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1. Introduction

In fundamental image processing techniques, image interpo-
lation methods are extensively researched because of their
wide use of digital imaging applications, such as consumer
electronics, multimedia transmission, remote sensing, and
medical imaging. The image interpolation adopted in image
enlargement and reconstruction commonly estimates the
pixel value of a specified position. As presented in many stud-
ies [1–7], image interpolation was used to produce a high-
resolution (HR) image from its associated low-resolution
(LR) version. Numerous image interpolation methods that
calculate the interpolated value as a weighted sum of
neighboring pixels have been proposed in early years [8, 9].
The nearest neighbor method is simple to implement, but
it suffers much from blocking effect. Another well-known
method is the bilinear interpolation; however, it conducts
blurry edges or zigzagging structures in HR images while
there are sharp details or discontinuities in LR images. The
visual quality of enlarged images can be improved by cubic
splines interpolation [9] and cubic convolution [10–12].
All these popular methods only consider spatial distances
between image pixels and thus often lead unsatisfactory
performance in interpolated results.

To solve the above problem, various interpolation
approaches have been introduced to obtain qualified HR
images via considering local edge properties [1–4, 13–
16]. Moreover, some nonlinear methods have attempted to
enlarge images using intelligent schemes, such as optimal
recovery [7], neural networks [17, 18], fuzzy logics [19],
support vector machines [20], and vector quantization
[21, 22]. Another subfield of image interpolation is per-
formed in wavelet domain, but the noninteger magni-
fication factors cannot be used unfortunately [23, 24].
Several state-of-the-art methods have recently been pre-
sented and achieved acceptable performance in HR images.
An adaptive interpolation approach that integrates piece-
wise autoregressive models into image blocks is presented
in [6]. In [25], the nonlinear filters obtained from an
adaptive procedure are applied in sharp regions to avoid
blurring effect, while the linear filters are employed in
smooth regions. Yoo derives a closed-form formulation using
least-square techniques to adapt linear interpolation [26].
Based on interpolation error theorem, the error-amended
sharp edge is introduced in [27]. The image enlargement
approach presented in [28] adopts a codebook consisting
of low- and high-frequency components of an original
image.
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(a) (b)

Figure 1: Production of LR images using subsampling: (a) κ = 2, and (b) κ = 3.

Since human visual system is strongly sensitive to the
variations in intensity, an effective scheme that deals with
spatial sharpness and edges is very useful to improve the
quality of enlarged HR images. This study proposes an effi-
cient interpolation algorithm comprising two main stages.
In the first stage, an intelligent framework that combines
fuzzy inference system and particle swarm optimization is
adopted to restore the aligned pixels. In the second stage, the
interior pixels are obtained via extending the edge properties
of their neighbors. Experimental results demonstrate that
the proposed method certainly achieves good capacity for
enhancing spatial resolution of images.

This paper is organized as follows. Section 2 intro-
duces the proposed two-stage interpolation algorithm in
detail. Based on particle swarm optimization technique,
Section 3 presents a learning procedure to determine the
critical parameters of the presented fuzzy inference system.
Section 4 demonstrates the experimental results presented in
numerical comparisons and visual illustrations. Final, a short
conclusion is made in Section 5.

2. Two-Stage Interpolation Algorithm

2.1. Basic Concepts. Assume that a given LR image ILR of size
W ×H is to be enlarged into an HR image IHR of size κW ×
κH , where κ is a predefined magnification factor (MF). The
LR image is generally treated as a subsampled version from
its associated HR image. Figure 1 illustrates two standard
examples of the production of LR images by subsampling
for MFs κ = 2 and κ = 3, in which the black dots
represent the preserved pixels in the LR image and the other
dots represent lost pixels. The HR image is reconstructed in
two interpolative stages: (1) the aligned pixels (gray dots in
Figure 1) along each dimension are estimated, and (2) the
interior pixels (white dots in Figure 1) are estimated. The
following two subsections present the proposed two-stage
interpolation algorithm.

2.2. The First Stage: Estimating Aligned Pixels. Figures 2(a)
and 2(b) depict the aligned pixels located at (x + u, y) and
(x, y + v) in unit division [x, x + 1]× [y, y + 1], respectively.

