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1. Introduction

Over the last few years, many theoretical connections
have been established between problems arising in wireless
communications and those in the field of game theory [1].
One such instance is when several coexisting links consisting
of transmit-receive pairs compete with an objective of
maximizing their individual data rates while treating the
interference as Gaussian noise [2]. Due to the wireless
communication channel, the received signal at each receiver
is interfered by all transmitters, and the performance of
the transmission strategies is, therefore, mutually dependent.
Further, since no cooperation is assumed among the links,
we have an instance of the interference channel [3, 4] whose
complete characterization is still an open problem. Viewed in
a noncooperative game theoretic setting [5], the links can be
regarded as players whose payoff functions are the individual

link rates. Each player is only interested in maximizing the
individual rate, without considering its action on the other
players. When each player is unilaterally optimal, that is,
given the strategies of the other players, a change in the
own strategy will not increase the rate, a Nash equilibrium
(NE) [6] is reached, and, in general, multiple equilibria
are possible. It is of interest to determine these equilibria
of decentralized transmission strategies since centralized
control causes unnecessary signalling overhead.

A general overview of distributed algorithms for spec-
trum sharing based on noncooperative game theory can
be found in [2]. In [7], an iterative water-filling algorithm
(IWFA) for codeword updates is proposed for spectrum
allocation in interfering systems. It is shown that the full-
spread equilibrium is the only possible outcome of the
game under weak interference situations. Such complete
spectral overlap is a highly suboptimal solution over a



2 EURASIP Journal on Advances in Signal Processing

wide range of channels. Conditions that guarantee global
convergence to such unique NE are presented in [8]. On
the other hand, for strong interference channels, it is also
shown in [7] that multiple NE corresponding to complete,
partial, and no spectral overlap can exist. Further, it is
graphically shown that these multiple NEs result in large
variations in system performance. Similar game theoretic
approaches to codeword adaptation can be found in [9,
10], where stability is analyzed in asynchronous CDMA
systems for single and multiple cell wireless systems. Also,
noncooperative games for a digital subscriber line (DSL)
system have been studied in [11], where an NE is reached
when each player maximizes its individual rate in a sequential
manner. In [12], it is shown how different operating points,
for example, the maximum weighted sum rate, the NE, and
the egalitarian solution, can be obtained using an iterative
algorithm. However, this scheme requires the transmitters
to have different forms of channel state information. An
attempt to design noncooperative spectrum sharing rules
for decentralized multiuser systems with multiple antennas
at both transmitters and receivers can be found in [13].
Also, in [14], a game in which transmitters compete for data
rates is presented, and an efficient numerical algorithm to
compute the optimal input distribution that maximizes the
sum capacity of a multiaccess channel (MAC) is proposed.
However, no similar optimal algorithm is known for the
general interference channel.

In this paper, we consider a system consisting of two
players and study the properties of NE (spectral allocation
at equilibrium) obtained by the IWFA. This scenario, albeit
simple, allows us to fully characterize the set of achievable
operating points and shows that many of the NEs can
only be attained under specific initializations. For low-
interference systems, we derive conditions when the full-
spread equilibrium is inferior to a separation in signal space
and suggest a modification of the IWFA to increase the
sum rate. For high-interference systems, we show that the
operating points are almost separated in signal space and
argue how the convergence properties of the IWFA can be
improved. Utilizing global system knowledge, we design a
modified game with desirable properties and show how it
can be imitated by a decentralized noncooperative scheme
corresponding to a modified IWFA. The proposed game is
compared to the IWFA by numerical simulations and we
illustrate how the results extend, qualitatively, to systems with
more players.

The paper is organized as follows. In Section 2, the system
model is presented, and the problem is formulated as a
noncooperative game. Section 3 provides the analysis for
the resulting Nash equilibria and derives the dependencies
of the operating points on the various system parameters.
An analysis of sum rate is presented in Section 4, and
modified games encouraging better system performance are
designed in Section 5. The proposed decentralized game is
evaluated in Section 6, and finally, conclusions are drawn
in Section 7.

Notation: Uppercase boldface letters denote matrices and
lowercase boldface letters designate vectors. The superscripts
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1 1

{p j
1} {p j
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Figure 1: System model for two transmit-receive pairs.

(·)T , (·)∗ stand for transposition and Hermitian transposi-
tion, respectively. IN denotes the N ×N identity matrix, and
1m is the m × 1 vector of ones. Further, let diag(x) denote
a diagonal square matrix whose main diagonal contains
the elements of the vector x, E[·] denotes the expectation
operator, and | · | denotes the l1-norm.

