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This paper presents an alternative approach, where gait is collected by the sensors attached to the person’s body. Such wearable
sensors record motion (e.g. acceleration) of the body parts during walking. The recorded motion signals are then investigated for
person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods,
the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively.
Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case
of hip motion) under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance
chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a
threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In
particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or
forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

Copyright © 2009 D. Gafurov and E. Snekkenes. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

Biometric recognition uses humans anatomical and behav-
ioral characteristics. Conventional human characteristics
that are used as biometrics include fingerprint, iris, face,
voice, and so forth. Recently, new types of human char-
acteristics have been proposed to be used as a biometric
modality, such as typing rhythm [1], mouse usage [2], brain
activity signal [3], cardiac sounds [4], and gait (walking style)
[5]. The main motivation behind new biometrics is that
they are better suited in some applications compared to the
traditional ones, and/or complement them for improving
security and usability. For example, gait biometric can be
captured from a distance by a video camera while the other
biometrics (e.g., fingerprint or iris) is difficult or impossible
to acquire.

Recently, identifying individuals based on their gait
became an attractive research topic in biometrics. Besides
being captured from a distance, another advantage of gait
is to enable an unobtrusive way of data collection, that is,
it does not require explicit action/input from the user side.
From the way how gait is collected, gait recognition can be
categorized into three approaches:

(i) Video Sensor- (VS-) based,

(ii) Floor Sensor- (FS-) based,

(iii) Wearable Sensor- (WS-) based.

In the VS-based approach, gait is captured from a dis-
tance using a video-camera and then image/video processing
techniques are applied to extract gait features for recognition
(see Figure 1). Earlier works on VS-based gait recognition
showed promising results, usually analyzing small data-sets
[6, 7]. For example, Hayfron-Acquah et al. [7] with the
database of 16 gait samples from 4 subjects and 42 gait
samples from 6 subjects achieved correct classification rates
of 100% and 97%, respectively. However, more recent studies
with larger sample sizes confirm that gait has distinctive
patterns from which individuals can be recognized [8–10].
For instance, Sarkar et al. [8] with a data-set consisting
of 1870 gait sequences from 122 subjects obtained 78%
identification rate at rank 1 (experiment B). A significant
amount of research in the area of gait recognition is focused
on VS-based gait recognition [10]. One reason for much
interest in VS-based gait category is availability of large
public gait databases, such as that provided by University
of South Florida [8], University of Southampton [11] and
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Table 1: Summary of some VS-based gait recognitions.

Study EER, % #S

Seely et al. [12] 4.3–9.5 103

Zhao et al. [13] 11.17 —

Hong et al. [14] 9.9–13.6 20

BenAbdelkader et al. [15] 11 17

Wang et al. [16] 3.8–9 124

Wang et al. [17] 8–14 20

Wang et al. [18] (without fusion) 8–10 20

Bazin et al. [19] (without fusion) 7–23 115

(a) Original image

(b) Background

(c) Silhouette

(a) Using video-camera [5] (b) Using floor sensor [20]

(c) Using wearable sensor on the body [21]

Figure 1: Examples of collecting gait.

Chinese Academy of Sciences [22]. Performance in terms of
EER for some VS-based gait recognitions is given in Table 1.
In this table (and also in Tables 2 and 3) the column #S
indicates the number of subjects in the experiment. It is
worth noting that the direct comparison of the performances
in Table 1 (and also in Tables 2 and 3) may not be adequate
mainly due to the differences among the data-sets. The
purpose of these tables is to give some impression of the
recognition performances.

In the FS-based approach, a set of sensors are installed in
the floor (see Figure 1), and gait-related data are measured

Table 2: Summary of several FS-based gait recognitions.

Study Recognition rate, % #S

Nakajima et al. [23] 85 10

Suutala and Röning [24] 65.8–70.2 11

Suutala and Röning [25] 79.2–98.2 11

Suutala and Röning [26] 92 10

Middleton et al. [20] 80 15

Orr and Abowd [27] 93 15

Jenkins and Ellis [28] 39 62

when people walk on them [20, 24, 27, 28]. The FS-based
approach enables capturing gait features that are difficult or
impossible to collect in VS-based approach, such as Ground
Reaction Force (GRF) [27], heel to toe ratio [20], and so
forth. A brief performance overview of several FS-based gait
recognition works (in terms of recognition rate) is presented
in Table 2.

