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1. Introduction

In recent years, cognitive radio [1, 2] has attracted intensive
studies since it helps to solve the underutilization problem
of frequency spectrum [3–5]. Significant progress has been
made for standardizing (e.g., IEEE 802.22 [6, 7]) and
implementing (e.g., XG radio system [8]) the cognitive radio.
In a cognitive radio system, secondary users (without license)
can use frequency channels that are not being used by
primary users (with license). However, when primary users
emerge, the secondary users need to quit the frequency
channel as quickly as possible. Therefore, spectrum sensing,
which monitors the spectrum activity, is a key issue in
cognitive radio systems, particularly in wideband systems
which may contain multiple frequency channels. Due to
hardware limitation (e.g., limited sampling rate), it is difficult
to sense all frequency channels simultaneously. A feasible
strategy is to monitor only a subset of the frequency
channels and hop to another subset (may be the same
as the current one) in the next time slot according to a
certain control policy. Typically, it requires time to transit
between different frequency channels (e.g., the time needed
for reconfiguring phase-locked loop (PLL), which typically
takes 1 milliseconds, and the time for selecting band-pass

filter, which depends on the design of circuits), during which
the secondary user cannot sense any frequency channel (thus
we call it blind period). Therefore, the spectrum sensor is
like a restless watchdog (illustrated in Figure 1), which runs
from one door to another to monitor possible intruding
thieves (actually, the primary user is the owner of the house.
However, from the viewpoint of the secondary user, it is an
intruding thief. In contrast to real life, the secondary user
handles the thief by quitting the house, instead of dialing
911), and cannot monitor any door when it is running.

The problem of selecting channels to sense in mul-
tichannel cognitive radio systems has attracted plenty of
researches. In [9, 10], conclusions in bandit problem [11]
are applied to study the tradeoff between exploration and
exploitation when the channel characteristics are not fully
known. Similarly, the framework of bandit problem is also
applied in [12], which is focused on finding an indexing
policy for different channels. In [13], the framework of
Partially Observable Markov Decision Process (POMDP) is
applied to choose suitable channels for accessing. The work
in [14] has discovered a surprising conclusion that myopic
policy is optimal in certain circumstances. Note that the
references listed here, although numerous, are far from being
exhaustive.
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Figure 1: Illustrating spectrum sensing over multiple frequency
channels.

In this paper, we target at finding an intelligent con-
trolling policy for this restless watchdog. In contrast to
the above existing studies, which study the procedure of
accessing channels, this paper is focused on the procedure
of quitting channels being used by secondary user when
primary users emerge. The main concern of this procedure
is the delay of detecting primary users (the longer the delay
is, the more violation primary users suffer) as well as false
alarms. Since the detection of primary users needs to be
as quickly as possible, we adopt a framework similar to
the quickest detection [15, 16] in this paper. However, the
study in this paper is different from the single channel case
in [15, 16] since the spectrum sensing in the multichannel
cognitive radio system needs to not only detect the primary
users as quickly as possible but also select suitable channel(s)
to sense. Therefore, we coin the algorithm studied in this
paper as selective quickest spectrum sensing to distinguish
from the proposed quickest spectrum sensing in [15]. Note
that the meaning of “sensing” here is more like “monitoring”
instead of looking for new opportunities as used in many
literatures.

Note that a similar selective quickest spectrum sensing
problem has been addressed in [17], which discusses the
other side of the story, that is, finding available frequency
channels for data communication. Therefore, the incentive
of spectrum sensing in [17] is to get reward from locating
blank frequency channels while the incentive in this paper
is to avoid the penalty of conflicting primary user. In
contrast to the restless watchdog in our paper, the spectrum
sensor in [17] is more like a food-hunting lion. Different
analysis tools are used: theory of partially observable Markov
decision process (POMDP) is used in [17] while Dynamic
Programming (DP) is applied in this paper. Moreover, this
paper considers blind period, which substantially impacts
the structure of decision making (e.g., it is difficult to
find explicit optimal control policies), while [17] ignores
it.