2. Problem Formulation and
Game Theoretic Approach

2.1. System Model. We consider a scenario depicted in
Figure 1, where two transmit-receive pairs are sharing N
orthogonal radio resources, here referred to as subcarriers.
Without loss of generality, assume that the system is
normalized such that the gain of the transmitted signal is
unity at the dedicated receiver. The N × 1 received signal
vectors are modeled as

r1 = s1 +
√
g2s2 + n1,

r2 =
√
g1s1 + s2 + n2,

(1)

where ri is the received signal at the ith receiver, and si
is a complex vector corresponding to transmissions on N
subcarriers by the ith transmitter. Further, gi is the cross-gain,
and ni is a zero mean Gaussian noise vector with covariance
matrix E[nin∗i ] = ηiIN . To limit the transmit power, each
transmitter obeys a long-term power constraint E[s∗i si] =
Pi, Pi > 0, i ∈ [1, 2]. This system model may represent a
multicarrier system with a frequency-flat channel or a time
division multiple access (TDMA) system. Though simple, it
captures the essence of the spectrum allocation problem and
is amenable for a tractable analysis. Such analysis may be
useful in devising decentralized spectrum sharing algorithms
for more complex scenarios. Similar models have been
studied in other works, like [2, 7, 8].

The individual links can correspond to different instances
of the same system or to two different systems. To avoid
signaling overhead and retain the dynamic nature of the
scenario, we assume that each link does not have information
about the parameters used by the other link. Hence, the
first player is blind to P2, η2 and the second player has
no information about P1, η1. Further, since players do not
cooperate, the channels {gi}, i ∈ [1, 2] are unknown at either
end.
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As we restrict the players to operate as independent
units, no interference suppression techniques are devised at
the receivers, and the interference is treated as noise. To
maximize the mutual information, we model si, i ∈ [1, 2], as
a zero-mean uncorrelated Gaussian vector with covariance
matrix E[sis∗i ] = diag({p j

i }Nj=1),
∑N

j=1 p
j
i = Pi, p

j
i ≥ 0,

i ∈ [1, 2], where p
j
i is the power of the ith link for the

jth subcarrier. Letting Ri denote the rate achieved on link i
under Gaussian codebook transmissions, for a given power
allocation, we have [15]

R1 =
N∑

j=1

log

(

1 +
p
j
1

g2p
j
2 + η1

)

,

R2 =
N∑

j=1

log

(

1 +
p
j
2

g1p
j
1 + η2

)

.

(2)

Note that the individual rates are coupled by the power
allocation of both players.

Each player greedily maximizes its individual rate while
treating the interference as colored Gaussian noise. Although
such selfish behavior may not necessarily lead to improved
link rates compared to a cooperative scenario, understanding
it allows us to derive various decentralized noncooperative
algorithms. These schemes have the advantage of not
requiring encoding/decoding by the individual links or using
any interference cancellation techniques. Adopting a game
theoretical framework provides useful tools to analyze the
behavior of greedy systems, and the problem can be tackled
in a structured way.

2.2. Game Theoretic Approach to Rate Maximization. The
individual rate maximization problem can be cast as a game
G

G :

maximize
{p j

i }
Ri,

subject to
N∑

j=1

p
j
i ≤ Pi, p

j
i ≥ 0,

∀i, j, (3)

where {p j
i } is the set of power allocations p

j
i , ∀i, j. It has

been shown in [16] that the outcomes of such noncoopera-
tive games are always NE and hence solutions to the set of
nonlinear equations highlighting simultaneous water-filling.

In particular, {p j
i } satisfy

p
j
1 =

(
μ1 −

(
η1 + g2p

j
2

))+
,

p
j
2 =

(
μ2 −

(
η2 + g1p

j
1

))+
,

(4)

where (a)+ = max(0, a), and μ1, μ2 are positive constants

such that
∑N

j=1 p
j
i = Pi, i ∈ [1, 2]. These equilibrium points

are reached when players update their power using the IWFA
in one of the following ways [16].

(1) Sequentially: players update their individual strate-
gies one after the other according to a fixed updating
order.
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Figure 2: Power allocation corresponding to a complete overlap in
signal space, that is, a full-spread equilibrium.
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Figure 3: Power allocation corresponding to a partial overlap in
signal space.

(2) Simultaneously: at each iteration, all players update
their individual strategies simultaneously.

(3) Asynchronously: all players update their individual
strategies in an asynchronous way.

For the purpose of tractability, we restrict our analysis to
sequential updates.

3. Properties of Nash Equilibria

The spectra used by the two players can overlap completely,
partially, or be disjoint (completely separated) as illustrated
in Figures 2, 3, and 4, respectively. Hence, the resulting power
allocation corresponds to one of these scenarios and is likely
to depend on the system parameters as well as the particular
initialization. In this section, we highlight the dependence
of NE on the various system parameters using analytical
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Figure 4: Power allocation corresponding to a complete separation
in signal space.

methods and derive conditions under which the different
power allocations are possible.

3.1. Low-Interference Systems. In communication systems
with low interference, individual links generally adapt their
operating point to the noise power by neglecting the
interference. This is also true for the IWFA when g1g2 < 1.
In fact, we have the following.

Theorem 1. When g1g2 < 1, a full-spread equilibrium with

p
j
i = Pi/N , ∀i, j is the only possible outcome of the game G.

Proof. The proof follows from [7, 17] and is omitted for
brevity.