The WS-based gait recognition is relatively recent com-
pared to the other two mentioned approaches. In this
approach, so-called motion recording sensors are worn or
attached to various places on the body of the person such
as shoe and waist, (see Figure 1). [21, 29–34]. Examples of
the recording sensor can be accelerometer, gyro sensors, force
sensors, bend sensors, and so on that can measure various
characteristics of walking. The movement signal recorded
by such sensors is then utilized for person recognition
purposes. Previously, the WS-based gait analysis has been
used successfully in clinical and medical settings to study
and monitor patients with different locomotion disorders
[35]. In medical settings, such approach is considered to be
cheap and portable, compared to the stationary vision based
systems [36]. Despite successful application of WS-based
gait analysis in clinical settings, only recently the approach
has been applied for person recognition. Consequently, so
far not much has been published in the area of person
recognition using WS-based gait analysis. A short summary
of the current WS-based gait recognition studies is presented
in Table 3. In this table, the column “Reg.” is the recognition
rate.

This paper reports our research in gait recognition using
the WS-based approach. The main contributions of the
paper are on identifying several body parts whose motion
can provide some identity information during gait; and on
analyzing uniqueness and security per se (robustness against
attacks) of gait biometric. In other words, the three main
research questions addressed in this paper are as follows.

(1) What are the performances of recognition methods
that are based on the motion of body parts during
gait?

(2) How robust is the gait-based user authentication
against attacks?

(3) What aspects do influence the uniqueness of human
gait?
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Table 3: Summary of the current WS-based gait recognitions.

Study Sensor(s) location
Performance, %

#S
EER Reg.

Morris [29] shoe — 97.4 10

Huang et al. [32] shoe — 96.93 9

Ailisto et al. [21] waist 6.4 — 36

Mäntyjärvi et al. [30] waist 7–19 — 36

Rong et al. [34] waist 6.7 — 35

Rong et al. [33] waist 5.6, 21.1 — 21

Vildjiounaite et al. [31]
(without fusion)

hand 17.2, 14.3 — 31

Vildjiounaite et al. [31]
(without fusion)

hip pocket 14.1, 16.8 — 31

Vildjiounaite et al. [31]
(without fusion)

breast pocket 14.8, 13.7 — 31

The rest of the paper is structured as follow. Section 2
presents our approach and results on WS-based gait recog-
nition (research question (1)). Section 3 contains secu-
rity evaluations of gait biometric (research question (2)).
Section 4 provides some uniqueness assessment of gait bio-
metric (research question (3)). Section 5 discusses possible
application domains and limitations of the WS-based gait
recognition. Section 6 concludes the paper.

2. WS-Based Gait Recognition

2.1. Motion Recording Sensor. For collecting gait, we used
so called Motion Recording Sensors (MRSs) as shown in
Figure 2. The attachment of the MRS to various places on
the body is shown in Figure 3. These sensors were designed
and developed at Gjøvik University College. The main com-
ponent of these sensors was an accelerometer which records
acceleration of the motion in three orthogonal directions
that is up-down, forward-backward, and sideways. From the
output of the MRS, we obtained acceleration in terms of
g(g = 9.8 m/s2) (see Figure 5). The sampling frequencies
of the accelerometers were 16 Hz (first prototype) and
100 Hz. The other main components of the sensors were a
memory for storing acceleration data, communication ports
for transferring data, and a battery.

2.2. Recognition Method. We applied various methods to
analyze the acceleration signals, which were collected using
MRS, from several body segments: foot, hip, trousers pocket,
and arm (see Figure 3 for sensor placements). A general
structure of our gait recognition methods is visualized in
Figure 4. The recognition methods essentially consisted of
the following steps.

2.2.1. Preprocessing. In this step, we applied moving average
filters to reduce the level of noise in the signals. Then, we
computed a resultant acceleration, which is combination

of acceleration from three directions of the motion. It was
computed as follows:

Ri =
√
X2
i + Y 2

i + Z2
i , i = 1, ...,m, (1)

where Ri is the resultant acceleration at time i, Xi, Yi, and
Zi are vertical, forward-backward, and sideway acceleration
value at time i, respectively, and m is the number of
recorded samples. In most of our analysis, we used resultant
acceleration rather than considering 3 signals separately.