For the controlling policy of the restless watchdog, we
try to solve the following two problems based on noisy
observations (assuming that only one frequency channel can
be monitored at a time).
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Figure 2: Timing structure of the spectrum sensing.

(i) When to claim the detection of primary users’
emergence and stop communicating over the fre-
quency channel being monitored? Note that a good
spectrum sensor needs to achieve good tradeoff
between detection delay (impacting the communica-
tion of primary users) and false alarm (impacting the
communication of secondary users themselves).

(ii) When to switch to another frequency channel that
is not being monitored? Which frequency channel
should be switched to? Note that the secondary user
is blind during the transition period and there exists
risk that primary users emerge during this blind
transition period.

In this paper, we assume that the emergence of primary users
is memoryless. Therefore, the above controlling problem falls
in the field of Markov Decision Process (MDP). Naturally,
we apply the framework of Dynamic Programming (DP)
[18, 19], which provides the optimal solution, to study the
above two problems. A brief introduction to DP is provided
in Appendix A to make this paper self-contained.

The remainder of this paper is organized as follows.
The system model is given in Section 2. Elements of control
problems, system state, action space, and cost function, are
defined in Section 3. Cost-to-go functions in DP are analyzed
for finite and infinite horizon cases in Sections 4 and 5,
respectively. The control policy is further simplified using
heuristic approximation in Section 6. Numerical results and
conclusions are given in Sections 7 and 8, respectively.

Below is some mathematical notation used in this paper.

(i) For sets A and B, A/B = {x | x ∈ A, x /∈B}; |A|
means the cardinality of set A.

(ii) ‖x‖1 means the 1-norm of vector x, that is, ‖x‖1 =∑
k |(x)k|; ‖x‖0 means the 0-norm of vector x, that

is, the number of nonzero elements in x.

(iii) (x)+ is equal to x if x ≥ 0 and 0 otherwise.

2. SystemModel

Suppose that there exist M frequency channels being used
by a secondary user. A secondary user needs to sense the
frequency spectrum and monitor the activities of primary
radios. Once a primary user emerges on a frequency channel,
the secondary user needs to vacate from it. We denote by
Hm

0 (Hm
1 ) the hypotheses that the mth frequency channel is

not being used (is being used) by primary users. The time is
slotted and labeled by integers 0, 1, 2, . . . .

The following assumptions are placed on spectrum
sensing.
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(i) At the beginning, all M channels are idle and are
being used by the secondary user. (In this paper, idle
means that the channel is not being used by primary
user.)

(ii) The activities of primary users on different channels
are mutually independent. This is reasonable since
different channels are typically assigned to different
communication systems or transmission links. It is
interesting to study the case of correlated channels;
however, it is beyond the scope of this paper.

(iii) Suppose that the procedure of spectrum sensing is
time slotted. At the beginning of each time slot, a
new observation on the spectrum activity is received.
Then, the decision of action is made at the end of the
time slot. We denote the observation at time slot t by
X(t) and the observations from time slots t1 to t2 by
Xt2
t1 . This procedure is illustrated in Figure 2.

(iv) Only one frequency channel can be monitored at a
time. Switching to another frequency channel needs
ds time slots (the blind period), during which the
secondary user cannot sense any channel. We denote
by Om the set of the indices of time slots in which
channel m is sensed. By changing the definition of
system states, it is easy to extend the result to the
case that more than one channels can be monitored
simultaneously.

(v) We assume that the probability distributions of
observations, with and without primary users, are
perfectly known to the secondary user for all fre-
quency channels. We denote the observation dis-
tributions of hypotheses Hm

0 and Hm
1 by p0m and

p1m, respectively. Note that there is no a priori
information about these distributions in practical
systems. However, they can be estimated from the
experience of secondary users. For simplicity, we
ignore the procedure of learning the information in
this paper.