Take Figure 2(a) as an example to describe the process of
estimating aligned pixels. Let fx,y ∈ ILR denote the pixel value
at position (x, y), where x = 1, 2, . . . ,W , and y = 1, 2, . . . ,H .
The linear interpolation method yields the interpolated value
of a specific point (x + u, y) as

˜fx+u,y = (1− u) fx,y + u fx+1,y , (1)

where u ∈ (0, 1) is the normalized Euclidean distance.
For an arbitrary MF κ, u = ε/κ for ε = 1, 2, . . . , κ − 1.
However, the sharp details in reconstructed HR images are
usually destroyed because the linear interpolation greatly
suffers from blurring effects. Figure 3 demonstrates a one-
dimensional example of a blurred edge when linear interpo-
lation is adopted, in which the original HR data in (a) are
first subsampled into the decimated LR data in (b) and are
then reconstructed to meet the original resolution in (c).

To introduce the novel contribution of this work,
Figure 4 plots the pixels of interest and presents the impor-
tant notation. As indicated in Figure 4, the interpolated

result ˜fx+u does not accurately represent the original value

fx+u, as an interpolation error of ex+u = | fx+u − ˜fx+u|
exists. Intuitively, reducing the weight of sample fx (located
on the sharp side in Figure 4) and increasing the weight
of sample fx+1 (located on the smooth side in Figure 4)
can effectively reduce this undesired interpolation error.
Restated, the gradient measurement of each sample of
interest helps in accurately estimating the interpolated result.
Consequently, this subsection introduces a novel scheme
that utilizes the gradients of sampling nodes x and (x + 1)
to obtain new weights of samples fx and fx+1. However,
the method for calculating (or modifying) weights is just a
linguistic manner since neither a deterministic approach nor
a mathematical derivation has been given. Fuzzy techniques
have been extensively adopted in identifying unknown
models or systems. Therefore, this study is the first to develop
a fuzzy inference system (FIS) for deriving the weight of each
neighboring sample.

Let ℵ4 denote the four corner pixels of the unit division
[x, x+1]×[y, y+1], such that ℵ4 = {(i, j) | i ∈ {x, x+1}; j ∈
{y, y+1}}. Let gd[n], which is called the gradient component
along the dth dimension of a specified pixel n, be the premise
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Figure 2: Three cases of interpolation: (a) aligned pixel on x-axis, (b) aligned pixel on y-axis, and (c) interior pixel.
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Figure 3: Blurring effect of linear interpolation in one-dimensional case: (a) original HR data points, (b) LR data by subsampling, and (c)
recovered data by linear interpolation.
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Figure 4: One-dimensional example of the conventional linear
interpolation.

variable of the proposed FIS:
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where n = (i, j) is selected from the corner pixels ℵ4. Define a
weighting factor τd[n] as the consequent variable; this factor
will be used to determine the weights of the considered pixels.
Now, the modification rules are first constructed in linguistic

terms. For example, IF gradient is large (or small), THEN
weighting factor is small (or large).
Hence, the rth fuzzy rule is written in the following form:

Rule r : IF gd[n] is Ar , THEN τd[n] is B Γ− r+1, (3)

where r = 1, 2, . . . ,Γ, and Γ is the total number of fuzzy
rules, and Ar and BΓ−r+1 are selected from {A1,A2, . . . ,AΓ}
and {B1,B2, . . . ,BΓ}, respectively (Figure 5). When g̃d[n] is
inputted to the FIS, the derived output τ̃d[n] is calculated via
fuzzy inference and defuzzification as follows:

τ̃d[n] =
∑

τd[n] · B′(τd[n])
∑

B′(τd[n])
,

B′(τd[n]) = max
μ=1,2,...,Γ

{

min
[

Aμ(τ̃d[n]),BΓ−μ+1(τd[n])
]}

.