2.2.2. Motion Detection. Usually, recorded acceleration sig-
nals contained some standing still intervals in the beginning
and ending of the signal (Figure 5(a)). Therefore, first we
separated the actual walking from the standing still parts.
We empirically found that the motion occurs around some
specific acceleration value (the value varies for different body
locations). We searched for the first such acceleration value
and used it as the start of the movement (see Figure 5(a)).
A similar procedure could be applied to detect when the
motion stops. Thus, the signal between these two points was
considered as a walking part and investigated for identity
recognition.

2.2.3. Feature Extraction. The feature extraction module
analyses motion signals in time or frequency domains. In
the time domain, gait cycles (equivalent to two steps) were
detected and normalized in time. The normalized cycles
were combined to create an average cycle of the person.
Then, the averaged cycle was used as a feature vector. Before
averaging, some cycles at the beginning and ending of the
motion signal were omitted, since the first and last few
seconds may not adequately represent the natural gait of
the person [35]. An example of selected cycles is given
in color in Figure 5(b). In the frequency domain, using
Fourier coefficients an amplitude of the acceleration signal is
calculated. Then, maximum amplitudes in some frequency
ranges are used as a feature vector [37]. We analysed arm
signal in frequency domain and the rest of them in time
domain.
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Figure 2: Motion recording sensors (MRS).

(a) Ankle (b) Hip (c) Arm

Figure 3: The placement of the MRS on the body.

2.2.4. Similarity Computation. For computing similarity
score between the template and test samples we applied a
distance metric (e.g., Euclidean distance). Then, a decision
(i.e., accept or reject) was based on similarity of samples with
respect to the specified threshold.

More detailed descriptions of the applied methods on
acceleration signals from different body segments can be
found in [37–40].

2.3. Experiments and Results. Unlike VS-based gait biomet-
ric, no public data-set on WS-based gait is available (perhaps
due to the recency of this approach). Therefore, we have
conducted four sets of experiments to verify the feasibility
of recognizing individuals based on their foot, hip, pocket,
and arm motions. The placements of the MRS in those
experiments are shown in Figure 3. In case of the pocket
experiment, the MRS was put in the trousers pocket of the
subjects. All the experiments (foot, hip, pocket, and arm)
were conducted separately in an indoor environment. In the
experiments, subjects were asked to walk using their natural
gait on a level surface. The metadata of the 4 experiments
are shown in Table 4. In this table, the column Experiment
represents the body segment (sensor location) whose motion

was collected. The columns #S, Gender (M + F), Age range,
#N , and #T indicate the number of subjects in experiment,
the number of male and female subjects, the age range of
subjects, the number of gait samples (sequences) per subject,
and the total number of gait samples, respectively.

For evaluating performance in verification (one-to-one
comparison) and identification (one-to-many comparisons)
modes we adopted DET and CMC curves [41], respectively.
Although we used several methods (features) on acceleration
signals, we only report the best performances for each body
segment. The performances of the foot-, hip-, pocket- and
arm-based identity recognition in verification and identifi-
cation modes are given in Figures 6(a) and 6(b), respectively.
Performances in terms of the EER and identification rates at
rank 1 are also presented in Table 5.

3. Security of Gait Biometric

In spite of many works devoted to the gait biometric,
gait security per se (i.e., robustness or vulnerability against
attacks) has not received much attention. In many previous
works, impostor scores for estimating FAR were generated by
matching the normal gait samples of the impostors against
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Table 4: Summary of experiments.

Experiment #S Gender (M + F) Age range #N #T

Ankle 21 12 + 9 20–40 2 42

Hip 100 70 + 30 19–62 4 400

Pocket 50 33 + 17 17–62 4 200

Arm 30 23 + 7 19–47 4 120

Feature extraction

Template sample

Pre-processing

Motion detection

Time domain Frequency domain

Similarity
computation 

Decision

Input
ankle, hip, pocket, arm

Figure 4: A general structure of recognition methods.

Table 5: Summary of performances of our approaches.

