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Hearing aid users have difficulty hearing target signals, such as speech, in the presence of competing signals or noise. Most solutions
proposed to date enhance or extract target signals from background noise and interference based on either location attributes or
source attributes. Location attributes typically involve arrival angles at a microphone array. Source attributes include characteristics
that are specific to a signal, such as fundamental frequency, or statistical properties that differentiate signals. This paper describes a
novel approach to sound source separation, called computational auditory scene analysis-enhanced beamforming (CASA-EB), that
achieves increased separation performance by combining the complementary techniques of CASA (a source attribute technique)
with beamforming (a location attribute technique), complementary in the sense that they use independent attributes for signal
separation. CASA-EB performs sound source separation by temporally and spatially filtering a multichannel input signal, and then
grouping the resulting signal components into separated signals, based on source and location attributes. Experimental results
show increased signal-to-interference ratio with CASA-EB over beamforming or CASA alone.
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1. Introduction

People often find themselves in cluttered acoustic envi-
ronments, where what they want to listen to is mixed
with noise, interference, and other acoustic signals of no
interest. The problem of extracting an acoustic signal of
interest from background clutter is called sound source
separation and, in psychoacoustics, is also known as the
“cocktail party problem.” Such “hearing out” of a desired
signal can be particularly challenging for hearing aid users
who often have reduced localization abilities. Sound source
separation could allow them to distinguish better between
multiple speakers, and thus, hear a chosen speaker more
clearly. Separated signals from a sound source separation
system can be further enhanced through techniques such
as amplitude compression for listeners with sensorineural
hearing loss and are also suitable for further processing
in other applications, such as teleconferencing, automatic
speech recognition, automatic transcription of ensemble
music, and modeling the human auditory system.

There are three main approaches to the general sound
source separation problem: blind source separation methods,
those that use location attributes, and those that use source
attributes. Blind source separation techniques separate
sound signals based on the assumption that the signals are
“independent,” that is, that their nth-order joint moments
are equal to zero. When 2nd-order statistics are used, the
method is called principal component analysis (PCA); when
higher-order statistics are used, it is called independent
component analysis (ICA). Blind source separation methods
can achieve good performance. However, they require the
observation data to satisfy some strict assumptions that may
not be compatible with a natural listening environment.
Besides the “independence” requirement, they can also
require one or more of the following: a constant mixing
process, a known and fixed number of sources, and an
equal number of sources and observations [1]. Location
and source attribute-based methods do not require any of
these, and thus, are effective for a wider range of listening
environments.



Location attributes describe the physical location of
a sound source at the time it produced the sound. For
example, a sound passes across a microphone array from
some direction, and this direction, called “arrival angle,” is
a location attribute. One location-attribute-based technique
is binaural CASA [2-4]. Based on a model of the human
auditory system, binaural sound source separation uses
binaural data (sound “heard” at two “ears”) to estimate
the arrival angle of “dominant” single-source sounds. It
does this by comparing the binaural data’s interaural time
delays and interaural intensity differences to a look-up
table and selecting the closest match. While binaural CASA
performance is impressive for a two microphone array (two
ears), improved performance may be achieved by using
larger arrays—as in beamforming. In addition to lifting the
two microphone restriction of binaural CASA, microphone
array processing is also more amenable to quantitative
performance analysis since it is a mathematically derived
approach.

Beamforming uses spatially sampled data from an array
of two or more sensors to estimate arrival angles and
waveforms of “dominant” signals in the wavefield. Generally,
the idea is to combine the sensor measurements in some
way so that desirable signals add constructively, while noise
and interference are reduced. Various beamforming methods
(taken and adapted from traditional array processing for
applications such as radar and sonar) have been developed
for and applied to speech and other acoustic signals. A review
of these “microphone array processing” methods can be
found in [5]. Regardless of which specific location method
is chosen, however, and how well it works, it still cannot
separate signals from the same (or from a close) location
since location is its cue for separation [6].

In this paper, we present a novel technique combining
beamforming with a source attribute technique, monaural
CASA. This category of source attribute methods models
how human hearing separates multispeaker input to “hear
out” each speaker individually. Source attributes describe
the state of the sound source at the time it produces
the sound. For example, in the case of a voiced speech
sound, fundamental frequency (F0) is a source attribute that
indicates the rate at which the speaker’s glottis opens and
closes. Monaural CASA [3, 7-12] is based on a model of
how the human auditory system performs monaural sound
source separation. It groups “time-frequency” signal com-
ponents with similar source attributes, such as fundamental
frequency (F0), amplitude modulation (AM), onset/offset
times and timbre. Such signal component groups then give
the separated sounds.

Location-attribute techniques can separate signals better
in some situations than source-attribute techniques can.
For example, since location attributes are independent of
signal spectral characteristics, they can group harmonic and
inharmonic signals equally well. Source-attribute techniques
such as monaural CASA, on the other hand, have trouble
with inharmonic signals. Similarly, when a signal changes its
spectral characteristics abruptly, for example, from a fricative
to a vowel in a speech signal, the performance of location-
attribute techniques will not be affected. Source-attribute
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techniques, on the other hand, may mistakenly separate the
fricative and the vowel—assigning them to different sound
sources.

Source-attribute techniques can also perform better than
location-attribute methods in some situations. Specifically,
they can separate sound mixtures in which the single-source
signals have close or equal arrival angles. Their complemen-
tary strengths suggest that combining these two techniques
may provide better sound source separation performance
than using either method individually. Indeed, previously
published work combining monaural and binaural CASA
shows that this is a promising idea ([3, 13]).

In this paper, we exploit the idea of combining location
and source attributes further by combining beamforming
with monaural CASA into a novel approach called CASA-
Enhanced Beamforming (CASA-EB). The main reason for
using beamforming rather than binaural CASA as the
location-attribute technique, here, is that beamforming
may provide higher arrival angle resolution through the
use of larger microphone arrays and adaptive processing.
In addition, beamforming is more subject to quantitative
analysis.

2. CASA-EB Overview

We begin by introducing some notation and giving a more
precise definition of sound source separation. Suppose a
multisource sound field is observed by an array of M acoustic
sensors (microphones). This produces M observed mixture
signals:

K

ylm,n] = zxk[m,n] + w[m,nl,
k=1

m=1,2,....,.M, (1)

where n is the time index, m is the microphone index,
xk[m,n] is the kth source signal as observed at the mth
microphone, and w[m,n] is the noise in the observation
(background and measurement noise). The goal of sound
source separation, then, is to make an estimate of each of the
K single-source signals in the observed mixture signals

xXkln], ke {1,2,...,K}, (2)
where * is used to indicate estimation, and the estimate X [#]
may differ from the source signal by a delay and/or scale
factor.

In our CASA-EB approach, sound source separation
is achieved in two steps. As shown in Figure 1, these are
signal analysis and grouping. In the signal analysis step,
the array observations, y[m, n], are transformed into signal
components in a 3D representation space with dimensions:
time frame p, frequency band w, and arrival angle band ¢
(see illustration in Figure 2). This is accomplished in two
substeps—temporal filtering of y[m, n] through a bandpass
filterbank, followed by spatial filtering of the resulting band-
pass signals. In the grouping step, selected signal components
from this 3D CASA-EB representation space are grouped to
form the separated single-source signals (see the illustration
in Figure 3). Grouping consists of three substeps—selecting
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FIGURE 1: Block diagram of CASA-EB.
The projection in the This group of signal components
The CASA-EB time-frequency plane is gives the estimate of the siren.
representation a spectrogram of the siren.

of a siren.

w

'S time-arrival angle plane shows
¢ the siren’s arrival angle, ¢.
(a)
The CASA-EB The projection in the
representation time-frequency plane is a spectrogram

of harmonic signal. of the harmonic signal.