Theorem 1 shows that when g1g2 < 1, each player
allocates power as if the interfering player was absent, and
this behavior is independent of the total power and number
of subcarriers employed by the players. However, as we show
in later sections, such interference ignorant power allocation
may result in suboptimal system performance. To conclude
the analysis on the low-interference scenario, we have the
following theorem describing the convergence properties of
the IWFA.

Theorem 2. When g1g2 < 1, convergence of the IWFA to the
full-spread equilibrium is linear with rate g1g2.

Proof. See Appendix A.

3.2. High-Interference Systems. When g1g2 > 1, the game
admits complete, partial, or no overlap as NE [7]. In the
following, we analyze the dynamics of the IWFA and study
how these different NEs can be reached. We begin with the
full-spread equilibrium.

Theorem 3. When g1g2 > 1, the full-spread equilibrium is an
outcome of the IWFA if and only if it is used as an initial point.

Proof. See Appendix B.

Theorem 3 shows that when g1g2 > 1, players acknowl-
edge the presence of interference and do not occupy all the
subcarriers, thereby motivating the term high-interference
systems. Since a full-spread equilibrium is only possible
under specific initialization, the power allocation at NE
generally corresponds to either partial overlap or complete
separation in signal space. To study such NE, we denote the
subcarrier indices in which the ith player allocates nonzero
power by Ki and the set of indices corresponding to partial
overlap by M =K1∩K2. Further, let the cardinalities of Ki

and M be ki and m, respectively, so that k1 + k2 = N + m.
Denoting the complement of M in [1,N] by Mc, we have

from [7] that the power allocation at NE satisfies p
j
i =

ci,1, ∀ j ∈ Ki ∩Mc, and p
j
i = ci,2, ∀ j ∈ M, where ci,1 and

ci,2 are positive constants. Thus, each player allocates equal
power at NE for the subcarriers corresponding to a partial
overlap. Interestingly, such an initial allocation of power is
necessary to achieve a partial overlap and is formalized in the
following theorem.

Theorem 4. When g1g2 > 1, IWFA converges to the set of NE,
where the power allocations overlap on the subcarrier indices
M only if

(1) p
j
2(1) = c2(1), ∀ j ∈M, where c2(1) is a constant;

(2) kjPi > gj(ki −m)Pj , i /= j, j ∈ [1, 2].

If player 1 initiates the IWFA, one has p
j
1(1) = c1(1). The c1(1)

and c2(1) are chosen such that the total power constraints P1

and P2 are satisfied.

Proof. See Appendix C.

Hence, we have that partial overlap with m > 1 can be an
outcome of the game only under specific initialization. As an
immediate consequence of the results derived in Appendix C,
we have the following corollary.

Corollary 1. When condition 2 of Theorem 4 is satisfied for
m = 1, convergence of the IWFA is linear with rate g1g2(k1 −
1)(k2 − 1)/k1k2.

Since the game G has a nonempty solution set [17], one
has that when neither the conditions of Theorems 3 or 4 are
satisfied, the resulting operating point must correspond to a
complete separation.

These theorems provide useful insight about the struc-
ture of the outcomes of the gameG and help us to understand
the dependence on the various system parameters. However,
it is also important to analyze the individual rates of the
links. It has been discussed in [2, 8] that the NE often is a
suboptimal operating point resulting in poor performance
for low-interference systems. Therefore, it is important to
compare the performance corresponding to the NE with an
optimal strategy. The mathematical tractability and fact that
complete and partial overlaps are not, in general, solutions
provided by the IWFA motivate us to consider the optimal
performance under complete separation.
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4. Analysis of the SumRate

As a global performance measure for the system, we define
the sum rate as

R = R1 + R2, (5)

where Ri is the rate achieved on link i. For a separated
operating point where players 1 and 2 reside in k and N − k
signal space dimensions, respectively, the individual rates are

R1 = k log
(

1 +
P1

kη1

)
,

R2 = (N − k) log
(

1 +
P2

(N − k)η2

)
.

(6)

Here, we explicitly use k1 = k and k2 = N − k to
emphasize the analysis of nonoverlapping power allocations.
The optimal signal space partitioning maximizing the sum
rate is given by the next theorem.

Theorem 5. The signal space partitioning for player 1 maxi-
mizing the sum rate is

kopt = P1Nη2

P1η2 + P2η1
. (7)

Proof. Note that since R1 and R2 are concave in k, so is the
sum rate R1 + R2. Differentiating the sum rate with respect
to k and solving for the roots yield the optimal signal space
partitioning kopt.

In general, the optimal partitioning is not an integer and
if required, needs to be rounded. Also, since the operating
points obtained by the IWFA are NE for the system, not
all signal space partitioning are achievable. The following
theorem provides the region of all possible signal space
partitionings when the IWFA is employed.