MRS placement
Performance, %

#S
EER P1 at rank 1

Ankle 5 85.7 21

Hip 13 73.2 100

Trousers pocket 7.3 86.3 50

Arm 10 71.7 30

the normal gait samples of the genuine users [15, 17–19, 21,
30]. We will refer to such scenario as a “friendly” testing.
However, the “friendly” testing is not adequate for expressing
the security strength of gait biometric against motivated
attackers, who can perform some action (e.g., mimic) or
possess some vulnerability knowledge on the authentication
technique.

3.1. Attack Scenarios. In order to assess the robustness of gait
biometric in case of hip-based authentication, we tested 3
attack scenarios:

(1) minimal-effort mimicking [39],

(2) knowing the closest person in the database [39],

(3) knowing the gender of users in the database [42].

The minimal-effort mimicking refers to the scenario
where the attacker tried to walk as someone else by delib-
erately changing his walking style. The attacker had limited
time and number of attempts to mimic (impersonate) the
target person’s gait. For estimating FAR, the mimicked gait
samples of the attacker were matched against the target
person’s gait. In the second scenario, we assumed that the
attackers knew the identity of person in the database who
had the most similar gait to the attacker’s gait. For estimating
FAR, the attacker’s gait was matched only to this nearest
person’s gait. Afterwards, the performances of mimicking
and knowing closest person scenarios were compared to the
performance of the “friendly” scenario. In the third scenario,
it was assumed that attackers knew the genders of the users in
the database. Then, we compared performance of two cases,
so called same- and different-gender matching. In the first
case, attackers’ gait was matched to the same gender users
and in the second case attackers’ gait was matched to the
different gender users.It is worth noting that in second and
third attack scenarios, attackers were not mimicking (i.e.,
their natural gait were matched to the natural gait of the
victims) but rather possessed some knowledge about genuine
users (their gait and gender).

3.2. Experimental Data and Results. We analyzed the afore-
mentioned security scenarios in case of the hip-based
authentication where the MRS was attached to the belt of
subjects around hip as in Figure 3(b). For investigating the
first attack scenario (i.e., minimal-effort mimicking), we
conducted an experiment where 90 subjects participated, 62
male and 28 female. Every subject was paired with another
one (45 pairs). The paired subjects were friends, classmates
or colleagues (i.e., they knew each other). Everyone was told
to study his partner’s walking style and try to imitate him
or her. One subject from the pair acted as an attacker, the
other one as a target, and then the roles were exchanged.
The genders of the attacker and the target were the same.
In addition, the age and physical characteristics (height and
weight) of the attacker and target were not significantly
different. All attackers were amateurs and did not have a
special training for the purpose of the mimicking. They only
studied the target person visually, which can also easily be
done in a real-life situation as gait cannot be hidden. The
only information about the gait authentication they knew
was that the acceleration of normal walking was used. Every
attacker made 4 mimicking attempts.

As it was mentioned previously in the second and third
attack scenarios (i.e., knowing the closest person and gender
of users), the impostors were not mimicking. In these
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Figure 5: An example of acceleration signal from foot: (a) motion detection and (b) cycle detection.
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Figure 6: Performances in terms of DET and CMC curves.

two attack scenarios, the hip data-set from Section 2.3 was
used.

In general, the recognition procedure follows the same
structure as in Figure 4, and involves preprocessing, motion
detection, cycles detection, and computation of the averaged
cycle. For calculating a similarity score between two persons’
averaged cycle, the Euclidean distance was applied. A more
detailed description of the method can be found in [39].
Performance evaluation under attacking scenarios are given
in terms of FAR curves (versus threshold) and shown in
Figure 7. Figure 7(a) shows the results of the minimal-effort
mimicking and knowing the closest person scenarios as well
as “friendly” scenario. Figure 7(b) represents the results of
security scenario where attackers knew the gender of the
victims. In Figures 7(a) and 7(b), the dashed black curve is
FRR and its purpose is merely to show the region of EER. In
order to get robust picture of comparison, we also computed
confidence intervals (CI) for FAR. The CI were com-
puted using nonparametric (subset bootstrap) in Figure 7(a)

and parametric in Figure 7(b) techniques as described in
[43].

As can been seen from Figure 7(a), the minimal effort
mimicking and “friendly testing” FAR are similar (i.e., black
and red curves). This indicates that mimicking does not help
to improve the acceptance chances of impostors. However,
impostors who know their closest person in the database
(green FAR curve) can pose a serious threat to the gait-based
user authentication. The FAR curves in Figure 7(b) suggest
that impostor attempts, which are matched against the same
gender have higher chances of being wrongfully accepted by
the system compared to the different sex matching.