¢ time-arrival angle plane shows
the signal’s arrival angle, ¢.

(b)

Figure 2: CASA-EB representations of a siren (a), and a simple
harmonic signal (b). The projections on the time-frequency plane
(signal’s spectrogram) and time-arrival angle planes (signal’s arrival
angle path) are also shown.

signal components to group, estimating their attributes,
and finally grouping selected signal components that share
common attribute values.

o1

¢ This group gives
the estimate of the harmonic signal.

FIGURE 3: Separated signals from a two-signal mixture. This
figure shows separated signal component groups from an example
mixture signal—the sum of the two signals shown in Figure 2. The
signal component groups are formed by collecting together signal
components with similar location and source attributes (details in
Section 4).

A summary of the CASA-EB processing steps and the
methods used to implement them are given in Table 1.
The details of these are described below—signal analysis
in Section 3 and grouping in Section 4. Then, Section 5
discusses how waveforms of the separated single-source
signals can be synthesized from their signal component
groups. Finally, after this presentation of the CASA-EB
method, experimental results are presented in Section 6.

3. CASA-EB Representation Space

As just described, the first step in our approach is signal
analysis. The array observations y[m,n] are filtered along
both the temporal and spatial dimensions to produce
“frequency components”

Y[, w,n] = Tylyolm,nl}, with
(3)

Yolm,n] = y[m,n] x hy[n],
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TaBLE 1: Summary of CASA-EB methods.

Processing block

Method

Signal analysis
Temporal filtering
Spatial filtering

Gammatone filterbank
Delay-and-sum beamformer

Grouping
Signal component selection (¢)
Signal component selection (w)
Attribute estimation (F0)
Attribute estimation (¢)

Signal component grouping (short-time sequential)
Signal component grouping (simultaneous)
Signal component grouping (linking short-time groups)

STMV beamforming
Signal detection using MDL criterion
Autocorrelogram
From P[¢, w, p]
Kalman filtering with Munkres’ optimal data assn algorithm
Clustering via a hierarchical partitioning algorithm
Munkres’ optimal data assn algorithm

Waveform resynthsis
Over frequency
Over time

Adding together grouped signal components
Overlap-add

where h,[n] is a bandpass temporal filter associated with the
frequency band indexed by w, and 75 is a spatial transform
associated with the arrival angle band indexed by ¢ (details
of these signal analyses follow below).

The “frequency components” Y[¢,w,n] are used later
in the processing (Section 4.2) for estimation of a grouping
attribute, fundamental frequency, and also for waveform
resynthesis. The signal components to be grouped in CASA-
EB are those of its 3D representation shown in Figure 2;
these are the power spectral components of the Y[¢, w, n],
obtained in the usual way as the time-average of their
magnitudes squared

] pT+(N,—1)/2

Pl¢,w,p] = N 2.

w n =pT—(Ny—1)/2

| Y[p0,n ]| (4)

where the P[¢, w,p] are downsampled from the Y[¢, w, n]
with downsampling rate T, that is, p = n/T, and N,, is the
number of samples of Y[¢, w,n] in frequency band w that
are used to compute one sample of P[¢, w, p].

3.1. Temporal Filtering. For the temporal filterbank,
he[n], @ € {1,2,...,Q}, we have used a modified
gammatone filterbank. It consists of constant-Q filters
in high frequency bands (200 to 8000 Hz) and constant-
bandwidth filters in lower frequency bands (below 200 Hz)
(Constant-Q filters are a set of filters that all have the same
quotient (Q), or ratio of center frequency to bandwidth.).
Specifically, the constant-Q filters are the fourth-order
gammatone functions,

hw[l’l] = v - e—ﬁ(a"’nTS)(awnTS)3ej2nﬁ/2((x‘“nTs)u[n]) (5)

where the frequency band indices (w = 1,2,...,75) are
in reverse order, that is, the lower indices denote higher
frequencies, f; and T are the sampling frequency and
sampling period, u[n] is the unit step function, and « and f3
are parameters that can be used to adjust filter characteristics
such as bandwidths and spacing on the frequency axis. For

CASA-EB, a = 0.95, and 3 = 2000 work well. The constant-
bandwidth filters are derived by downshifting the lowest

frequency constant-Q filter (w = 75) by integer multiples of
its bandwidth

hw[l’l] _ h75[n]e—j2n(w—75)375n) (6)

where w = 76,77,...,90, and B7s is the bandwidth of the
lowest frequency constant-Q filter.

The modified gammatone filterbank is used for temporal
filtering because it divides the frequency axis efficiently for
CASA-EB. Specifically, for CASA, the frequency bands are
just narrow enough that the important spectral features of
a signal (such as harmonics in low frequencies and formants
in high frequencies) can be easily distinguished from each
other. For beamforming, the bands are narrow enough to
limit spatial filtering errors to an acceptable level.

3.2. Spatial Filtering. The spatial transform, Ty, that we are
using is the well-known delay-and-sum beamformer

M
To{yolm,nl} = ﬁ > yolm,n] - 27Dl with
m=1
fo = fulssing, 9
T 7T
vel-53)

where f, is the center frequency of frequency band w, d is the
distance between adjacent microphones in a uniform linear
array, and C is the speed of sound at standard temperature
and pressure.

Delay-and-sum beamforming is used here for the sig-
nal analysis in our general solution to the sound source
separation problem because it does not cancel correlated
signals, for example, echos (as MV beamforming can), and
does not require a priori information or explicit modeling
of target signals, interferers, or noise (as other data adaptive
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beamforming can). Its drawback is that, since it has relatively
low arrival angle resolution, each signal component will
contain more interference from neighboring arrival angle
bands. In CASA-EB, this is ameliorated somewhat by the
additional separation power provided by monaural CASA.
For specific applications, CASA-EB performance may be
improved by defining signal and/or noise models and using
a data adaptive beamformer.

In summary, the 3D CASA-EB representation space con-
sists of signal components P[¢, w, p] generated by filtering
a temporally and spatially sampled input signal along both
of these dimensions (to produce frequency components
Y[, w,n]), and then, taking the average magnitude squared
of these.

4. CASA-EB Grouping to Separate
Single-Source Signals

As described previously, the second step in CASA-EB is
to group signal components from the time-frequency-
arrival angle space into separated single-source signal esti-
mates. Grouping consists of three steps: selecting the signal
components for grouping, estimating their location and
source attributes, and finally, grouping those with similarly
valued attributes to form the separated single-source signal
estimates. The details of these three steps are given in the
following three subsections.

4.1. Signal Component Selection. In this step, the set of all
signal components (P[¢, w, p]) is pruned to produce a subset
of “significant” signal components, which are more likely
to have come from actual sound sources of interest and
to constitute the main part of their signals. Grouping is
then performed using only this subset of signals. Experience
and experimental results indicate that this type of before-
grouping pruning does not adversely affect performance and
has the following two benefits. First, it reduces the com-
putational complexity of grouping and second, it increases
grouping robustness (since there are fewer spurious signal
components to throw the grouping operation “off-track”).
Now, we describe the signal component selection process in
more detail.