Theorem6. At NE corresponding to a complete separation, the
achievable region of signal space dimensions employed by player
1 satisfies

N

1 + g2
(
P2/P1

) ≤ k ≤ N

1 +
(
1/g1

)(
P2/P1

) . (8)

Proof. Let players 1 and 2 reside in separated signal spaces
of dimensions k and N − k, respectively, at NE. For player
1, the allocated power per dimension P1/k satisfies P1/k ≤
g2(P2/(N − k)), since the water level corresponding to the
allocated power must be less than the level corresponding to
the interference power. Similarly, for player 2, the allocated
power P2/(N −k) satisfies P2/(N −k) ≤ g1(P1/k). The region
containing the possible signal space partitioning for player 1
is readily obtained combining these expressions.

Note that the region of achievable partitioning is
nonempty only when g1g2 ≥ 1 and expands as the channel
gains are increased. For g1g2 < 1, this region is empty,
and only a full-spread equilibrium is possible. The optimal
partitioning needs not to satisfy (8) and conditions can be
derived under which the optimal signal space partitioning is
a possible outcome of the IWFA.

Theorem 7. The optimal signal space partitioning kopt is an
achievable NE if and only if g1 ≥ η2/η1 and g2 ≥ η1/η2.

Proof. Using g1 ≥ η2/η1 and g2 ≥ η1/η2 in (8), it is straight-
forward to see that the optimal signal space partitioning
is confined within the region of achievable separations. To
prove the only if part, substitute k by kopt in (8) and
simplify.

Theorem 7 enumerates the conditions under which the
optimal partitioning is not a possible NE of the game G.
In such situations, implicit cooperation among the players
is necessary to reach the sum rate optimal operation point.
This involves the players to follow an etiquette where they
do not transmit on a given subcarrier when the other player
is employing full power. The following theorem shows when
such a strategy results in higher sum rate compared to the
IWFA.

Theorem 8. The sum rate corresponding to an operating point
with optimal partitioning is higher than or equal to that of the
IWFA when

1 +
P1

Nη1
+

P2

Nη2
≥
(

1− η2

g1η1

)(
1− η1

g2η2

)
. (9)

Proof. The sum rate for a system where players reside in
separated signal spaces of dimension k and N − k is

Rsep = k log
(

1 +
P1

kη1

)
+ (N − k) log

(
1 +

P2

(N − k)η2

)
.

(10)

Using that P1/kη1 = P2/(N − k)η2 when k = kopt, we have

R
opt
sep = N log

(
1 +

P1

Nη1
+

P2

Nη2

)
. (11)

Further, the sum rate corresponding to a full-spread equilib-
rium is

Rfs = N log
((

1 +
P1

g2P2 + η1N

)(
1 +

P2

g1P1 + η2N

))
. (12)

Forming R
opt
sep ≥ Rfs yields the desired inequality.

It is clear from Theorem 8 that the sum rate can be
increased if the operating point corresponds to the optimal
signal space partitioning. However, it follows from [7] that
a complete spectral overlap is the only outcome of the
IWFA when g1g2 < 1. Unfortunately, the strategy based
on Theorem 8 requires information about {gi}, {Pi}, and
{ηi}, i ∈ [1, 2], at each player and also centralized control.
This warrants a modification of the IWFA for moving
the operating point from a complete spectral overlap to a
separation in signal space without requiring any additional
system information. The region of achievable partitioning,
as defined in Theorems 6 and 7, may contain the optimal
separation. However, this depends on the channel gains.
By modifying the channel coefficients used in the IWFA,
the region can be adjusted to close in on the optimal
partitioning. Such modification is equivalent to constructing
a new game whose NE has desirable properties.
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5. SumRate Improvements

As shown in Theorem 8, the sum rate can be increased by
moving to an operating point corresponding to the optimal
signal space partitioning. However, such a strategy requires
global system knowledge and cooperation among the players
making it less attractive from a practical point of view. Using
the properties of the NE, we design a game utilizing global
system knowledge and show how it can be imitated in a
decentralized noncooperative setting.

5.1. Generalized IWFA with Global System Knowledge. When
both players have access to global system knowledge, that
is, {Pi}, {gi} and {ηi}, i ∈ [1, 2], a modified game can be
constructed to encourage better operating points compared
to those provided by the IWFA. Since a rule-based approach,
that switches to another solution for certain parameter
values, is extremely tailored to the system model and not
easy to generalize to scenarios with more than two players,
we utilize the game theoretic framework and show how the
individual utility functions of the players can be modified to
improve the overall system performance in terms of sum rate.

Using the analysis from Section 4, we can guide the
resulting operating point toward the optimal signal space
partitioning. As shown in Section 3, the IWFA is generally
not globally convergent to the set of NEs with overlap on
more than one subcarrier and the region of separated oper-
ating points depends highly on the channel gains. Therefore,
to direct the operating point toward the optimal signal space
partitioning, the interference channel coefficients g1 and g2

employed by the IWFA should be replaced by the modified
gains ĝ1 = c1g1 = η2/η1 and ĝ2 = c2g2 = η1/η2, where c1

and c2 are positive scalars. This scaling is done within the
algorithm, and the only possible separated operating point
will be that corresponding to the optimal partitioning. For
a given power allocation, these scaled channel coefficients
result in virtual rates as follows:

R̂1 =
N∑

j=1

log

(

1 +
p
j
1

ĝ2p
j
2 + η1

)

,

R̂2 =
N∑

j=1

log

(

1 +
p
j
2

ĝ1p
j
1 + η2

)

,

(13)

and a modified game Ĝ can be formulated as

Ĝ :

maximize
{p j

i }
R̂i,

subject to
N∑

j=1

p
j
i ≤ Pi, p

j
i ≥ 0,

∀i, j. (14)

Using these channel coefficients, the region of separated NE
is narrowed to one single point, namely, the optimal par-
titioning, and from Theorem 4, we know that the resulting
operating point will, in general, not overlap on more than
one subcarrier. Hence, for a large number of subcarriers,
such operating points result in sum rates close to that of the
optimal signal space partitioning.