4. Uniqueness of Gait Biometric

In the third research question, we investigated some aspects
relating or influencing the uniqueness of gait biometric
in case of ankle/foot motion [44]. The following three
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Figure 7: Security assessment in terms of FAR curves.

aspects were studied: footwear characteristics, directions of
the motion, and gait cycle parts.

4.1. Experimental Data and Recognition Method. The num-
ber of subjects who participated in this experiment was 30.
All of them were male, since only men footwears were used.
Each subject walked with 4 specific types of footwear, labeled
as A, B, C, and D. The photos of these shoe types are given in
Figure 8. The footwear types were selected such that people
wear them on different occasions. Each subject walked 4
times with every shoe type and the MRS was attached to
the ankle as shown in the Figure 3(a). In each of the walking
trials, subjects walked using their natural gait for the distance
of about 20 m. The number of gait samples per subject was
16 (= 4 × 4) and the total number of walking samples was
480 (= 4× 4× 30).

The gait recognition method applied here follows the
architecture depicted in Figure 4. The difference is that in
preprocessing stage we did not compute resultant accel-
eration but rather analyzed the three acceleration signals
separately. In the analyses, we used the averaged cycle as a
feature vector and applied an ordinary Euclidean distance
(except in Section 4.4), see (2), for computing similarity
scores

s =
√√√√

n∑

i=1

(ai − bi)
2, n = 100. (2)

In this formula, ai and bi are acceleration values in two
averaged gait cycles (i.e., test and template). The s is a
similarity score between these two gait cycles.

4.2. Footwear Characteristic. Shoe or footwear is an impor-
tant factor that affects the gait of the person. Studies show
that when the test and template gait samples of the person
are collected using different shoe types, performance can
significantly decrease [45]. In many previous gait recognition
experiments, subjects were walking with their own footwear
“random footwear.” In such settings, a system authenticates
person plus shoe rather than the person per se. In our
experimental setting, all participants walked with the same
types of footwear which enables to eliminate the noise
introduced by the footwear variability. Furthermore, subjects
walked with several types of specified footwear. This allows
investigating the relationship of the shoe property (e.g.,
weight) on recognition performance without the effect of
“random footwear.”

The resulting DET curves with different shoe types
in each directions of the motion are given in Figure 9.
The EERs of the curves are depicted in the legend of
the figures and also presented in Table 6. In this table,
the last two columns, FAR and FRR, indicate the EERs’
margin of errors (i.e., 95% confidence intervals) for FAR and
FRR, respectively. Confidence intervals were computed using
parametric approach as in [43].

Although some previous studies reported performance
decrease when the test and template samples of the person’s
walking were obtained using different shoe types [45],
there was no attempt to verify any relationship between
the shoe attributes and recognition performance. Several
characteristics of the footwear can significantly effect gait of
the person. One of such attributes is the weight of the shoe.
One of the primary physical differences among shoes was in
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Figure 8: The footwear types A, B, C, and D.

their weight. The shoe types A/B were lighter and smaller
than the shoe types C/D. As can be observed from the curves
in Figure 9, in general performance is better with the light
shoes (i.e., A and B) compared to the heavy shoes (i.e., C and
D) in all directions. This suggests that the distinctiveness of
gait (i.e., ankle motion) can diminish when wearing heavy
footwear.

4.3. Directions of the Motion. Human motion occurs in 3
dimensions (3D): up-down (X), forward-backwards (Y),
and sideway (Z). The MRS enables to measure acceleration
in 3D. We analyzed performance of each direction of the
motion separately to find out which direction provides the
most discrimination.

The resulting DET curves for each direction of the
motion for every footwear type are given in Figure 10.
The EERs of the curves are depicted in the legend of the
figures and also presented in Table 6. From Figure 10 one
can observe that performance of the sideway acceleration
(blue dashed curve) is the best compared to performances of
the up-down (black solid curve) or forward-backward (red
dotted curve) for all footwear types.

