are generated at 790, 810, 850,
and 910 nm for a plane-wave illumination. Comparison with
the previous figure (Figure 7(a)) clearly shows the substantial
influence of the difference in the wavelengths on the accuracy
of the phase retrieval; the error is acceptable only in a small
area which includes the values of z′′ for the considered
wavelengths.

Fortunately, the result obtained with four-wavelength
illumination with a spherical wave in paraxial approximation
is more encouraging. The maximum deviation between the
phase estimate and the real phase is depicted in Figure 8.
As can be seen, the error does not exceed 0.06 rad for m =
0.3 within a very large range of distances from the grating.
To explain why its value is so small, we include in the
figure (Figure 8) the profiles of the four fringes projected
at 790, 810, 850, and 910 nm for z = 140 cm and z =
230 cm. The projected intensity distributions are very close,
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Figure 6: Frequency content of patterns created by a sinusoidal phase grating using an optical arrangement in Figure 5.
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Figure 7: Maximum deviation of the difference between the phase
estimate and the real-phase value for reconstruction of a plane
surface at plane-wave illumination: (a) one-wavelength projection;
(b) four-wavelength projection. Here, z is the distance between the
grating and the plane.

even at m = 0.3. This result is confirmed by good quality
of reconstruction of a plane from experimentally recorded
patterns, as can be seen from the unwrapped phase map
obtained for a GGS in Figure 5 at illumination with 790, 810,
850, and 910 nm (Figure 9). The FPs are recorded using only
one CCD camera.

To prove the applicability of the multiwavelength ap-
proach with a sinusoidal phase grating as a projection
element, we simulated reconstruction of a 3D surface of a
dome in the case of the profilometric system in Figure 1 that
represents a conventional cross-axes optical arrangement.
The simulation includes registration of four FPs which are
deformed by the object and four FPs of the reference plane
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Figure 8: Maximum deviation of the difference between the phase
estimate and the real-phase value for reconstruction of the plane
surface from four fringe patterns recorded at four wavelengths with
a spherical wave illumination (paraxial approximation); the plots in
the inset give the lateral profile of the fringes generated at λ = 790,
810, 850, and 910 nm. Here, z is the distance between the grating
and the plane.

Figure 9: Unwrapped phase map of a plane that is retrieved from
four fringe patterns projected by using four identical sinusoidal
gratings and four diode lasers emitting at 790, 810, 850, and 910 nm.

without the object at the following values of the system
parameters: L = 0.025 cm, λ1 = 790 nm, λ2 = 810 nm, λ3

= 850 nm, λ4 = 910 nm, in addition to 512 pixels along the
x- and y-axes and normal viewing directions with respect to
the reference plane of all four CCD cameras which capture
the same part of the object. The angle between the axes of
the projection and recording optical systems is 30. The dome
parameters are as follows: the radius on the reference plane
is 254 pixels and the maximum dome height at the center
is 90 pixels. The 3D surface reconstruction included the
following steps: (i) calculation of the wrapped phase maps
by using formula (2) from the FPs recorded with the object
and the reference plane alone, respectively; (ii) unwrapping
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Table 1: Maximum negative and positive deviations in % from the dome height.

Distance z (m) Modulation parameter m

0.1 0.2 0.3 0.4

1.3
−0.18 −0.55 −0.75 −1.19

0.42 0.54 0.81 0.96

1.5
−0.26 −0.6 −0.79 −1.27

0.41 0.46 0.82 1.07

1.8
−0.49 −0.77 −1.14 −1.41

0.57 0.72 0.96 1.52

2.4
−0.81 −1.11 −1.53 −1.98

0.81 1.12 1.54 1.96
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Figure 10: Reconstruction of a 3D surface by a phase-shifting
technique from four fringe patterns generated with four-wavelength
divergent illumination. The projection distance is z = 1.3 m; the
grating spacing is L = 0.025 cm.

by a quality-guided algorithm [30] of both phase maps;
(iii) subtraction of the unwrapped phase map corresponding
to the reference plane from the unwrapped phase map
corresponding to the object, and, finally, (iv) calculation of
the 3D coordinates. The projected FPs are simulated for
a spherical wave illumination in paraxial approximation.
Simulation was made without any noise, and so no filtration
is applied to the images. Figure 9 depicts two reconstructions
of the dome for m = 0.1 and m = 0.3. Small ripples
can be noticed on the dome surface close to its apex for
the latter case. We evaluated the accuracy of reconstruction
for the distances within the interval from 1.3 m up to
2.4 m which corresponds to the smallest systematic errors in

Figure 8. Table 1 gives the maximum values of the positive
and negative deviations of the reconstructed surface from
the real dome; the deviations are normalized to the dome
height and multiplied by 100%. The obtained values of
maximum deviations on the order of 0.5–2% prove that
usage of a sinusoidal grating ensures acceptable accuracy of
the profilometric measurement.

5. Conclusion

Fringe projection profilometric system which combines
single-shot acquisition with phase-shifting processing algo-
rithm for “real-time” surface measurement is presented.
Sinusoidal phase gratings and single-mode diode lasers
emitting at four different wavelengths of λ1 = 790 nm, λ2 =
810 nm, λ3 = 850 nm, λ4 = 910 nm are used. The main
advantages of coherent illumination by NIR diode lasers are
higher efficiency, larger focal depth, and fringes contrast,
which lead to higher sensitivity and accuracy of measure-
ment. Careful maintaining of grating modulation could
ensure vanishing contribution of higher diffraction orders.
The performance of the proposed four-wavelength system
was checked by simulation of reconstruction of a plane
and a 3D object (dome) for four identical gratings with
L = 0.025 cm at different values of the grating modulation
parameter. The problem of higher harmonics influence has
been thoroughly analyzed. Both cases of collimated and
divergent beam illumination have been studied. The results
were experimentally verified. The analysis made confirms
that the sinusoidal phase grating can serve as a projection
element in a profilometric system as well as being used at
multiwavelength illumination.
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