However, we know from Theorem 8 that for g1g2 < 1, the
optimal partitioning is not always the best operating point
from the sum rate point of view. Since the system parameters
are known, both players should determine kopt and choose
the modified game Ĝ when Rfs < R

opt
sep. The resulting sum rate

will not be less than that of the IWFA, and the subcarrier
allocation will differ in no more than one dimension from
the optimal partitioning.

5.2. Generalized IWFA without Global System Knowledge.
Since the system parameters might not be available at both
players, decentralized games imitating the global game Ĝ are
of high interest. Such a game should encourage separated
operating points for g1g2 > 1 and either move away from or
move toward the optimal partitioning for g1g2 < 1 depending
on the channel strengths. Also, the game should be such that
the sum rate is increased as more system parameters become
available to the players.

Instead of altering the channel coefficients gains as in the
global game Ĝ, we modify the received interference plus noise
power employed by the IWFA encouraging the resulting

operating point to have desirable characteristics. Letting I
j
i

denote the inverse of the interference plus noise power at link
i for subcarrier j, we have

I
j
1 =

(
g2p

j
2 + η1

)−1
,

I
j
2 =

(
g1p

j
1 + η2

)−1
.

(15)

Then, we propose to modify the interference plus noise
power values for player i into

Ĩ
j
i =Mi

(
I
j
i

m
({
Ii
})

)α

, j = 1, . . . ,N , i = 1, 2, (16)

where α ≥ 1 is a real scalar, {Ii} is the set of all I
j
i , j =

1, . . . ,N , m(·) is the arithmetic mean operator, and Mi =
βm({Ii}), β > 0. The normalization by m({Ii}) yields a
threshold for the decisiveness of the exponent operation,
where values above the mean are amplified and others
attenuated, while the scaling by Mi controls the mean of the
modified parameters and implicitly the size of the region
of achievable signal space separations. The exponential
operation with α > 1 perturbs a possibly full-spread
equilibrium and improves the convergence properties for
g1g2 > 1, since separated operating points are encouraged.
For a given power allocation, the virtual rate for player i is

R̃i =
N∑

j=1

log
(
1 + Ĩ

j
i p

j
i

)
, (17)

and the resulting game can be formulated as

G̃ :

maximize
{p j

i }
R̃i,

subject to
N∑

j=1

p
j
i ≤ Pi, p

j
i ≥ 0,

∀i, j. (18)
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Note, when α = β = 1, this game coincides with the IWFA.
As more system information becomes available to the players,
the parameters α and β can be chosen such that the resulting
operating point approaches the optimal partitioning. This
can be achieved by altering the range of (8) by a proper
choice of the scale factor β and affecting the convergence
properties with the parameter α.

Although we designed the decentralized game for a sce-
nario with two players, such modifications of the interference
plus noise power can also be applied to a system with more
players as demonstrated in [13] and in a numerical example
below.

6. Numerical Examples

In this section, we evaluate the system performance in terms
of sum rate for the games G and G̃ and also study their
convergence properties.

Each of the values is averaged over 50000 channel and
power realizations, and two specific scenarios are considered:
g1g2 < 1 and g1g2 > 1. To simplify the exercise, we let g1

and g2 be uniformly distributed on [0, 1] when g1g2 < 1 and
identically distributed according to 1+|N (0, 1)|when g1g2 >
1. The total power budgets for players 1 and 2 are uniformly
distributed on [0, 6] and [0, 10], respectively, the noise power
is 1, and 10 subcarriers are shared.

The average sum rate for a system whose operating points
are given by the games G and G̃ is shown in Figures 5 and
6 for g1g2 < 1 and g1g2 > 1, respectively. In each of the
two interference scenarios, the impact of the scale factor β
on the average sum rate is depicted for different values of
the exponent α. Clearly, the modified game G̃ yields a higher
average sum rate compared to the IWFA for low-interference
systems when β = 1 and α = 2. Also, from Figure 6, we
see that the resulting performance of both games is almost
identical for such choice of parameters.

To study the convergence properties, we use the relative
change in sum rate as a convergence criterion and set the
threshold to 10−6. For g1g2 < 1 with β = 1 and α =
2, the modified game G̃ requires 21 iterations on average
between the players, whereas the IWFA converges in 17
iterations. This increase is due to the perturbation caused
by the exponent operator in (16), where convergence toward
a complete overlap is altered. However, for g1g2 > 1,
the modified game requires no more than 4 iterations to
converge, while 11 iterations are needed for the IWFA. From
the properties of NE derived in Section 3, we know that the
IWFA will provide an almost separated operating point, and
here the exponent operation with α > 1 encourages the
convergence to such a separation.