(vi) Suppose that the emergence time of primary user
on a frequency channel satisfies geometrical distri-
bution and the corresponding probability is given by
pe(t) = ρ(1− ρ)t−1, where the subscript e stands
for emergence, and we assume that ρ is identical
for all frequency channels and is known to the
secondary user. In practical systems when the true
value of ρ is unknown, we can either estimate it
or use an artificial ρ as a parameter to control the
agility of spectrum sensing. Note that the assumption
of geometrical distribution is identical to the two-
state Markov chain assumption [10, 13], where the
transition probability from state “idle” to state “busy”
is ρ.

(vii) For simplicity, we do not consider the procedure of
finding new available frequency channels. This task
can be accomplished by applying the techniques in
[17] and can also be easily incorporated into the
framework of this paper.

(viii) We do not consider the case of multiple secondary
users, in which competition is unavoidable and
makes the control policy much more complicated.

(ix) For simplicity, we do not consider the period of
data transmission and assume that the spectrum
sensing is continuous in time. In practical systems,
data transmission is carried out orthogonally to
the spectrum sensing, either in frequency or in
time. When the orthogonality is in frequency, the
spectrum sensing can be carried out in a subband
of each channel and the data transmission can be
done in the remainder of the spectrum (some guard
band can be used to prevent frequency leakage)
such that spectrum sensing and transmission can
exist simultaneously. When the orthogonality is in
time, the spectrum sensing and data transmission
are carried out in different time slots (like time-
division-multiplexing (TDM)). In this case, we can
skip the data transmission period when computing
the metrics used in spectrum sensing since the data
transmission period does not provide information
for the spectrum sensing. Therefore, in both cases,
we can assume that the spectrum sensing is carried
out continuously in time without violating practical
system designs.

3. Elements of Control Problem

The selective quickest spectrum sensing is essentially a
control problem which generally has three elements: system
state, cost function, and action space. The action space is
obvious. We will explain the two elements, system state and
cost function, for the selective quickest spectrum sensing in
this section.

3.1. System State. When M = 1 (single frequency channel),
the secondary user has only two states, namely, continuing
using/sensing the current channel and stop transmitting over
this channel. When M > 1, the definition of states needs
to incorporate the information of frequency channels being
used. When at least one channel is being used for transmis-
sion, we denote a generic state by SΩm, where Ω denotes the set
of channels being used for data communication and m ∈ Ω
stands for the channel being sensed. When Ω is an empty set,
the state, denoted by S0, means that all frequency channels
have been closed by the secondary user.

Then, the set of all states, denoted by S, is given by

S =
{
SΩm | m ∈ Ω,Ω ⊆ {1, 2, . . . ,M}

}⋃{
S0}. (1)

It is easy to verify that the cardinality of S is given by

|S| = 1 +
M−1∑

m=0

⎛

⎝
M

m

⎞

⎠(M −m)

= 1 + M2M−1,

(2)

where 1 stands for the state S0, m is the number of closed
channels,

(
M

m

)
is the number of possible selections of m
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Figure 3: Illustration of state transitions when M = 2.

closed channels, and M − m is the number of possible
selections of channels being sensed.

The spectrum sensing allows transitions from state SΩ1
m to

state SΩ2
n only when Ω2 ⊆ Ω1. When Ω2 = Ω1, the transition

means that the secondary user switches from channel m to
channel n without stopping transmitting over any channel.
When Ω2 ⊂ Ω1, the transition means that the secondary user
stops communicating over channel m and switches to sense
channel n.

An illustration of state definitions and transitions is
provided in Figure 3 when M = 2. Below are two examples
of state transitions.

(i) From S{1,2}
1 to S{1,2}

2 , the secondary user still continue
to use channels 1 and 2 for communication and
switches to sense channel 2.

(ii) From S{1,2}
1 to S{2}2 , the secondary user stops using

channel 1 and only channel 2 will be used and sensed
(the transmission and spectrum sensing may not
occur simultaneously as explained in the last section).