(4)

As illustrated in Figure 2(a), the interpolated value of the
aligned pixel (x + u, y) is calculated by

˜fx+u,y = τ̂1[n1]
ω1

(1− u) fx,y +
τ̂1[n2]
ω1

u fx+1,y , (5)

where ω 1 = τ̂1[n1](1 − u) + τ̂1[n2]u, and n1 = (x, y) and
n2 = (x+1, y) are the neighboring pixels. Similarly, as shown
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Figure 5: Partitioned fuzzy sets of: (a) premise variable, and (b)
consequent variable.
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Figure 6: Four directions of an edge.

in Figure 2(b), the interpolated value of the pixel (x, y + v) is
calculated by

˜fx,y+v = τ̂2[n1]
ω2

(1− v) fx,y +
τ̂2[n3]
ω2

v fx,y+1, (6)

where ω2 = τ̂2[n1](1 − v) + τ̂2[n3]v, and n3 = (x, y + 1).
Therefore, the aligned pixels that were lost in LR images are
restored using (5) and (6).

In brief, the first interpolative stage is proposed for
estimating the aligned pixels from their neighbors that were
preserved in LR images. By combining gradient components
and fuzzy theory, the accuracy of interpolated values is
certainly improved.

2.3. The Second Stage: Estimating Interior Pixels. The second
stage presented in this subsection is employed to estimate
the values of interior pixels that are marked as white dots
in Figure 1. Since edge features are critical to representing
the local characteristics of an image, the interior pixels are
interpolated from their neighboring pixels by considering the

edge properties. Here, the neighboring pixels may be either
the preserved pixels in the given LR image (black dots in
Figure 1) or the aligned pixels that were estimated in the first
stage (gray dots in Figure 1). Figure 2(c) presents an interior
pixel located in the unit division [x, x + 1] × [y, y + 1], in
which u = ε1/κ and v = ε2/κ for ε1, ε2 = 1, 2, . . . , κ − 1.
The edge strengths and orientations of all pixels in ℵ4 must
be obtained first. Thus, the edge components of a specified
pixel n ∈ ℵ4 are calculated using

Ex(n) = − fi−1, j−1 − 2 fi−1, j − fi−1, j+1

+ fi+1, j−1 + 2 fi+1, j + fi+1, j+1,

Ey(n) = − fi−1, j−1 − 2 fi, j−1 − fi+1, j−1

+ fi−1, j+1 + 2 fi, j+1 + fi+1, j+1.

(7)

Accordingly, the edge strength and orientation of n are
obtained as follows:

E(n) = |Ex(n)| +
∣

∣

∣Ey(n)
∣

∣

∣,

θ(n) = tan−1

[

Ex(n)
Ey(n)

]

.
(8)

For an interior pixel (x + u, y + v), the edge strength caused
by a specific pixel n is defined as

Ξx+u,y+v(n) = (1− |x + u− i|)(1− ∣∣y + v − j
∣

∣

)

E(n). (9)

The pixel in ℵ4 that has maximal edge strength impacting on
interior pixel (x + u, y + v) is then selected as the dominant
pixel n̂:

n̂ = arg
n∈ℵ4

{

max
[

Ξx+u,y+v(n)
]}

. (10)

Base on the assumption that the edge orientation of an
interior pixel (x + u, y + v) is directly designated as that of
the dominant pixel, the orientation of (x+u, y+v) is defined
as θ(n̂). Then, θ(n̂) is quantized in four ordinary directions
Dλ(λ = 1, 2, 3, 4), as shown in Figure 6. Hence, the value of an
interior pixel is interpolated based on different orientations
(along the direction with maximal edge strength) and is given
in the following cases, where each case corresponds a specific
direction.

Case 1. When the direction of the interior pixel is D1 as
shown in Figure 7(a), the interpolated pixel value is obtained
from

˜fx+u,y+v = (1− u) fx,y+v + u fx+1,y+v. (11)

Case 2. When the direction of the interior pixel is D3 as
shown in Figure 7(b), the interpolated pixel value is obtained
from

˜fx+u,y+v = (1− v) fx+u,y + v fx+u,y+1. (12)
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Figure 7: Four classical cases for interpolating interior pixels.