In addition, we also present performance for each
direction of the motion regardless of the shoe type. In this
case, we conducted comparisons of gait samples by not
taking into account with which shoe type it was collected.
For example, gait sample with shoe type A was compared
to gait samples with shoe types B, C, and D (in addition
to other gait samples with shoe type A). These DET curves
are depicted in Figure 11 (EERs are also presented in Table 6,
last three rows). This figure also clearly indicates that the
discriminative performance of the sideway motion is the best
compared to the other two.

Algorithms in VS-based gait recognition usually use
frontal images of the person, where only up-down and
forward-backward motions are available but not the sideway
motion. In addition, in some previous WS-based studies [21,
30, 34], authors were focusing only on two directions of the
motion: up-down and forward-backward. This is perhaps
due to the fact that their accelerometer sensor was attached to
the waist (see Figure 1) and there is less sideways movement
of the waist compared to the foot. However, our analysis
of ankle/foot motion revealed that the sideway direction
of the motion provides more discrimination compared to
the other two directions of the motion. Interestingly from
biomechanical research, Cavanagh [46] also observed that

the runners express their individuality characteristics in
medio-lateral (i.e., sideway) shear force.

4.4. Gait Cycle Parts. The natural gait of the person is a peri-
odic process and consists of cycles. Based on the foot motion,
a gait cycle can be decomposed into several subevents, such
as initial contact, loading response, midstance, initial swing
and so on [47]. To investigate how various gait cycle parts
contribute to recognition, we introduced a technique for
analyzing contribution from each acceleration sample in the
gait cycle.

Let the

d =

∣∣∣∣∣∣∣∣∣∣∣∣

d11 . . . d1n

d21 . . . d2n

. . . . . . . . .

dm1 . . . dmn

∣∣∣∣∣∣∣∣∣∣∣∣

,

δ =

∣∣∣∣∣∣∣∣∣∣∣∣

δ11 . . . δ1n

δ21 . . . δ2n

. . . . . . . . .

δk1 . . . δkn

∣∣∣∣∣∣∣∣∣∣∣∣

(3)

be genuine and impostor matrices, respectively, (m < k,
since usually the number of genuine comparisons is less
than number of impostor comparisons). Each row in the
matrices is a difference vector between two averaged cycles.
For instance, assume R = r1, . . . , rn and P = p1, . . . , pn two
feature vectors (i.e., averaged cycles) then values di j and δi j
in row i in above matrices equal to

(i) di j = |r j − pj|, if S and P from the same person (i.e.,
genuine),

(ii) δi j = |r j − pj|, if S and P from different person (i.e.,
impostor), where j = 1, . . . ,n.

Based on matrices 2 and 3, we define weights wi as
follows:

wi = Mean
(
δ(i)
)

Mean
(
d(i)
) , (4)

where Mean(δ(i)) and Mean(d(i)) are the means of columns
i in matrices δ and d, respectively. Then, instead of the
ordinary Euclidean distance as in (2), we used a weighted
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Figure 9: Authentication with respect to footwear types for each direction.

version of it as follows:

s =
√√√√

n∑

i=1

(wi − 1)∗ (ai − bi)
2, n = 100, (5)

where wi are from (4). We subtracted 1 from wi’s because if
the Mean(δ(i)) and Mean(d(i)) are equal than one can assume
that there is no much discriminative information in that
particular point.

We used gait samples from one shoe type (type B) to
estimate weights and then tested them on gait samples from
the other shoe types (i.e., types A, C, and D). The estimated
weights are shown in Figure 12. The resulting DET curves are
presented in Figure 13 and their EER are also given in Table 7.
The DET curves indicate that performance of the weighted
approach (red dotted curve) is better than the unweighted
one (black solid curve), at least in terms of EER. This is in
its turn may suggest that various gait cycle parts (or gait
subevents) contribute differently to the recognition.
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Figure 10: Authentication with respect to directions for shoe types A, B, C, and D.

5. Application and Limitation

5.1. Application. A primary advantage of the WS-based
gait recognition is on its application domain. Using small,
low-power, and low-cost sensors it can enable a periodic
(dynamic) reverification of user identity in personal elec-
tronics. Unlike one time (static) authentication, periodic
reverification can ensure the correct identity of the user all

the time by reassuring the (previously authenticated) iden-
tity. An important aspect of periodic identity reverification is
unobtrusiveness which means not to be annoying, not to dis-
tract user attention, and to be user friendly and convenient in
frequent use. Consequently, not all authentication methods
are unobtrusive and suitable for periodic reverification.