3.2. Cost Function. We measure the system performance by
false alarms and detection delays. Similar to [20], we consider
the following cost function:

J =
M∑

m=1

P(Tm > tm) + c
M∑

m=1

E
[

(tm − Tm)+
]

=
M∑

m=1

P(Tm > tm) + c
M∑

m=1

E

⎡

⎣
tm−1∑

k=1

P(Tm ≤ k)

⎤

⎦,

(3)

where Tm is the time slot when primary user emerges in
channel m, tm is the time slot of detecting the primary user
and stopping transmitting over channel m, and c is a constant
scalar balancing the weights of false alarm and detection
delay. In the second equation in (3), we used the equality

E[X] =
∞∑

k=0

P(X ≤ k), (4)

where X is a nonnegative random variable. Note that the first
summation in (3) means the sum of false alarm probabilities

and the second summation denotes the sum of average run
length (ARL) of detection delay in all frequency channels (for
channel m, the detection delay ARL is E[(tm − Tm)+]). Then,
in each time slot, the secondary user may experience a false
alarm penalty P(Tm > tm) if claiming detection of primary
users on channel m or a miss detection penalty P(Tm ≤ k)
for channel m if continuing using channel m.

4. Finite Horizon Case

In this section, we consider a finite period of spectrum
sensing and use DP to obtain optimal rule of selective
quickest spectrum sensing.

4.1. Cost-to-Go Function. As an important tool in DP, cost-
to-go function means the expected cost from current time
slot to final time slot Γ. The details can be found in [19]. We
assume that the spectrum sensing is carried out in a finite
interval [0, 1, . . . ,Γ]. At the end of time slot Γ, the secondary
user must quit all channels and restart the procedure of
finding available channels.

For the finite horizon case, we define the cost-to-go
function Jt(s), where t indicates time slot and s indicates state,
in a similar manner to [20], which is given by (note that the
cost-to-go function is conditioned on observations)

Jt
(
s | Xt

0

) =
M∑

m=1

P(Tm > tm, tm ≥ t | St = s)

+ c
M∑

m=1

E

⎡

⎣
tm−1∑

k=t
P(Tm ≤ k | St = s)

⎤

⎦,

(5)

where St stands for the state at time slot t. Obviously, the cost
incurred before time slot t is omitted in Jt(s), and only the
cost after t − 1 is taken into account.

Following the backward induction of dynamic program-
ming, we begin the discussion from the cost-to-go function
at the final time slot Γ. Provided observations XΓ

0 , the cost-
to-go function at state SΩm and time slot Γ is given by

JΓ
(
SΩm | XΓ

0

)
=
∑

n∈Ω
P
(
Tn > Γ | XΓ

0

)
, (6)

which is sum of false alarm probabilities at Γ (recall that we
need to close all channels at time slot Γ).

For 0 ≤ t < Γ, the cost-to-go function for state S0 is given
by Jt(S0 | XΓ

0 ) = 0 since all channels have been closed and
there will be no more cost in the future.

For 0 ≤ t < Γ and |Ω| ≥ 1, the cost-to-go function for
state SΩm is given by

Jt
(
SΩm | Xt

0

)

= min
(

CΩ
m

(
m | Xt

0

)
, min
n /=m

CΩ
m

(
n | Xt

0

)
, min
n /=m

C̃Ω
m

(
n | Xt

0

)
)

,

(7)

where the operation of minimization stands for choosing
the action incurring the minimum cost. Note that, in (7),
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CΩ
m(m | Xt

0) is the cost to go for remaining in state SΩm, which
is given by

CΩ
m

(
m | Xt

0

) = c
∑

n∈Ω
P
(
Tn ≤ t | Xt

0

)

+ E
[
Jt+1

(
SΩm | Xt+1

0

)
| Xt

0

]
,

(8)

where the incurred cost for time slot t is the sum of miss
detection probabilities of all active channels.