Case 3. When the direction of the interior pixel is D2 as
shown in Figure 7(c), the pixel value is linearly interpolated
from those of its neighbors:

˜fx+u,y+v = rΨ
rΦ + rΨ

fΦ +
rΦ

rΦ + rΨ
fΨ, (13)

where fΦ, fΨ, rΦ, and rΨ are obtained by considering the
following three subcases.

Subcase 3.1. fΦ = fx,y+1, fΨ = fx+1,y , rΦ =
√

u2 + (1− v)2,

rΨ =
√

(1− u)2 + v2, as u + v = 1.

Subcase 3.2. fΦ = fx,y+u+v, fΨ = fx+u+v,y , rΦ = u, rΨ = v, as
u + v < 1.

Subcase 3.3. fΦ = fx+u+v−1,y+1, fΨ = fx+1,y+u+v−1, rΦ = 1− v,
rΨ = 1− u, as u + v > 1.

Case 4. When the direction of the interior pixel is D4 as
shown in Figure 7(d), the pixel value is interpolated using
(13), and subcases are described below.

Subcase 4.1. fΦ = fx,y , fΨ = fx+1,y+1, rΦ =
√
u2 + v2, rΨ =

√

(1− u)2 + (1− v)2, as u = v.

Subcase 4.2. fΦ = fx+u−v,y , fΨ = fx+1,y−u+v+1, rΦ = v, rΨ =
1− u, as u > v.

Subcase 4.3. fΦ = fx,y−u+v, fΨ = fx+u−v+1,y+1, rΦ = u, rΨ =
1− v, as u < v.

The two main stages of the estimation of the aligned
pixels based on local gradients and of the estimation of
interior pixels using edge properties of neighbors have
now been introduced. Consequently, the proposed two-stage
interpolation algorithm is carried out by implementing these
two stages in correct order.

3. Parameters Determination

This section discusses the critical parameters of the proposed
FIS that is used in the first stage of the estimation. The
fuzzy sets of the FIS significantly influence the effectiveness of
the proposed interpolation algorithm. Triangular and trape-
zoidal functions are the first recommended fuzzy member-
ship functions because of their simplicity of implementation.
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Figure 8: A set of test images: (a) Airplane, (b) Boats, (c) Cameraman, (d) Lena, (e) MRI, and (f) Peppers.

Moreover, some critical parameters must still be determined.
They include {α1,α2, . . . ,αΓ}, {β1,β2, . . . ,βΓ} and Γ. Suppose
that {α1,α2, . . . ,αΓ} and {β1,β2, . . . ,βΓ} are equally spaced in
the intervals [0,αΓ] and [0, 1], respectively, such that α1 = 0,
β1 = 0 and βΓ = 1. The parameters are now reformulated
as

αm = m− 1
Γ− 1

αΓ, βm = m− 1
Γ− 1

, for m = 1, 2, . . . ,Γ.

(14)

Therefore, the total number of parameters is significantly
reduced, and only two parameters, αΓ and Γ, need now be
considered. Next, the particle swarm optimization procedure
is adopted to determine parameters.

Particle swarm optimization (PSO) is a population-
based evolutionary algorithm that was inspired by the
social behavior of biological organisms [29, 30], which is
associated with an optimization search for solutions. As
an optimization approach, the PSO algorithm provides an
iteratively searching capability in which each particle moves
through the multidimensional search space. The 
th particle
in the n-dimensional search space is specified by three
components, which are its position p
 = [p
1, p
2, . . . , p
n],
its velocity v
 = [v
1, v
2, . . . , v
n], and the best position that
it has achieved so far b
 = [b
1, b
2, . . . , b
n] (for individual
best). Particles are initialized randomly and the particles then

move through the search space. In time step t, the position of
the 
th particle p
 (
 = 1, 2, . . . ,M) is updated by adding a
velocity vector vi, where M is the total number of particles
in the swarm. In standard PSO, the velocity and position are
updated using (15):

v
(t + 1) = w(t)v
(t) + ρ1
[

b
(t)− p
(t)
]

+ ρ2

[

̂b(t)− p
(t)
]

,

p
(t + 1) = p
(t) + v
(t + 1),
(15)

where ̂b is the best position found so far among all particles
in the swarm (for global best); ρ1 and ρ2 are random numbers
distributed in the interval [0, 1] that are generated in each
time step.