4.1.1. Arrival Angle Detection. This process begins with
pruning away signal components from arrival angles in
which it is unlikely there is any andible target sound, that
is, from angles within which the signal power is low. There
are a variety of ways to detect such low-power arrival angles.
For example, a simple way is, for a given time frame p, to add
up the power spectral components P[¢, w, p] in each arrival
angle band ¢

P[¢] = > Plp,w.p]. (8)

w

In this work, we are using a wideband adaptive beam-
former by Krolik—the steered minimum variance (STMV)
beamformer [14]. This wideband method is an adaptation of

Capon’s [15] narrowband minimum variance (MV) beam-
former. The MV beamformer is a constrained optimization
method that produces a spatial spectral estimate in which
power is minimized subject to the constraint of unity gain
in the look direction, that is,

rrai(n[w* -Rf-w] subjecttoaf(¢) -w=1, (9)

where w is the beamformer weight vector, Ry is the covari-
ance matrix of a narrowband array observation vector with
frequency f, T indicates conjugate transpose, and ag(¢) =

4 . T

(1 e /2nfn(9) ... e=i2nf/ti-i(8)] s the “steering vector”
The solution to (9) gives the MV beamformer spatial spectral
estimate:

-1

Prlo] = [af (¢) - Ri' - as(¢) ] (10)

To apply this narrowband method to a wideband signal,
one could just filter the wideband array observations, apply
the narrowband method individually in each band, and
then sum up the results across frequency. This “incoherent”
wideband method, however, does not take full advantage
of the greater statistical stability of the wideband signal—
a goal of wideband methods such as STMV beamforming.
To achieve this goal, a wideband method must use a statistic
computed across frequency bands.

In light of the above, STMV beamforming is an adapta-
tion of MV beamforming in which a wideband composite
covariance matrix (R*[¢] defined below) is used in place of
the narrowband one, and the steering vector in the constraint
is adjusted appropriately (more on this below):

ngn[w+ -R[¢] - w] subjectto 1T-w=1, (11)

where 1 is an M x 1 vector of ones. The STMV beamformer
solution is

-1

P[] = [17-R*[g] " -1] . (12)

To compute the wideband composite covariance matrix
Rst[¢] from the array observation vectors, some prepro-
cessing is performed first. The y[m, n] are bandpass filtered
(as in (3)), and then the resulting narrowband signals are
“presteered” as follows:

yolm,n] = T fu, ¢] - yolm,nl, (13)

where f, is the center frequency of frequency band w, the
steering matrix T5[ f,, ¢] is a diagonal matrix with diagonal
elements [1  e/27foti(¢) el2mfatar-0(9)], and tw(p) is
the time delay between the mth sensor and a reference
sensor (sensor 1) for a narrowband signal e /2"/ef from
angle ¢. Such presteering has the effect of zeroing out
inter-sensor time delays f,,(¢) in narrowband signals from
angle ¢. For example, for the narrowband signal s(t) =
[ e i2nfuti(9) e—jana,tM,l(qS)],

T [ for 9] - s() = L. (14)

Thus, the effect of preprocessing the wideband array
observations is to make the steering vectors equal for



all frequency bands (af,(¢) = 1), and this provides a
frequency-independent steering vector to use in the STMV
beamformer’s unity-gain constraint.

Now, given the presteered array observations, the wide-
band composite covariance matrix is simply

h t’l0+(N—1)
RE[p] = > > yitlm,n] -yt [m,nl,
w=] n=ng

) (15)
= > T¥[fur¢] - R - T [ fu ],
w=I

where R, is the covariance matrix of y,[m,n], and the
summations run from frequency band [/ to h and from time
index ng to ng + (N — 1).

The advantage of Krolik’s technique over that of (8) and
other similar data-independent beamforming techniques is
that it provides higher arrival angle resolution. Compared
to other data adaptive methods, it does not require a priori
information about the source signals and/or interference,
does not cancel correlated signals (as MV beamforming is
known to do), and is not vulnerable to source location bias
(as other wideband adaptive methods, such as the coherent
signal-subspace methods, are [16]).

4.1.2. Frequency Band Selection. Now, for each detected
arrival angle band, ¢y, the next step is to select the significant
signal components from that arrival angle band. This is
done in two steps. First, high-power signal components
are detected, and low-power ones pruned. Then, the high-
power components are further divided into peaks (i.e.,
local maxima) and their neighboring nonpeak components.
Although all the high-power components will be included
in the separated signals, only the peak components need to
be explicitly grouped. Due to the nature of the gammatone
filterbank we are using, the non-peak components can be
added back into the separated signal estimates later at signal
reconstruction time, based on their relationship with a peak.
Consider the following. Since the filterbank’s neighboring
frequency bands overlap, a high-power frequency compo-
nent sufficient to generate a peak in a given band is also likely
to contribute significant related signal power in neighboring
bands (producing non-peak components). Thus, these non-
peak components are likely to be generated by the same
signal feature as their neighboring peak, and it is reasonable
to associate them.

Low-power signal components are detected and pruned
using a technique by Wax and Kailath [17]. In their work,
a covariance matrix is computed from multichannel input
data, and its eigenvalues are sorted into a low-power set
(from background noise) and a high-power set (from
signals). The sorting is accomplished by minimizing an
information theoretic criterion, such as Akaike’s Information
Criterion (AIC) [18, 19] or the Minimum Description
Length (MDL) criterion [20, 21]). The MDL is discussed here
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since it is the one used in CASA-EB. From [17], it is defined
as

L 1/(L-1)
Hi:/Prl li

(L-M)N;
(/L —=N) - S l,») (16)

MDL = —log (

" %)L(ZL _)logN;,

where A € {0,1,...,L — 1} is the number of possible
signal eigenvalues and the parameter over which the MDL
is minimized, L is the total number of eigenvalues, I; is the
ith largest eigenvalue, and N; is the number of time samples
of the observation vectors used to estimate the covariance
matrix. The A that minimizes the MDL (A, ) is the estimated
number of signal eigenvalues, and the remaining (L —
Amin) smallest eigenvalues are the detected noise eigenvalues.
Notice, this MDL criterion is entirely a function of the
(L — 1) smallest eigenvalues, and not the larger ones.
Thus, in practice, it distinguishes between signal and noise
eigenvalues based on the characteristics of the background
noise. Specifically, it detects a set of noise eigenvalues with
relatively low and approximately equal power. Wax and
Kailath use this method to estimate the number of signals
in multichannel input data. We use it to detect and remove
the (L — Amin) low-power, noise components P[¢, w, p]—by
treating the P[¢, w,p] as the eigenvalues in their method.
We chose this method for noise detection because it works
based on characteristics of the noise, rather than relying on
arbitrary threshold setting.

In summary, signal component selection/pruning is
accomplished in two steps. For each fixed time frame
p, high power arrival angle bands are detected, and sig-
nal components from low power arrival angle bands are
removed. Then, in high power arrival angle bands, low-
power signal components are removed and high-power
signal components are divided into peaks (for grouping)
and non-peaks (to be added back into the separated signal
estimates after grouping, at signal reconstruction time).

4.2. Attribute Estimation. In the previous section, we
described how signal components in the CASA-EB repre-
sentation can be pruned and selected for grouping. In this
section, we describe how to estimate the selected signal
components’ attributes that will be used to group them.
In this work, we estimate two types of signal attributes,
location attributes and source attributes. As described in the
introduction, these are complementary. Used together, they
may allow more types of sound mixtures to be separated and
produce more completely separated source signals.

4.2.1. Locaton Attribute. For a selected signal component,
P[¢,w,p], the location attribute used in CASA-EB is its
arrival angle band, or simply its ¢ index. This is the delay-
and-sum beamformer steering angle from the spatial filtering
step in Section 3.

4.2.2. Source Attribute. Source attributes are features embed-
ded in a signal that describe the state of the signal’s source
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at the time it produced the signal. In the previous work,
several different source attributes have been used, including
FO [2, 3, 8-11, 22, 23], amplitude modulation [8], onset time
[9, 23], offset time [9], and timbre [24]. In this work, we use
an FO attribute. Since FO is the most commonly used, its use
here will allow our results to be compared to those of others
more easily. Next, we discuss FO estimation in more detail.