In our experiments, the main reason for selecting places
on the body was driven by application perspectives. For
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Table 6: EERs of the methods. Numbers are given in %.

Shoe type Motion direction EER FAR FRR

Shoe type A X (up-down) 10.6 ± 0.7 ± 4.5

Shoe type B X (up-down) 10 ± 0.7 ± 4.4

Shoe type C X (up-down) 18.3 ± 0.9 ± 5.6

Shoe type D X (up-down) 16.1 ± 0.9 ± 5.4

Shoe type A Y (forw.-backw.) 10.6 ± 0.7 ± 4.5

Shoe type B Y (forw.-backw.) 10.6 ± 0.7 ± 4.5

Shoe type C Y (forw.-backw.) 17.8 ± 0.9 ± 5.6

Shoe type D Y (forw.-backw.) 13.3 ± 0.8 ± 5

Shoe type A Z (sideway) 7.2 ± 0.6 ± 3.8

Shoe type B Z (sideway) 5.6 ± 0.5 ± 3.4

Shoe type C Z (sideway) 15 ± 0.8 ± 5.2

Shoe type D Z (sideway) 8.3 ± 0.6 ± 4

— X (up-down) 30.5 ± 0.3 ± 1.5

— Y (forw.-backw.) 29.9 ± 0.3 ± 1.5

— Z (sideway) 23 ± 0.2 ± 1.4
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Figure 11: Authentication regardless of the shoe types.

Table 7: The unweighted (EER) and weighted distances (EERw).

Shoe type Motion direction EER, % EERw , %

Shoe type A Z (sideway) 7.2 5

Shoe type C Z (sideway) 15 12.8

Shoe type D Z (sideway) 8.3 7.8

example, people can carry mobile phone in similar position
on the hip or in the pocket. Some models of the mobile
phones already equipped with accelerometer sensor, for
example, Apple’s iPhone [50] has the accelerometer for
detecting orientation of the phone. Nowadays the mobile
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Figure 12: The estimated weights.

phone services go beyond mere voice communication, for
example, users can store their private data (text, images,
videos, etc.) and use it in high security applications such as
mobile banking or commerce [51, 52]. All of these increase
the risk of being the target of an attack not only because of the
phone value per se but also because of the stored information
and provided services. User authentication in mobile phones
is static, that is, users authenticated once and authentication
remains all the time (until the phone explicitly is turned
off). In addition, surveys indicate high crimes associated with
mobile phones [53] and also suggest that users do not follow
the relevant security guidelines, for example, use the same
code for multiple services [54].

For combating crimes and improving security in mobile
phones, a periodic reverification of the authenticated user
is highly desirable. The PIN-based authentication of mobile
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(a) By Chen et al. [48] (b) By Yamamoto et al.
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Figure 14: Examples of smart shoes with integrated accelerometer.

phones is difficult or impossible to adapt for periodic
reauthentication because of its obtrusiveness. Indeed, the
process of frequently entering the PIN code into a mobile
phone is explicit, requires user cooperation, and can be very
inconvenient and annoying. Therefore, the WS gait-based
analysis can offer better opportunities for periodic identity
reverification using MRS embedded in phone hardware or
user’s clothes (e.g., shoes). Whenever a user makes a few steps
his identity is re-verified in a background, without requiring
an explicit action or input from the user.
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Figure 15: Examples of the glove like input devices with built-in accelerometer.

Besides the mobile phones and thanks to the rapid minia-
turization of electronics, the motion recording/detecting
sensors can be found in a wide range of other consumer
electronics, gadgets, and clothes. For example,

(i) laptops use accelerometer sensors for drop protection
of their hard drive [58];

(ii) various intelligent shoes with integrated sensors are
developed (see Figure 14), for example, for detecting
abnormal gaits [48], for providing foot motion to the
PC as an alternative way of input [49]; Apple and
Nike jointly developed a smart shoes that enables the
Nike+ footwear to communicate with iPod to provide
pedometer functions [59];

(iii) glove like devices with built-in accelerometer (see
Figure 15) can detect and translate finger and hand
motions as an input to the computer [55–57];

(iv) watches or watch like electronics are equipped with
built-in accelerometer sensor [60]. Motion detecting
and recording sensors can be built-in even in some
exotic applications like tooth brushing [61] or wear-
able e-textile [62]; and many others.