From the simulation results, we observe that the indi-
vidual rates at NE corresponding to a partial overlap can be
increased by moving the operating point to either complete
separation or overlap on one subcarrier. This leads to the
conjecture that the IWFA yields Pareto optimal points under
arbitrary initialization for high-interference systems.

In order to illustrate how such a decentralized game
extends to a scenario with more users, we consider a system
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Figure 5: A comparison of system performance in terms of sum
rate for the decentralized game G̃ and the IWFA when g1g2 < 1. The
scale factor β is varied between 1 and 5 for α = 1, 2, and 4.
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Figure 6: A comparison of system performance in terms of sum
rate for the decentralized game G̃ and the IWFA when g1g2 > 1. The
scale factor β is varied between 1 and 5 for α = 1, 2, and 4.

consisting of 4 players, whose power budgets are uniformly
distributed on [0, 6], [0, 8], [0, 10], and [0, 12], respectively.
Letting gxy denote the channel gain from transmitter x to
receiver y, we consider the scenarios when gxygyx < 1 and
gxygyx > 1, x /= y. When gxygyx < 1, the gains are uniformly
distributed on [0, 1] and identically distributed according to
1 + |N (0, 1)| when gxygyx > 1. Each value is averaged over
50000 channel and power realizations, the noise power is 1,
and 10 subcarriers are shared.
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Figure 7: A comparison of system performance in terms of sum
rate for the decentralized game G̃ and the IWFA when gxygyx < 1
and 4 players are served. The scale factor β is varied between 1 and
5 for α = 1, 2, and 4.
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Figure 8: A comparison of system performance in terms of sum
rate for the decentralized game G̃ and the IWFA when gxygyx > 1
and 4 players are served. The scale factor β is varied between 1 and
5 for α = 1, 2, and 4.

Figures 7 and 8 show the average sum rate for a system
whose operating points are given by the games G and
G̃ for gxygyx < 1 and gxygyx > 1, respectively. Similar
to the game consisting of two players, the decentralized
scheme yields operating points resulting in better system
performance compared to the IWFA. In particular, the effect
of the perturbation caused by the exponent operation is
evident, where separated operating points are encouraged.

Clearly, the overall spectrum utilization benefits from a
power allocation with as small overlap between the users as
possible.

7. Conclusion

In this paper, we have analyzed a decentralized game, where
two players compete for available spectrum by greedily maxi-
mizing the individual rates and only considering the action of
the other player through the experienced interference level.
When each player is allocating transmit power using the
water-filling algorithm, a Nash equilibrium is reached and,
in general, multiple equilibria are possible. We have studied
the properties of such NE and characterized the region of
achievable operating points. For high-interference systems,
these equilibria correspond to almost complete separation
in signal space, while for low-interference systems, a full-
spread equilibrium is obtained. Further, we showed that
the full-spread equilibrium is a stable operating point for
the system, but often results in low overall system perfor-
mance. Therefore, a decentralized algorithm should avoid
an initialization with equal power on all subcarriers. We
derived the region of achievable signal space partitioning and
showed how it depends on the various system parameters.
Altering these parameters, we constructed a decentralized
noncooperative game whose NE had desirable properties. By
properly modifying the value of the interference plus noise
power employed by the IWFA, we showed how the overall
system performance can be improved. In order to obtain
quantitative results, the analysis considered a simple scenario
with two links. However, many of the qualitative conclusions
will remain also for scenarios with more players.

Appendices

A. Proof of Theorem 2

Without loss of generality, let the IWFA be initiated by player

2. Further, let p
j
i (n) denote the power allocation of the ith

link for the jth subcarrier during the nth iteration, and let
Ni,n be the set containing the subcarrier indices for which
link i allocates nonzero power during the nth iteration. Then,
water-filling yields

p
j
2(n) = −g1p

j
1(n− 1) +

1
r2,n

(

P2 +
∑

l∈N2,n

g1p
l
1(n− 1)

)

,

(A.1)

p
j
1(n) = −g2p

j
2(n) +

1
r1,n

(

P1 +
∑

l∈N1,n

g2p
l
2(n)

)

, (A.2)

where ri,n denotes the cardinality of Ni,n. Since the outcome
of the IWFA is the full-spread equilibrium, there exists a

finite n0 such that p
j
i (n) > 0, ∀n ≥ n0,∀ j and i ∈ [1, 2].

We start by showing that the IWFA cannot converge in
n0 (finite) iterations under random initialization [18]. Note
that the equilibrium is reached at n0 = 1 only if the algorithm
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is initialized with the operating point corresponding to a
complete spectral overlap. Assume that the NE is reached for

n0 > 1. Then, p
j
2(n0 + 1) = p

j
2(n0) and r2,n = N , ∀n ≥ n0.