There are two main approaches to FO estimation: spectral
peak-based and autocorrelation-based methods. The spectral
peak-based approach is straightforward when there is only
one harmonic group in the sound signal. In this case, it
detects peaks in the signal’s spectrum and estimates FO by
finding the greatest common divisor of their frequencies.
However, complications arise when the signal contains
more than one harmonic group. Specifically, there is the
added “data association problem,” that is, the problem of
determining the number of harmonic groups and which
spectral peaks belong to which harmonic groups. The
autocorrelation-based approach handles the data association
problem more effectively and furthermore, as indicated in
[25], also provides more robust FO estimation performance.
Hence, an autocorrelation-based method is used in this
work.

The basic idea behind the autocorrelation method is that
a periodic signal will produce peaks in its autocorrelation
function at integer multiples of its fundamental period, and
these can be used to estimate FO. To use FO as an attribute
for grouping signal components, however, it is also necessary
to be able to associate the signal components P[¢, w, p] with
the FO estimates. This can be done using an extension of the
autocorrelation method—the autocorrelogram method.

Detailed descriptions of the autocorrelogram method
can be found in [9-11, 25-30]. To summarize here, the
steps of this method are the following. First, an input
signal X[n] is filtered either by a set of equal-bandwidth
bandpass filters covering the audible range of frequencies,
or more often, by a filtering system based more closely on
the human auditory system, such as a gammatone filterbank.
This filtering produces the bandpass signals X,,[#]. Then, to
form the autocorrelogram, an autocorrelation of the filtered
signal is computed in each band and optionally normalized
by the signal power in the band:
Relr], (17)
Ry, [0]
For an illustration, see Figure4. Next, a summary auto-
correlogram is computed by combining the narrowband
autocorrelations over frequency and optionally applying a
weighting function to emphasize low-frequency peaks:

acm|w, 7] =

Q
sacm([7] = = Zacm[w,r] -w(t], (18)
gzwzl
where
wlr] = exp[l_\rr] (19)

is a low frequency emphasis function, and N is the number
of time lags at which the autocorrelogram is computed.

X|[n]

0 100 200 300
Time (samples)

(a)

Frequency band (w)

50 100 150 200 250 300
Time lag (samples)

(b)

sacm|T]
o

0 100 200 300
Time lag (samples)
()

FIGURE 4: Autocorrelogram representation of a sum of sinusoids.
The signal, X[n] = Zf:l sin(271300r - nT;), with T, = 1/16000
s/sample is shown in (a). (b) shows the power-normalized auto-
correlogram, acm|w, 7] = Ry,[7]/Rx,[0], where Ry, [7] is the
autocorrelation of the filtered signal, X,[n] = Xl[n] * hy[n].
Here, the maximum value is displayed in white, the minimum in
black. Finally, the summary autocorrelogram, sacm|[z] = ((1/Q) -
22:1 acm|w, 7]) - w[t] is shown in (c).

For an example of the summary autocorrelogram, see
Figure 4. Finally, FO estimates are made based on peaks in
the summary autocorrelogram, and overtones of these are
identified by associating peaks in the autocorrelogram with
the FO-estimate peaks in the summary autocorrelogram.

For CASA-EB, we are using the following implementa-
tion of the autocorrelogram method. In each time frame
p, an autocorrelogram and summary autocorrelogram are
computed for each detected arrival angle band ¢y (from
Section 4.1), and a single FO analysis is made from each
such autocorrelogram/summary autocorrelogram pair. That



is, for each ¢y, an autocorrelogram and summary autocor-
relogram are computed from the temporally and spatially
filtered signal, Y[¢o, w,n], w € {1,2,...,Q} and n € {pT —
Ny/2+1,...,pT+N./2}, where we used N; = 320 (equivalent
to 20 milliseconds). Then, for this arrival angle band and
time frame, the FO estimation method of Wang and Brown
[11] is applied, producing a single FO estimate made from
the highest peak in the summary autocorrelogram

Fo[¢o,p], (20)

and a set of flags, indicating for each P[¢o, w, p], whether it
contains a harmonic of FO[¢y, p] or not

FN[¢o, w,p], we<{1,2,...,Q}. (21)

Here, FN[¢o, w,p] = 1 when band w contains a harmonic,
and 0 otherwise. Details of the implementation are the
following.

Temporal filtering is done with a gammatone filterbank
because its constant-Q filters can resolve important low-
frequency features of harmonic signals (the fundamental and
its lower frequency harmonics) better than equal-bandwidth
filterbanks with the same number of bands (Low frequency
harmonics are important since, in speech for example, they
account for much of the signal power in vowels). These
better-resolved, less-mixed low frequency harmonics can
give better FO estimation results (FO estimates and related
harmonic flags, FN’s), since they produce sharper peaks in
the autocorrelogram, and these sharper peaks are easier for
the FO estimation algorithm to interpret. Spatial filtering
(new to autocorrelogram analysis) is used here because
it provides the advantage of reducing interference in the
autocorrelogram when multiple signals from different spatial
locations are present in the input.

The autocorrelogram is computed as described pre-
viously, including the optional power normalization in
each frequency band. For the summary autocorrelogram,
however, we have found that FO estimation is improved
by using just the lower frequency bands that contain the
strongest harmonic features. Thus,

90
sacm|[T] = 7i4 Z acm|w, 7] - w[T], (22)
w=17

where the bands, 90 to 17, cover the frequency range, 0, to
3500 Hz, the frequency range of a vowel’s fundamental and
its lower harmonics.

Finally, an FO analysis is performed using the autocor-
relogram/summary autocorrelogram pair, according to the
method of Wang and Brown [11]. Their method is used
in CASA-EB to facillitate comparison testing of CASA-EB’S
monaural CASA to their monaural CASA (described in
Section 6). The details of the method are the following. First,
a single FO is estimated based on the highest peak in the
summary autocorrelogram:

FO[¢o,p] = Tf? (23)
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where f; is the temporal sampling frequency of the input
signal y[m,n], and 7, is the time lag of the highest peak
in the summary autocorrelogram. Then, the associated
overtones of this FO are identified by finding frequency
bands in the autocorrelogram with peaks at, or near, 7,,.
Specifically, this is done as follows. A band w is determined
to contain an overtone, that is, FN[¢¢, w, p] = 1, when

RXH, [Tm]
Rx, (0]

> 0y, (24)

and ®; = 0.90 is a detection threshold. Wang and Brown
used ®; = 0.95. For CASA-EB, experiments show that
®ys in the range of 0.875 to 0.95 detect overtones well
[31]. This FO estimation method amounts to estimating
FO and detecting its overtones for a single “foreground
signal,” and treating the rest of the input mixture signal
as background noise and interference. Although this limits
the number of signals for which an FO estimate is made
(one per autocorrelogram), it also helps by eliminating the
need to estimate the number of harmonic signals. Further,
it provides more robust FO estimation since, from each
autocorrelogram, an FO estimate is only made from the signal
with the strongest harmonic evidence (the highest peak in
the summary autocorrelogram).

Notice that in our application, the number of signals for
which FO estimates can be made is less limited since we have
more than one autocorrelogram per time frame (one for each
detected arrival angle). Additionally, our FO estimates may
be better since they are made from autocorrelograms with
less interharmonic group interference. Such interference is
reduced since the autocorrelograms are computed from the
spatially filtered signals, Y [¢o, w,n], w € {1,2,...,Q}, that
are generally “less mixed” than the original input mixture
signal y[m,n] because they contain a smaller number of
harmonic groups with significant power.