As the values and services provided by such electronics
grow, their risk of being stolen increases as well. Although the
motion recording/detecting sensors in the aforementioned
products and prototypes are mainly intended for other
purposes, it is possible to extend their functionality for
periodic re-verification of identity too. Depending on the
computing resources, the motion signal can either be ana-
lyzed locally (e.g., in case of mobile phones) or remotely in
the other surrounding electronics to which data is transferred
wirelessly. For instance, a shoe system can transfer the foot
motion to the user’s computer via wireless network (e.g.,
Bluetooth).

Furthermore, it is foreseen that such sensors will become
a standard feature in many kind of consumer products
[63, 64] which implies that WS-based approach will not
require an extra hardware. However, it is worth noting
that we do not propose the WS-based authentication as a
sole or replacement, but rather a complementary one to

the traditional authentication techniques (i.e., PIN-code,
fingerprint, etc.).

5.2. Limitation. Like the other biometrics, the WS-based gait
recognition also possesses its own limitations and challenges.
Although the WS-based approach lacks difficulties associated
with VS-based approach like noisy background, lighting
conditions, and viewing angles, it shares the common factors
that influence gait such as walking speed, surface conditions,
and foot/leg injuries.

An important challenge related to the WS-based gait
recognition includes distinguishing various patterns of walk-
ing. Although our methods can differentiate the actual
normal walking from the standing still, usually daily activity
of an ordinary user involves different types of gait (running,
walking fast/slow, walking on stairs up/down, walking with
busy hands, etc.). Consequently, advanced techniques are
needed for classifying among various complex patterns of
daily motion.

The main limitation of the behavioral biometrics includ-
ing gait is a relatively low performance. Usually, performance
of the behavioral biometrics (e.g., voice, handwriting, gait,
etc.) is not as accurate as the biometrics like fingerprint or
iris. Some ways to improve accuracy can be combining WS-
based gait with the other biometrics (e.g., voice [31]), fusing
motion from different places (e.g., foot and hip), and/or
sensor types (e.g., accelerometer, gyro, etc.). Nevertheless,
despite low accuracy of the WS-based gait recognition, it
can still be useful as a supplementary method for increas-
ing security by unobtrusive and periodic reverification of
the identity. For instance, to reduce inconvenience for a
genuine user, one can select a decision threshold where
the FRR is low or zero but the FAR is medium to high.
In such setting, although the system cannot completely
remove impostors of being accepted, it can reduce such risk
significantly.

Due to the lack of processing unit in the current
prototype of the MRS, our analyses were conducted offline,
that is, after walking with MRS, the recorded accelerations
were transferred to the computer for processing. However,
with computing resources available in some of current
electronics we believe it is feasible to analyze motion signals
online (i.e., localy) too.
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6. Conclusion

In this paper, we presented gait recognition approach which
is significantly different from most of current gait biometric
research. Our approach was based on analyzing motion
signals of the body segments, which were collected by
using wearable sensors. Acceleration signals from ankle,
hip, trousers pocket, and arm were utilized for person
recognition. Analyses of the acceleration signals from these
body segments indicated some promising performances.
Such gait analysis offers an unobtrusive and periodic
(re-)verification of user identity in personal electronics (e.g.,
mobile phone).

Furthermore, we reported our results on security assess-
ment of gait-based authentication in the case of hip motion.
We studied security of the gait-based user authentication
under three attack scenarios which were minimal effort-
mimicry, knowing the closest person in the database (in
terms of gait similarity), and knowing the gender of the user
in the database. The findings revealed that the minimal effort
mimicking does not help to improve the acceptance chances
of impostors. However, impostors who knew their closest
person in the database or the gender of the users in the
database could pose a threat to the gait-based authentication
approach.

In addition, we provided some new insights toward
understanding the uniqueness of the gait in case of ankle/foot
motion with respect to the shoe attribute, axis of the motion,
and gait cycle parts. In particular, our analysis showed
that heavy footwear tends to diminish gait’s discriminative
power and the sideway motion of the foot provides the
most discrimination compared to the up-down or forward-
backward direction of the motion. Our analysis also revealed
that various gait cycle parts (i.e., subevents) contribute
differently toward recognition performance.
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