CΩ
m(n | Xt

0) is the cost to go for transiting to state SΩn
without stopping the communication over channel m, which
is given by

CΩ
m

(
n | Xt

0

) = c
t+ds∑

s=t

∑

n∈Ω
P
(
Tn ≤ s | Xt

0

)

+ E
[
Jt+1+ds

(
SΩn | Xt+ds+1

0

)
| Xt

0

]
,

(9)

where the the incurred cost for time slot t is the sum of
miss detection probabilities of all active channels during the
blind period (recall that the spectrum sensor cannot sense
any channel during this blind period).

C̃Ω
m(n | Xt

0) is the cost of jumping to state SΩ
′

n after
stopping the communication on channel m, which is given
by

C̃Ω
m

(
n | Xt

0

) = c
t+ds∑

s=t

∑

n∈Ω′
P
(
Tn ≤ t | Xt

0

)

+ E
[
Jt+1+ds

(
SΩ

′
n | Xt+ds+1

0

)
| Xt

0

]

+ P
(
Tm > t | Xt

0

)
,

(10)

where Ω′ = Ω/{m} and incurred cost at time slot t is the
sum of the false alarm probability for channel m and miss
detection probabilities for other active channels.

The cost-to-go functions can be computed in a backward
manner, that is, begin from JΓ and compute Jt based on
obtained Jt+1, until J1.

4.2. Sufficient Statistics. In this subsection, we find sufficient
statistics for the cost-to-go functions.

4.2.1. Sufficiency. Notice that, in (6)–(10), the cost-to-go
functions are dependent on observations Xt

0, which consume
prohibitive amount of memory. Using a similar proof to that
of in [21, Proposition 3] (for completeness, we provide the
proof in Appendix B), we obtain the following proposition,
which states that we need only keep a posteriori probabilities
in the memory. (Since we have only partial information
about the state of primary users, it is essentially a partially
observable Markov decision process (POMDP). In many
circumstances of POMDP, we can use the belief of the state
(the a posteriori probabilities in our context) as the system
state, thus converting the POMDP problem to a completely
observable problem.)

Proposition 1. The a posteriori probabilities {P(Tm ≤ t |
Xt

0)}m=1,...,M are sufficient statistics for the cost-to-go functions
in (6)–(10).

Therefore, we can update the a posteriori probabilities
{P(Tm ≤ t | Xt

0)}m=1,...,M for each new observation, instead
of keeping all observations in memory. This requires only
constant amount of memory.

4.2.2. Computation of A Posteriori Probabilities. The fol-
lowing proposition provides a formula to compute the a
posteriori probability P(Tn ≤ t | Xt

0). The proof is given in
Appendix C.

Proposition 2. The a posteriori probability P(Tn ≤ t | Xt
0) for

frequency channel n is given by

P
(
Tn ≤ t | Xt

0

)

=
∑t

s=0

(∏s−1
r=0,r∈On

p0n(Xr)
∏t

r=s,r∈On
p1n(Xr)pe(s)

)

∑∞
s=0

(∏s−1
r=0,r∈On

p0n(Xr)
∏t

r=s,r∈On
p1n(Xr)pe(s)

) .
(11)

For evaluating the a posteriori probability P(Tn ≤ t | Xt
0)

recursively, we define the following quantity:

ant
(
Xt

0

)
�

t∏

r=0,r∈On

p0n(Xr)

=
⎧
⎪⎨

⎪⎩

ant−1

(
Xt−1

0

)
p0n(Xt), if t ∈ On,

ant−1

(
Xt−1

0

)
, if t /∈On.

(12)

Based on the definition of ant (Xt
0) in (12), the numerator

and denominator of the a posteriori probability P(Tn ≤ t |
Xt

0) in (11) are given by

bnt
(
Xt

0

)
� numerator of (11)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bnt−1

(
Xt−1

0

)
p1n(Xt)

+ant−1

(
Xt−1

0

)
p1n(Xt)pe(t), if t ∈ On,

bnt−1

(
Xt−1

0

)
+ant−1

(
Xt−1

0

)
pe(t), if t /∈On.