4.3. Signal Component Grouping. Recall that sound source
separation consists of two steps: signal analysis (to break
the signal into components such as P[¢,w,p]), and signal
component grouping (to collect the components into single
source signal estimates). Grouping collects together signal
components according to their attributes (estimated in
Section 4.2), and ideally, each group only contains pieces
from a single source signal.

Grouping is typically done in two stages: simultaneous
grouping clusters together signal components in each time
frame p that share common attribute values, and sequential
grouping tracks these simultaneous groups across time. In
the previous work, many researchers perform simultaneous
grouping first and then track the resulting clusters [2, 3, 10,
22, 32]. For signals grouped by the FO source attribute, for
example, the simultaneous grouping step consists of iden-
tifying groups of harmonics, and the sequential grouping
step consists of tracking their fundamental frequencies. A
primary advantage of simultaneous-first grouping is that it
can be real-time amenable when the target signals’ models
are known a priori. However, when they are not known, it
can be computationally complex to determine the correct
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signal models [10], or error-prone if wrong signal models are
used.

Some researchers have experimented with sequential-
first grouping [8, 9]. In this case, the sequential grouping step
consists of tracking individual signal components, and the
simultaneous grouping step consists of clustering together
the tracks that have similar source attribute values in the
time frames in which they overlap. Although this approach
is not real-time amenable since tracking is performed on the
full length of the input mixture signal before the resulting
tracks are clustered, it has the advantage that it controls
error propagation. It does this by putting off the more error-
prone decisions (simultaneous grouping’s signal modeling
decisions) until later in the grouping process.

In this work, we strike a balance between the two
with a short-time sequential-first grouping approach. This
is a three-step approach (illustrated in Figure 5). First, to
enjoy the benefits of sequential-first grouping (reduced
error-propagation) without suffering long time delays, we
start by tracking individual signal components over a few
frames. Then, these short-time frequency component tracks
are clustered together into short-time single-source signal
estimates. Finally, since signals are typically longer than a
few frames, it is necessary to connect the short-time signal
estimates together (i.e., to track them). The details of these
three steps are given next.

4.3.1. Short-Time Sequential Grouping. In this step, signal
components are tracked for a few frames (six for the results
presented in this paper). Recall from Section 4.1 that the
signal components that are tracked are the perceptually
significant ones (peak, high-power components from arrival
angle bands in which signals have been detected). Limiting
tracking to these select signal components reduces computa-
tional complexity and improves tracking performance.

Technically, tracking amounts to estimating the state of a
target (e.g., its position and velocity) over time from related
observation data. A target could be an object, a system, or
a signal, and a sequence of states over time is called a frack.
In our application, a target is a signal component of a single
sound source’s signal (e.g., the nth harmonic of a harmonic
signal), its state consists of parameters (e.g., its frequency)
that characterize the signal component, and the observation
data in each frame p consists of the (multi source) signal
components P[¢, w, p].

Although we are tracking multiple targets (signal com-
ponent sequences), for the sake of simplicity, we first
consider the tracking of a single target. In this case, a
widely used approach for tracking is the Kalman filter [33].
This approach uses a linear system model to describe the
dynamics of the target’s internal state and observable output,
that is,

x[p+1] =A[p] - x[p] +v[p],

(25)
z[p+1] =Clp+1]

- x[p+1]+wlp+1].

Here, x[p +1] is the target’s state and z[p + 1] is its observable
output in time frame (p + 1), A[p] is the state transition
matrix, C[p + 1] is the matrix that transforms the current
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Figure 5: Illustration of short-time sequential-first grouping. Here
the input signal is a mixture of the two single-source signals shown
in Figure 2. (a) The graph shows short-time tracks in time segment
(+1) with completed signal estimate groups through time segment
1. Here, time segment # consists of time frames p € {yT",...,(n +
1)T" —1},and T” = 6. (b) The graph shows simultaneous groups of
the short-time tracks shown in (a). (c) The graph shows completed
signal estimate groups through time segment (7 + 1).

state of the track to the output, and v[p] and w[p] are zero-
mean white Gaussian noise with covariance matrices Q[p]
and R[p], respectively. Based on this model, the Kalman filter
is a set of time-recursive equations that provides optimal
state estimates. At each time (p + 1), it does this in two
steps. First, it computes an optimal prediction of the state
x[p + 1] from an estimate of the state x[p]. Then, this
prediction is updated/corrected using the current output
z[p + 1], generating the final estimate of x[p + 1].

Since the formulas for Kalman prediction and update are
well known [33], the main task for a specific application
is reduced to that of constructing the linear model, that is,
defining the dynamic equations (see (25)). For CASA-EB, a
target’s output vector, z[p], is composed of its frequency and
arrival angle bands, and its internal state, x[p], consists of its
frequency and arrival angle bands, along with their rates of
change:

d d (26)

[¢ ad v a‘”]T'

x[p]
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The transition matrices of the state and output equations are
defined as follows:

1000
0100
AlPT=10 01 0/
0001 (27)
(100 0]
C[p]=_0010_’

where this choice of A[p] reflects our expectation that the
state changes slowly, and this C[p] simply picks the output
vector ([¢  w] ) from the state vector.

When there is more than one target, the tracking problem
becomes more complicated. Specifically, at each time instant,
multiple targets can produce multiple observations, and
generally, it is not known which target produced which
observation. To solve this problem, a data association process
is usually used to assign each observation to a target. Then,
Kalman filtering can be applied to each target as in the single
target case.

While a number of data association algorithms have been
proposed in the literature, most of them are based on the
same intuition—that an observation should be associated
with the target most likely to have produced it (e.g., the
“closest” one). In this work, we use an extension of Munkres’
optimal data association algorithm (by Burgeois and Lassalle
[34]). A description of this algorithm can be found in [35].
To summarize briefly here, the extended Munkres algorithm
finds the best (lowest cost) associations of observations to
established tracks. It does this using a cost matrix with H
columns (one per observation) and J + H rows (one per track
plus one per observation), where the (j, h)™ element is the
cost of associating observation h to track j, the (J +h, h)th
element is the cost of initiating a new track with observation
h, and the remaining off-diagonal elements in the final H
rows are set to a large number such that they will not affect
the result.

The cost of associating an observation with a track is a
function of the distance between the track’s predicted next
output and the observation. Specifically, we are using the
following distance measure:

‘@j—wh, when‘@j—wh‘sland(ph:@,
costjy =
2y, otherwise,

(28)

where @; is the prediction of track j’s next frequency (as
computed by the Kalman filter), wy, and ¢y, are the frequency
and arrival angle of observation h, respectively, and track j’s
arrival angle band ¢; is constant. Finally, y is an arbitrary
large number used here so that if observation h is outside
track j’s validation region, (|&; — wu| > 1 or ¢ # ¢)),
then observation h will not be associated with track j. Note
that this cost function means that frequency tracks change
their frequency slowly (<1 freqency band per time frame),
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and sound sources do not move (since ¢; is held constant).
In subsequent work, the assumption of unmoving sources
could be lifted by revising the cost matrix and making
adjustments to the simultaneous grouping step (described
next in Section 4.3.2).

Finally, the cost of initiating a new track is simply set to
be larger than the size of the validation region

costyinn = ¥ (29)

and the remaining costs in the last H rows are set equal to 2y
so that they will never be the low cost choice.

4.3.2. Simultaneous Grouping. In this step, the short-time
tracks from the previous step are clustered into short-time
signal estimates based on the similarity of their source and
location attribute values. There are a variety of clustering
methods in the literature (refer to pattern recognition texts,
such as [36-40]). In CASA-EB, we use the hierarchical
partitioning algorithm that is summarized next.