Using that
∑

j p
j
1(n) = P1, (A.1) yields p

j
1(n0 − 1) = p

j
1(n0).

This implies r1,n0−1 = N , and (A.2) yields p
j
2(n0 − 1) =

p
j
2(n0). By recursion, we see that p

j
i (n) is constant for all

n ≤ n0. Hence, equilibrium is reached at a finite n0 only when
the IWFA is initialized with this point.

Since r1,n = r2,n = N , ∀n ≥ n0, (A.1) and (A.2) yield

p
j
1(n + 1)− p

j
1(n) = g1g2

(
p
j
1(n)− p

j
1(n− 1)

)
,

p
j
2(n + 1)− p

j
2(n) = g1g2

(
p
j
2(n)− p

j
2(n− 1)

)
.

(A.3)

It follows from (A.3) that the convergence of the IWFA is
linear with rate g1g2.

B. Proof of Theorem 3

Assuming that the full-spread equilibrium is the outcome
of the game G, it follows from Appendix A that the IWFA
cannot converge in n0 iterations under random initialization
[18]. Further, (A.3) hold for n ≥ n0. We now show that a full-
spread equilibrium is not attained for n > n0. By the Cauchy

criterion, p
j
i (n) converges if and only if |p j

i (n + 1) − p
j
i (n)|

converges to 0 as n → ∞. However, since g1g2 > 1, it is

clear from (A.3) that |p j
i (n + 1)− p

j
i (n)| cannot converge to

0, unless p
j
i (n0 + 1) − p

j
i (n0) = 0, ∀ j. From Appendix A,

we see that such a scenario is not possible for a random
initialization, thereby proving the theorem.

C. Proof of Theorem 4

Assuming partial overlap at convergence, there exists a finite

n0 such that p
j
i (n) > 0, ∀n ≥ n0, j ∈ Ki, i ∈ [1, 2]. The

following lemma is necessary to prove the theorem.

Lemma 1. Defining n0 as above, one has p
j
i (n̂) > 0, ∀ j ∈M,

i ∈ [1, 2] and 1 < n̂ ≤ n0.

Proof. If, for some n̂ < n0, we have p
j
1(n̂) = 0, j ∈ M,

then p
j
2(n), j ∈ M, n ≥ n̂ has the largest value among

all j ∈ [1,N]. However, p
j
2(n0) has the largest value for all

j ∈Mc ∩K2 as it does not experience any interference. This
leads to a contradiction and thereby proves the lemma for
i = 1. Similar arguments hold for i = 2.

To simplify the analysis, we consider two cases: (1) ki >
m, ∀i and (2) ki = m for some i.

Case 1 (ki > m). Stack the powers corresponding to the
subcarriers with spectral overlap in the vector p

i
(n) =

[{p j
i (n)} j∈M]T , i ∈ [1, 2], and denote the difference in

power for two consecutive updates by δi(n) = p
i
(n) −

p
i
(n − 1), i ∈ [1, 2]. Then, for n ≥ n0, we can write (A.1)

and (A.2) as

p
2
(n) = g1M2p1

(n− 1) +
P2

k2
1m, (C.1)

p
1
(n) = g2M1p2

(n) +
P1

k1
1m, (C.2)

where Mi = −Im + (1/ki)1m1Tm, i ∈ [1, 2], Im is an m × m
identity matrix, and 1m is an m × 1 vector of ones. The
following properties of Mi are useful in the subsequent steps.

(i) Mi is Hermitian with eigenvalue −1 with multiplicity
m − 1 and (−1 + m/ki) with multiplicity 1. Further,
when ki > m, all eigenvalues of Mi are nonzero. Thus,
Mi is invertible for ki > m.

(ii) The eigenvector corresponding to the eigenvalue
(−1 + m/ki) is 1m and is orthogonal to the eigen-
vectors corresponding to the eigenvalue −1. Since
the eigenvectors of M1 and M2 are identical, they
commute [19]. Further, the matrix Mi1Mi2 , i1, i2 ∈
[1, 2] has eigenvalue 1 with multiplicity m − 1 and
(−1 + m/ki1 )(−1 + m/ki2 ) with multiplicity 1. Thus,
Mi1Mi2 is invertible for kil > m, l ∈ [1, 2].

We first show that an appropriate initialization satisfying

p
j
2(1) = c2(1), ∀ j ∈ M is necessary for the IWFA to

converge in n0 (finite) iterations. Assuming an equilibrium

at n = n0, it follows from [7] that p
j
i (n0) = ci(n0), ∀ j ∈

M, i ∈ [1, 2]. Evaluating (A.1) for n = n0 and n = n0 + 1
and noting that p

2
(n0) = p

2
(n0 + 1), we have p

1
(n0 −

1) = p
1
(n0) = c1(n0)1m (this can also be argued using

(C.1) and the invertibility properties of M2). Otherwise there

exists an index j such that p
j
2(n0 − 1) = p

j
2(n0) = 0,

which is not possible using water-filling. Then, we have that

p
j
2(n0 − 1) = c2(n0 − 1), j ∈ M, that is, p

j
2(n0 − 1) is

constant for j ∈ M. Applying this repeatedly yields equal

power allocation for p
j
2(1), j ∈ M, if p

j
i (n̂) /= 0 for j ∈ M

and all n̂ < n0. Lemma 1 eliminates such a possibility and,
therefore, equilibrium can be reached in n0 iterations only
under specific initialization.