Let fx,y ∈ IHR and ˜fx,y ∈ ˜IHR represent the pixel
values in the original image and in the interpolated image,
respectively. The peak signal-to-noise ratio (PSNR) between
the two images, given by (16), is adopted as the fitness
function J
 to evaluate the solution for the 
th particle:

PSNR = 10 · log10
(L− 1)2

MSE
, (16)

MSE = 1
κW · κH

κW
∑

x=1

κH
∑

y=1

(

˜fx,y − fx,y

)2
, (17)
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Figure 9: Close-up part of (a) original Lena image and its reproduced version interpolated by (b) Nearest Neighbor, (c) Bilinear, (d) WaDi-
Bil, (e) Adaptive-Bil, (f) CFLS, (g) ESIF, (h) EDI, (i) EOA, (j) LAZA, and (k) SAI and (l) the proposed method.

for each time step t do
for 
th particle in swarm do

Update the position p
 using (14).
Calculate fitness function J
 .
Update the best positions b
 and ̂b
 .

end for
end for

Algorithm 1: Main procedure in particle swarm optimization.

where L = 28 = 256 for 8-bit images; κW and κH denote the
width and the height of the interpolated images. The main
procedure in particle swarm optimization is summarized as
in Algorithm 1.

Assume that an integer-valued particle p
 = [p
1, p
2]
moves through a two-dimensional search space that is
bounded in [0,L − 1] × [1,Γmax]. The terms p
1 and p
2

stand for parameters αΓ and Γ, respectively. To reduce the
computational burden, the maximal number of fuzzy rules
is set to Γmax = 15. The values optimized by PSO are αΓ =
136 and Γ = 9. Consequently, the critical parameters that
characterize the proposed FIS are completely determined
using (14).

4. Experimental Results

The performance of each tested interpolation method was
evaluated by reproducing HR images from their associated
LR images. The numerical tool MATLAB that is commonly
used in engineering applications was adopted to simulate
the following experiments. Figure 8 shows a set of test
images of size 512 × 512 pixels. The results of the pro-
posed interpolation algorithm were compared with those
obtained using several existing methods. These methods
are the nearest neighbors method, bilinear, warped distance
for bilinear (WaDi-Bil) [14], adaptive bilinear (Adaptive-
Bil) [13], closed-form least-squares technique for bilinear
(CFLS) [26], edge-sensitive interpolation filter (ESIF) [1],
new edge-directed interpolation (EDI) [2], edge-oriented
algorithm (EOA) [3], locally adaptive zooming algorithm
(LAZA) [5], and soft-decision estimation technique for
adaptive image interpolation (SAI) [6]. The original image
was first subsampled into an LR version with a reduced
size of 256 × 256 pixels. This associated LR image was
reproduced to meet its original size using each interpolation
method. The effectiveness of each method was quantitatively
evaluated in terms of PSNR between the original image
and the reproduced one. An MF κ = 2 was chosen in
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Figure 10: Close-up part of reproduced Boats image processed by six well-performing methods: (a) WaDi-Bil, (b) Adaptive-Bil, (c) ESIF,
(d) LAZA, (e) SAI, and (f) the proposed method.

Table 1: Numerical results presented in PSNRs between different interpolation methods.

Methods
Peak signal-to-noise ratios (in dBs) for different test images

Airplane Boats Cameraman Lena MRI Peppers

Nearest neighbor 27.19 26.11 27.48 29.10 31.32 29.52

Bilinear 32.75 30.36 34.14 35.65 41.10 35.27

WaDi-Bil [14] 33.22 30.50 35.42 36.19 42.63 35.73

Adaptive-Bil [13] 33.15 30.41 34.35 35.85 41.12 36.22

CFLS [26] 31.74 29.84 33.14 34.09 36.52 33.91

ESIF [1] 32.89 30.43 34.68 35.89 42.64 35.67

EDI [2] 32.88 29.96 33.10 35.60 41.54 35.75

EOA [3] 31.35 29.37 34.05 34.24 38.79 33.95

LAZA [5] 32.75 30.42 34.24 35.91 41.13 35.47

SAI [6] 32.86 30.38 35.06 35.84 42.65 36.40

Proposed method 33.67 30.86 36.27 36.85 43.44 36.42

this experiment because some of the compared methods
have been proposed for use in 2× image enlargement
applications [2, 3, 5, 6]. Table 1 numerically compares the
PSNR values obtained using different methods. Notably,
the proposed two-stage interpolation algorithm outper-
forms other methods by an average of 0.7–5 dB. The
SAI approach resulted in acceptable performance but cost