(13)

cnt
(
Xt

0

)
� denominator of (11)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bnt−1

(
Xt−1

0

)
p1n(Xt) + ant−1

(
Xt−1

0

)

×
⎛

⎝p1n(Xt)pe(t) + p0n(Xt)
∞∑

s=t+1

pe(s)

⎞

⎠,

if t ∈ On,

bnt−1

(
Xt−1

0

)
+ ant−1

(
Xt−1

0

)
×
( ∞∑

s=t
pe(s)

)

,

if t /∈On,
(14)
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where the numerator bnt (Xt
0) is also computed recursively.

The initialization of ant (Xt
0) and bnt (Xt

0) is given by ant (X−1
0 ) =

1 and bnt (X−1
0 ) = 0. The detailed derivation of (13) and (14)

is given in Appendix D.

4.2.3. Prediction of Future Probabilities. Since the a posteriori
probabilities P(Tn ≤ t | Xt

0) are sufficient statistics, we can
rewrite the cost-to-go function Jt(SΩm | Xt

0) as Jt(SΩm | pt),
where

(
pt
)
m =

⎧
⎨

⎩

P
(
Tm ≤ t | Xt

0

)
, if m ∈ Ω,

0, if m /∈Ω,
(15)

in the remainder of this paper.
Conditioned on pt , the nth element of pt+1 is given by

P
(
Tn ≤ t + 1 | Xt

0

)

= P
(
Tn ≤ t | Xt

0

)
+ P

(
Tn = t + 1 | Xt

0

)

= (pt
)
n +

P
(
Xt

0 | Tn = t + 1
)
P(Tn = t + 1)

P
(
Xt

0

)

= (pt
)
n +

P
(
Xt

0 | Tn > t
)
pe(t + 1)

P
(
Xt

0

)

= (pt
)
n +

P
(
Xt

0 | Tn > t
)
P(Tn > t)pe(t + 1)

P
(
Xt

0

)
P(Tn > t)

= (pt
)
n +

P
(
Tn > t | Xt

0

)
pe(t + 1)

∑∞
s=t+1 pe(s)

= (pt
)
n + ρ

(
1− (pt

)
n

)
.

(16)

Using similar argument, we can show that for all s > 0,

P
(
Tn ≤ t + s | Xt

0

) = (pt
)
n +

(
1− (1− ρ)s

)(
1− (pt

)
n

)
.

(17)

5. Infinite Horizon Case

Although we have obtained the cost-to-go functions and
an efficient algorithm for computing the a posteriori prob-
abilities, the assumption of limited observation period is
unreasonable for practical systems; moreover, the cost-to-go
functions are distinct for different time slots, thus requiring
prohibitive amount of memory for storing the corresponding
control policies when Γ is large. Therefore, in this section,
we simplify the cost-to-go functions by considering infinite
horizon case, that is, extending the limited time period to
an infinite one. We first show that the cost-to-go functions
converge to a function independent of time and then study
their properties for further simplification.

5.1. Convergence. We first obtain the following proposition,
which eliminates the dependency of cost-to-go functions on
time. The proof is given in Appendix E.

Proposition 3. As Γ → ∞, one has

Jt
(
SΩm | pt

)
−→ J

(
SΩm | pt

)
, ∀t, (18)

where J(SΩm | pt) is the cost-to-go function in the infinite
horizon case.

Therefore, one can focus on studying the infinite horizon
cost-to-go function J(SΩm | pt), thus reducing the number
of cost-to-go functions from Γ× the number of states to the
number of states.

5.2. Properties. For further exploiting the structure of DP, we
study the properties of J(SΩm | pt).

Symmetry. Since frequency channels are assumed to be
symmetric (if different channels have different probabilities
of primary user emergence, the symmetry is broken and we
cannot simplify the cost-to-go functions) , we have

J
(
SΩ1
m | pt

)
= J

(
SΩ2
n | p′t

)
, (19)

if |Ω1| = |Ω2|, (pt)m = (p′t)n and p′t is a permutation of the
elements in pt. Then, we can rewrite J(SΩ1

m | pt) as Jkm(pt),
where m indicates the frequency channel being sensed, and
k = |Ω| is the number of frequency channels being used.
Moreover, without loss of generality, we can assume that
channel 1 is being monitored and need to study only Jk1 (pt)
due to symmetry.
Then the cost-to-go function in (7) can be rewritten as