Using (C.1) and (C.2), for all n ≥ n0, we have

δ2(n + 1) = g1M2δ
1(n), (C.3)

δ1(n + 1) = g2M1δ
2(n + 1). (C.4)

Further, substituting (C.3) in (C.4) and vice versa, we obtain

δ2(n) = g1g2M2M1δ
2(n− 1), n ≥ n0 + 2,

δ1(n) = g1g2M1M2δ
1(n− 1), n ≥ n0 + 1.

(C.5)

Let Mi = VΛiV∗ be the eigenvalue decomposition of Mi and
φi

n
= V∗δi(n). Then, (C.5) can be written as

φi

n
= g1g2Λφ

i

n−1
, i ∈ [1, 2], (C.6)

where Λ = diag(1, 1, . . . , 1, (k1−m)(k2−m)/k1k2). Equations
(C.5) and (C.6) suggest that the IWFA converges if and only
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if φi

n
converges to a vector with all components equal to zero.

Using Λ, we have that φi

n
→ 0 only if

φi

n0
(k) = 0, k ∈ [1,m− 1], (C.7)

(
k1 −m

)(
k2 −m

)

k1k2
<

1
g1g2

, (C.8)

where we used (C.4) and (C.6) to show that φi

n0
(k) = 0

implies φi

n
(k) = 0, ∀n > n0 + 1. Thus, (C.7) shows that

partial overlap is an outcome of the game G only under
judicious initialization. Further, (C.8) gives a condition on
system parameters for convergence.

We now explore condition (C.7) in more detail. Combin-
ing (C.1) and (C.2), we get

p
1
(n) = g1g2M1M2p1

(n− 1) + (−1 + m/k1)g2
P2

k2
1m +

P1

k1
1m,

∀n ≥ n0.
(C.9)

Recall that the eigenvector matrix of Mi has the form V =
[Q, (1/

√
m)1m], with Q∗M1M2 = Q∗ and Q∗1m = 0. Using

this in (C.9) yields

Q∗p
1
(n) = g1g2Q∗p1

(n− 1), ∀n ≥ n0. (C.10)

We then have φ1
n0

(k) = 0, k ∈ [1,m − 1], if and only if

Q∗δ1(n0) = 0. Further, from (C.10), we have Q∗δ1(n0) =
Q∗p

1
(n0)−Q∗p

1
(n0 − 1) = (g1g2 − 1)Q∗p

1
(n0 − 1). Thus,

Q∗δ1(n0) = 0 implies Q∗p
1
(n0 − 1) = 0 as g1g2 > 1. Hence,

Q∗p
1
(n0−1) = 0 and p

j
1(n0−1) is constant for all j ∈M. As

in the discussion preceding (C.3), it can be shown that (C.7)
holds only under specific initialization. Hence, condition (1)
of Theorem 4 is shown.

To show (C.8), let p
j
i = pol

i , j ∈ M and p
j
i = pnol

i , j ∈
Ki∩Mc denote the power levels of player i for the subcarriers
with and without spectral overlap, respectively. Then, for
player 1, we have

(k1 −m)pnol
1 + mpol

1 = P1, (C.11)

pol
1 + g2p

ol
2 = pnol

1 , (C.12)

where (C.11) follows from the power constraint of player 1
and (C.12) is due to the water-filling. Similarly, for player 2,
we have

(
k2 −m

)
pnol

2 + mpol
2 = P2,

pol
2 + g1p

ol
1 = pnol

2 .
(C.13)

Solving these equations for pol
1 and pol

2 , we get

pol
1 =

k2P1 − g2
(
k1 −m

)
P2

k1k2 − g1g2
(
k1 −m

)(
k2 −m

) ,

pol
2 =

k1P2 − g1
(
k2 −m

)
P1

k1k2 − g1g2
(
k1 −m

)(
k2 −m

) .

(C.14)

From (C.8), we have that the denominator is positive and,
therefore, the overlapping power allocations are nonzero
only when k1P2 > g1(k2 −m)P1 and k2P1 > g2(k1 −m)P2.

Case 2 (ki = m for some i). As in the earlier case, it can be
shown that the IWFA converges in n0 iterations only under
specific initialization. For random initialization, it can be
shown that

p
j
2(n + 1)− p

j
2(n) = −g1

(
p
j
1(n)− p

j
1(n− 1)

)
, ∀ j ∈M,

p
j
1(n + 1)− p

j
1(n) = −g2

(
p
j
2(n + 1)− p

j
2(n)

)
, ∀ j ∈M,

(C.15)

when ki = m for some i. Then, it immediately follows that an
equilibrium is not reached for g1g2 > 1.
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