much execution time since it estimates four pixel values
using 21 neighboring pixels (complete derivation could be
attached in [6]). Table 2 lists the structural similarity (SSIM)
comparison among different methods. The SSIM index that
is normalized in [0, 1] quantifies the visibility of differences
between the original HR image and the interpolated image
[31].
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(a) (b) (c)
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Figure 11: Error image with respect to original image for Figure 10.

Table 2: Numerical results presented in SSIMs between different interpolation methods.

Methods
Structural similarity for different test images

Airplane Boats Cameraman Lena MRI Peppers

Nearest Neighbor 0.9508 0.9157 0.9640 0.9456 0.981 0.9536

Bilinear 0.9816 0.9594 0.9902 0.9830 0.9973 0.9819

WaDi-Bil [14] 0.9825 0.9602 0.9917 0.9838 0.9977 0.9825

Adaptive-Bil [13] 0.9820 0.9558 0.9895 0.9827 0.9977 0.9827

CFLS [26] 0.9824 0.9687 0.9831 0.9820 0.9934 0.9844

ESIF [1] 0.9818 0.9595 0.9907 0.9831 0.9977 0.9823

EDI [2] 0.9816 0.9593 0.9836 0.9829 0.9973 0.9825

EOA [3] 0.9810 0.9584 0.9881 0.9821 0.9857 0.9816

LAZA [5] 0.9816 0.9555 0.9908 0.9830 0.9978 0.9826

SAI [6] 0.9830 0.9603 0.9926 0.9832 0.9981 0.9835

Proposed Method 0.9836 0.9614 0.9929 0.9851 0.9985 0.9834

Figure 9 presents a close-up part of the Lena image,
interpolated using different image interpolation approaches.
As demonstrated, the nearest neighbor method yields block-
ing artifacts; the bilinear and CFLS methods blur the
details and edges, but the proposed algorithm preserves
them. Figure 10 displays another simulation of the Boats
image, which contains many edges. In this figure, six well-
performing interpolation methods were demonstrated. To
compare clearly the performance of different methods,
Figure 11 illustrates an error map of the interpolated

image with respect to the original image. The halftone
grayscale pixels (with a gray value of 128) are error-
free in the interpolated image, while the dark (or light)
pixels exhibit negative (or positive) interpolation errors.
All the simulation results including Figures 9–11 are
available online. Please refer to http://www.ee.ncu.edu.tw/
∼fuzzylab/ExpResults/ for downloading the experimental
results. The proposed interpolation algorithm certainly
reduces the interpolation errors, particularly in sharp
regions.
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5. Conclusions

This study has presented an efficient interpolation method
for image processing applications. The HR images are
reproduced by estimating the values of aligned pixels and
then estimating the values of interior pixels. The first stage
deals with the lost pixels using an intelligent scheme that
combines fuzzy logic and particle swarm optimization. The
grayscale values of aligned pixels are interpolated by using
the optimized fuzzy inference system whose input is the local
gradient information. In the second interpolative stage, the
lost pixels in an interior region are restored from the edge fea-
tures of their neighbors. Numerical comparisons verify the
effectiveness of the proposed interpolation algorithm applied
to different images. Close-up observations and error maps
demonstrate the superiority of the proposed algorithm over
other methods in restoring local edges. The proposed two-
stage interpolation algorithm yields substantially improved
performance of image zooming and enlargement.
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[24] S. G. Chang, Z. Cvetković, and M. Vetterli, “Locally adaptive
wavelet-based image interpolation,” IEEE Transactions on
Image Processing, vol. 15, no. 6, pp. 1471–1485, 2006.
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