Partitioning is an iterative approach that divides a
measurement space into k disjoint regions, where k is a
predefined input to the partitioning algorithm. In general,
however, it is difficult to know k a priori. Hierarchical
partitioning addresses this issue by generating a hierarchy of
partitions—over a range of different k values—from which
to choose the “best” partition. The specific steps are the
following. (1) Initialize k to be the minimum number of
clusters to be considered. (2) Partition the signal component
tracks into k clusters. (3) Compute a performance measure
to quantify the quality of the partition. (4) Increment k by 1
and repeat steps 2—4, until a stopping criterion is met, or k
reaches a maximum value. (5) Select the best partition based
on the performance measure computed in step 3.

To implement the hierarchical partitioning algorithm,
some details remain to be determined: the minimum
and maximum number of clusters to be considered, the
partitioning algorithm, the performance measure, and a
selection criterion to select the best partition based on
the performance measure. For CASA-EB, we have made
the following choices. For the minimum and maximum
numbers of clusters, we use the number of arrival angle
bands in which signals have been detected, and the total
number of arrival angle bands, respectively.

For partitioning algorithms, we experimented with a
deterministic one, partitioning around medoids (PAMs), and
a probabilistic one, fuzzy analysis (FANNY)—both from
a statistics shareware package called R [41, 42]. (R is a
reimplementation of S [43, 44] using Scheme semantics. S
is a very high level language and an environment for data
analysis and graphics. S was written by Richard Becker,
John M. Chambers, and Allan R. Wilks of AT&T Bell
Laboratories Statistics Research Department.) The difference
between the two is in how measurements are assigned to
clusters. PAM makes hard clustering assignments; that is,
each measurement is assigned to a single cluster. FANNY,
on the other hand, allows measurements to be spread across
multiple clusters during partitioning. Then, if needed, these
fuzzy assignments can be hardened at the end (after the last
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iteration). For more information on PAM and FANNY, refer
to [37]. For CASA-EB, we use FANNY since it produces
better clusters in our experiments.

Finally, it remains to discuss performance measures and
selection criteria. Recall that the performance measure’s
purpose in hierarchical partitioning is to quantify the quality
of each partition in the hierarchy. Common methods for
doing this are based on “intracluster dissimilarities” between
the members of each cluster in a given partition (small
is good), and/or on “intercluster dissimilarities” between
the members of different clusters in the partition (large is
good). As it turns out, our data produces clusters that are
close together. Thus, it is not practical to seek clusters with
large inter-cluster dissimilarities. Rather, we have selected a
performance measure based on intra-cluster dissimilarities.
Two intra-cluster performance measures were considered:
the maximum intra-cluster dissimilarity in any single cluster
in the partition, and the mean intra-cluster dissimilarity
(averaged over all clusters in the partition). The maximum
intra-cluster dissimilarity produced the best partitions for
our data and is the one we used. The details of the
dissimilarity measure are discussed next.

Dissimilarity is a measure of how same/different two
measurements are from each other. It can be computed in
a variety of ways depending on the measurements being
clustered. The measurements we are clustering are the source
and location attribute vectors of signal component tracks.
Specifically, for each short-time track j in time segment 7,
this vector is composed of the track’s arrival angle band ¢,
and its FO attribute in each time frame p of time segment
in which the track is active. Recall (from Section 4.2), this FO
attribute is the flag FN[¢;, w;[p],p] that indicates whether
the track is part of the foreground harmonic signal or not, in
time frame p. Here, p € {nT’,...,(y +1)T" — 1}, T’ is the
number of time frames in short-time segment #, and w;[p]
is track j’s frequency band in time frame p.

Given this measurement vector, dissimilarity is computed
as follows. First, since we do not want to cluster tracks from
different arrival angles, if two tracks (j; and j,) have different
arrival angles, their dissimilarity is set to a very large number.
Otherwise, their dissimilarity is dependent on the difference
in their FO attributes in the time frames in which they are
both active

(r+1)T'-1
d- o Zp:qT’ ‘D ' leajz [P] (30)
Jop (r+1)17-1 ’
Zp:r/T’ Wil [P]

where D denotes |FNj [¢;,, wj [pl,p] = FN;,[¢},, wj, [pl, pll
and wj, ;, [p] is a flag indicating whether tracks j; and j, are
both active in time frame p, or not:

1, if tracks, j; and j,,
Wi, [p] = are both active in time frame p,  (31)
0, otherwise.

If there are no time frames in which the pair of tracks are
both active, it is not possible to compute their dissimilarity.
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In this case, dj,j, is set to a neutral value such that their
(dis)similarity will not be a factor in the clustering. Since
the maximum dissimilarity between tracks is 1 and the
minimum is 0, the neutral value is 1/2. For such a pair of
tracks to be clustered together, they must each be close to the
same set of other tracks. Otherwise, they will be assigned to
different clusters.

Now that we have a performance measure (maximum
intra-cluster dissimilarity), how should we use it to select
a partition? It may seem reasonable to select the one
that optimizes (minimizes) the performance measure. This
selection criterion is no good though; it selects a partition
in which each measurement is isolated in a separate cluster.
A popular strategy used in hierarchical clustering is to pick
a partition based on changes in the performance measure,
rather than on the performance measure itself [37, 38,
40]. For CASA-EB, we are using such a selection criterion.
Specifically, in keeping with the nature of our data (which
contains a few, loosely connected clusters), we have chosen
the following selection criterion. Starting with the minimum
number of clusters, we select the first partition (the one
with the smallest number of clusters, k) for which there
is a significant change in performance from the previous
partition (with (k — 1) clusters).

4.3.3. Linking Short-Time Signal Estimate Groups. This is
the final grouping step. In the previous steps, we have
generated short-time estimates of the separated source
signals (clusters of short-time signal component tracks). In
this step, these short-time signal estimates will be linked
together to form full-duration signal estimates. This is a
data association problem. The short-time signal estimates in
each time segment # must be associated with the previously
established signal estimates through time segment (1 — 1).
For an illustration, see Figure 5. To make this association,
we rely on the fact that signals usually contain some long
signal component tracks that continue across multiple time
segments. Thus, these long tracks can be used to associate
short-time signal estimates across segments. The idea is that
a signal estimate’s signal component tracks in time segment
(n — 1) will contine to be in the same signal in time segment
#, and similarly, signal component tracks in a short-time
signal estimate in time segment z will have their origins in
the same signal in preceeding time segments. The details of
our processing are described next.

For this data association problem, we use the extended
Munkres algorithm (as described in Section 4.3.1) with a
cost function that is based on the idea described previously.
Specifically, the cost function is the following:

_ Ake — Bre
b

Sty [p].ee[n] = e (32)

where gi[p] is the kth signal estimate through the (7 — 1)**
time segment (i.e., p < #T"), c;[#] is the £ short-time signal
estimate in time segment #, Ay is the power in the union of
all their frequency component tracks,

Ak,f = Z fyj]r
jedalp]ue[n]} (33)
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&P; is the power in track j (defined below), Bx . is the power
in all the frequency component tracks that are in both gx[p]
and ce[#],

°(/3k,€ = z <(/j]>
jetalp]ne[n]} (34)

and #; is computed by summing all the power spectral
density components along the length of track j,

min((7+1) T =1,j5)

Pj = >,

p=jstart

P[‘Pi)“’j [P],p]. (35)

This cost function takes on values in the range of 0 to 1.
The cost is 0 when all the tracks in cluster c¢[#] that have
their beginning in an earlier time sequence are also in cluster
track gk [p], and vice versa. The cost is 1 when ¢,[#] and gk[p]
do not share any of the same signal component tracks.

Finally, notice that this cost function does not treat all
tracks equally; it gives more weight to longer and more
powerful tracks. To see this, consider two clusters: c¢, [#] and
ce, [17] that each contains one shared track with g [p]. Let the
shared track in ¢, [#] be long and have high power, and let
the shared track in ¢,, [#7] be short and have low power. Then,
Br,1 will be larger than By, and thus costy,; [#7] < costy 2 [7].
Although both ¢, [#] and ¢, [#] have one continuing track
segment from gi[p], the one with the longer, stronger shared
track is grouped with it. In this way, the cost function favors
signal estimates that keep important spectral structures
intact.

5. CASA-EB Waveform Synthesis

The preceeding processing steps complete the separation of
the mixture signal into the single-source signal estimates
gklp]. However, the signal estimates are still simply groups of
signal components. In some applications, it may be desirable
to have waveforms (e.g., to listen to the signal estimates, or to
process them further in another signal processing application
such as an automatic speech recognizer).

Waveform reconstruction is done in two steps. First,
in time frame p, a short-time waveform is generated for
each group, gk[p], that is active (i.e., nonempty) in the
time frame. Then, full-length waveforms are generated from
these by connecting them together across time frames. The
implementation details are described next.

In the first step, for each currently active group, its
short-time waveform is generated by summing its short-time
narrowband waveforms Y [¢, w, n] over frequency:

X (n] = Y[, w,n],
¢ ¢Z (36)
Pl¢,w,pl€gkp]

wheren € {p—(T—-1)/2- - - p+(T—1)/2}. In the second step,
these short-time waveforms are connected together across
time into full-length waveforms by the standard overlap-add
algorithm,

(T-1)/2

Xlnl=> >
pPr=

—(T-1)/2

vir] - %lr], (37)
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where we have chosen to use a Hanning window, v[-],
because of its low sidelobes and reasonably narrow main lobe
width.

6. Experimental Results

For a sound source separation method, such as CASA-
EB, it is important that it both separate mixture signals
completely and that the separated signals have good quality.
The experiments described in Section 6.2 assess CASA-EB’s
ability to do these. Specifically, they test our hypothesis that
combining monaural CASA and beamforming, as in CASA-
EB, provides more complete signal separation than either
CASA or beamforming alone, and that the separated signals
have low spectral distortion.

Before conducting these experiments, a preliminary
experiment is performed. In particular, to make the com-
parison of CASA-EB to monaural CASA meaningful, first we
need to verify that the performance of the monaural CASA
in CASA-EB is inline with other previously published CASA
methods. Since it is not practical to compare our CASA
technique to every previously proposed technique (there
are too many and there is no generallyaccepted standard),
we selected a representative technique for comparison—that
of van der Kouwe, Wang and Brown [1]. We chose their
method for three reasons. First, a clear comparison can
be made since their testing method is easily reproducible
with readily-available test data. Second, comparison to their
technique can provide a good check for ours since the
two methods are similar; they both use the same grouping
cue and a similar temporal analysis filter, h,[n]. The main
differences are that our technique contains spatial filtering
(which theirs does not), and it uses tracking/clustering
for grouping (while their technique uses neural networks
for grouping). Finally, they (Roman, Wang and Brown)
have also done work separating signals based on location
cues (binaural CASA) [4], and some preliminary work
combining source attributes (FO attribute) and location
attributes (binaural CASA cues)—see [13] by Wrigley and
Brown.

6.1. Preliminary Signal Separation Experiments: Monaural
CASA. To compare our monaural CASA technique to that
of [1], we tested our technique using the same test data
and performance measure as they used to test theirs. In
this way, our results can be compared directly to their
published results. The test data consists of 10 mixture
signals from the data set of [8]. Each mixture consists of a
speech signal (v8) and one of ten interference signals (see
Table 2).

The performance measure is the SIR gain (signal to
interference ratio) (this SIR gain is the same as the SNR gain
in [1]; we prefer the name SIR gain since it is a more accurate
description of what is computed), that is, the difference
between the SIRs before and after signal separation:

ASIR = SIRafter - SIRbefore> (38)
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FIGURE 6: SIR gains of v8 estimates from beamforming (a), CASA (b) and CASA-EB (c). The horizontal axes in the graphs specify the test
mixture by the index of the interferer. The three bars shown for each indicate the SIR of v8 in the mixture (black), the SIR of the separated
v8 (gray), and the SIR gain (white). To summarize these results, the mean SIR gains are 16.9 dB (for beamforming on mixtures with 7z/2
radians of source separation), 17.2 dB (for monaural CASA) or 8.4 dB (for monaural CASA without the n0 and n5 results), and 24.2 dB (for

CASA-EB on mixtures with 72/2 radians of source separation).

where
PVSE'I;E )

b
Pers
Pv8€v8+nx >

an€v8+nx

SIRfier = 10 log(
(39)

SIRpefore = 10 10g<

Here, P g3 is the power (or amount) of the speech signal
(v8) in its estimate (i.e., the separated signeﬁ\ v8), P, s is the
power (or amount) of interference (nx) in v8, Pygcygny is the
power of v8 in the test mixture (v8 + n1x), and Ppyxeyg+nx 15 the
power of nx in (v8 + nx), where nx is one of {n0,nl,...,n9}.

SIR is a useful measure in the sense that it tells us how
well interference has been removed by signal separation—
the higher the SIR, the more interference-free the separated
signal.

In a typical experiment, we ran our monaural CASA
algorithm on each of the ten mixture signals, and the
resultant SIRs (before and after) along with the SIR gains are
shown in the upper panel of Figure 6. Specifically, this figure
contains 10 groups of lines (black, gray, and white), indexed
from 1 to 10 on a horizontal axis, one for each mixture
signal in the test data. For example, the results at index 5 are
for mixture (v8 + n5). In each group (i.e., for each mixture
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TABLE 2: Voiced speech signal v8 and the interference signals (10-n9) from Cooke’s 100 mixtures [8].
ID Description Characterization
v8 Why were you all weary?
n0 1 kHz tone Narrowband, continuous, structured
nl White noise Wideband, continuous, unstructured
n2 Series of brief noise bursts Wideband, interrupted, unstructured
n3 Teaching laboratory noise Wideband, continuous, partly structured
n4 New wave music Wideband, continuous, structured
n5 FM signal (siren) Locally narrowband, continuous, structured
né Telephone ring Wideband, interrupted, structured
n7 Female TIMIT utterance Wideband, continuous, structured
n8 Male TIMIT utterance Wideband, continuous, structured
n9 Female utterance Wideband, continuous, structured
L S E— 6.2. Main Signal Separation Experiments: CASA-EB. To test
our hypothesis that the combined approach, CASA-EB, sep-
60 arates mixture signals more completely than the individual
techniques (CASA and beamforming) used alone, we ran
50 all three on mixture signals of the same speech (v8) and
interference (10— n9) signals and compared the resulting SIR
10 gains. To assess the quality of the separated signals, we also
) computed their LPC cepstral distortions.
= For monaural CASA, the test data was exactly the same
5% 0 as that used in Section 6.1. For beamforming and CASA-
= EB, however, array data was simulated from the speech and
20 interference signals, and the mixture signals were made from
these. We chose to simulate the array data rather than to
10 record the speech-interference mixture signals through a
microphone array because simulation provides data that is
0 specific to the room it is recorded in. The disadvantage of this
approach is that the simulated array data may not be entirely
_10 realistic (e.g., it does not include room reverberations). For

0 1 2 3 4 5 6 7 8 9
Interferer (n0-n9)

FIGURE 7: SIR gains of v8 estimates, from Wang, Brown, and van

der Kouwe et al’s monaural CASA. The horizontal axis specifies the

test mixture by its interferer. The two lines shown for each indicate

the SIR of v8 in the mixture (black), and the SIR of the separated v8

(gray).

signal), the height of the black line is the SIR of the original
mixture signal, the height of the gray line is the SIR of the
signal estimate after CASA separation (v8), and the height of
the white line is their difference, that is, the SIR gain achieved
by CASA separation.

For comparison’s sake, Wang, Brown, and van der
Kouwe’s results on the mixture signals of Table 2 are shown
in Figure 7, organized in the same way as in Figure 6. From
these figures, we can see that the performance of our CASA
technique is similar to theirs. The main differences are from
the n6 and n9 mixture signals; their method performed
better for n6, CASA-EB for n9. Thus, our CASA technique
can be considered comparable to this published CASA
technique.

the array data simulation, we used a method described in
[31] on a uniform linear array of 30 microphones. Each of the
ten mixture signals, as measured at the array, is composed of
the speech (v8) and one interference signal (n0 — n9), where
v8’s arrival angle is +77/4 and the interference signal’s is —7/4
radians from broadside.

6.2.1. Signal Separation Completeness. The SIR gains of
the separated signals from beamforming, monaural CASA
and CASA-EB are shown in Figures 6(a), 6(b), and 6(c),
respectively. The results show a definite advantage for CASA-
EB over either beamforming or monaural CASA alone for
all but two exceptions (the narrowband interferers, n0 and
n5) addressed below. Specifically, the mean SIR gains for
beamforming, monaural CASA and CASA-EB are 16.9, 17.2,
and 24.2 dB, respectively. Note that the mean SIR gain for
monaural CASA would be 8.4 if you leave out the results from
the mixtures made with the narrowband interferers, n0 and
ns.

Now, we consider the two exceptions, that is, the mixtures
(v8 + n0) and (v8 + n5) for which CASA-alone achieves
near-perfect performance, and CASA-EB does not. Why
does CASA remove n0 and #n5 so well? To find an answer,
we first notice that unlike other interferers, n0 and n5
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LPC cepstral distortion

0 2 4 6 8 10
Index of interferer (10-n9)

(a)

LPC cepstral distortion

0 2 4 6 8 10

Index of interferer (10-n9)
(b)
5 T T T T T

LPC cepstral distortion

0 . . . . .
0 2 4 6 8 10

Index of interferer (n0-n9)

(c)

FiGURE 8: LPC cepstral distortions of v8 estimates from beam-
forming (a), CASA (b), and CASA-EB (c). As in Figures 6 and 7,
the horizontal axes in the graphs specify the test mixture by the
index of the interferer. The value plotted is the mean LPC cepstral
distortion over the duration of the input mixture, v8 + nx, nx €
{n0,nl,...,n9}; the error bars show the standard deviations.
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are narrowband and, in any short period of time, each
has its power concentrated in a single frequency or a very
narrow frequency band. Now, recall that our CASA approach
separates a signal from interference by grouping harmonic
signal components of a common fundamental, and rejecting
other signal components. It does this by first passing the
signal-interference mixture through a filter bank (the h,[n]
defined in Section 3), that is, decomposing it into a set of
subband signals. Then, the autocorrelation for each subband
is computed, forming an autocorrelogram (see Figure 4(b)),
and a harmonic group (a fundamental frequency and
its overtones) is identified (as described in Section 4.2).
After such harmonics are identified, the remaining signal
components (interferers) are rejected.

When an interferer is narrowband (such as #n0 and n5), it
is almost certain that it will be contained entirely in a single
subband. Furthermore, if the interferer has a lot of power (as
in v8 4+ 10 and v8 + n5), it is going to affect the location of the
autocorrelogram peak for that subband. Either the peak in
the subband will correspond to the period of the interferer, if
it is strong relative to the other signal content in the subband,
or the peak will at least be pulled towards the interferer.
When we use CASA, this will cause the subband to be rejected
from the signal estimate, and as a result the interferer will
be completely rejected. This is why CASA works so well in
rejecting narrowband interferers.

When CASA-EB is used, the CASA operation is pre-
ceeded by spatial filtering (beamforming). When the inter-
ferer and the signal come from different directions (as is
the case in v8 + n0 and v8 + n5), this has the affect of
reducing the power of the interferer in the subband that it
is in. As a result, the autocorrelogram peak in that subband
will be much less affected by the interferer compared to the
CASA alone case, and as a result, the subband may not be
rejected in the signal reconstruction, leading to a smaller SIR
improvement than when CASA is used alone. However, we
would like to point out that CASA-EB’s performance in this
case (on mixtures with narrowband interferers), although
not as good as CASA-alone’s dramatic performance, is still
quite decent thanks to the spatial filtering that reduced the
interferers’ power.

6.2.2. Perceptual Quality of Separated Signals. The mean
LPC cepstral distortions of the separated signals (v8) from
beamforming, monaural CASA, and CASA-EB are shown in
Figures 8(a), 8(b), and 8(c), respectively. Here, LPC cepstral
distortion is computed as:

dirl = |- go(ln(va[f]) ~in(Palf1)),, @0)

where r = n/T; is the time index, Ty = 160 is the length
of signal used to compute d[r], Pys[f] is the LPC power
spectral component of v8 at frequency f (computed by the
Yule-Walker method), and F = 60 corresponds to frequency
fs/2.

The results show that beamforming produces low dis-
tortion (1.24 dB averaged over the duration of the separated
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signal v8 and over all 10 test mixtures), CASA intro-
duces somewhat higher distortion (2.17dB), and CASA-
EB is similar to monaural CASA (1.98dB). The fact that
beamforming produces lower distortion than CASA may
be because distortion in beamforming comes primarily
from incomplete removal of interferers and noise, while
in CASA, additional distortion comes from the removal
of target signal components when the target signal has
frequency content in bands that are dominated by inter-
ferer(s). Thus, beamforming generally passes the entire
target signal with some residual interference (generating low
distortion), while CASA produces signal estimates that can
also be missing pieces of the target signal (producing more
distortion).

6.2.3. Summary. In summary, CASA-EB separates mixture
signals more completely than either individual method alone
and produces separated signals with rather low spectral
distortion (~2dB LPC cepstral distortion). Lower spectral
distortion can be had by using beamforming alone, however,
beamforming generally provides less signal separation than
CASA-EB and cannot separate signals from close arrival
angles.

7. Conclusion

In this paper, we proposed a novel approach to acoustic
signal separation. Compared to most previously proposed
approaches which use either location or source attributes
alone, this approach, called CASA-EB, exploits both location
and source attributes by combining beamforming and
auditory scene analysis. Another novel aspect of our work is
in the signal component grouping step, which uses clustering
and Kalman filtering to group signal components over time
and frequency.

Experimental results have demonstrated the efficacy of
our proposed approach; overall, CASA-EB provides better
signal separation performance than beamforming or CASA
alone, and while the quality of the separated signals suffers
some degradation, their spectral distortions are rather low
(~2 dB LPC cepstral distortion). Although beyond the
scope of this current work, to demonstrate the advantage
of combining location and source attributes for acoustic
signal separation, further performance improvements may
be achieved by tuning CASA-EB’s parts. For example, using
a higher resolution beamformer may allow CASA-EB to pro-
duce separated signals with lower residual interference from
neigboring arrival angles, and using a larger set of source
attributes could improve performance for harmonic target
signals and accommodate target signals with nonharmonic
structures.
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