Jk1
(
pt
) = min

(

c
∥
∥pt

∥
∥

1 + J̃ kn
(
pt
)

,

c
(
A
∥
∥pt

∥
∥

1 + B
∥
∥pt

∥
∥

0

)
+ min

n /= 1
J̃ k−1
n

(
pt
)
,

c
(
A
∥
∥p1

t

∥
∥

1 + B
∥
∥p1

t

∥
∥

0

)

+min
n /= 1

J̃ k−1
n

(
pt
)

+ 1− (p1
t

)
m

)

,

(20)

where

J̃ km
(
pt
) = E

[
Jkm
(
pt+1

) | pt
]

,

A = 1− (1− ρe)
ds+1

ρe
,

B = ds − 1− (1− ρe)
ds+1

ρe
.

(21)

Note that A‖pt‖1 + B‖pt‖0 corresponds to
∑t+ds

s=t
∑

n∈Ω
×P(Tn ≤ s | Xt

0) in (9) and A‖p1
t ‖1 + B‖p1

t ‖0 corresponds

to
∑t+ds

s=t
∑

n∈Ω,n /= 1 P(Tn ≤ s | Xt
0) in (10). pmt is obtained by

setting the mth element in pt to 0.
Argmin. If transiting to another frequency channel, the

secondary user should always choose the frequency channel
having the largest a posteriori probability, that is,

arg min
n /= 1

Jkn
(
pt
) = arg max

n /= 1

(
pt
)
n. (22)
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Therefore, the computation of cost-to-go functions can be
simplified to

Jk1
(
pt
) = min

(
c
∥
∥pt

∥
∥

1 + J̃ k1
(
pt
)
,

c
(
A
∥
∥pt

∥
∥

1 + B
∥
∥pt

∥
∥

0

)
+ J̃ k1

(
π
(
pt
))

,

c
(
A
∥
∥p1

t

∥
∥

1 + B
∥
∥p1

t

∥
∥

0

)
+ J̃ k−1

1

(
π
(
pt
))

+1− (pt
)

1

)
,

(23)

where π is an operator that switches the elements belonging
to frequency channel 1 and the frequency channel given by
(22), that is,

π(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(π(x))1 = max
n /= 1

(x)n,

(π(x))n = (x)1, if n = arg max
n /= 1

(x)n,

(π(x))n = (x)n, if n /= arg max
n /= 1

(x)n.

(24)

6. Heuristic Approximation

The probability pt is continuous, thus resulting in infinite
numbers of cost-to-go functions Jk1 (pt). Therefore, we need
to discretize the probability pt into f intervals for numerical
computation. It is easy to verify that the number of cost-to-
go functions is given by

∑M
m=1 f m = ( f M+1− f )/( f−1) (when

there are still m active channels, there are f m possibilities
for Jk1 (pt)). When the number of frequency channels is large,
we face the curse of dimensions for numerically computing
the cost-to-go functions in (23). For example, when f = 10
and M = 10, we need to consider around 1010 cost-to-go
functions. Therefore, we need approximations to simplify
DP. There have been plenty of studies on approximate DP
[22–24]. In this paper, we combine the philosophies of
Limited Lookahead Policy (LLP), which truncates the time
horizon by looking ahead only a small number of stages, and
Certainty Equivalent Control (CEC), which replaces random
variables with their expectations, in [19].

(i) LLP: intuitively, in the near future, the first two most
possibly changed frequency channels are the one
being monitored and the one not being monitored
but having the largest a posteriori probability (if
there is a tie, we can choose one randomly). For
simplicity, we assume that they are channels 1 and
2, respectively. Applying the philosophy of LLP, we
consider only these two frequency channels and do
not consider any other frequency channels.

(ii) CEC: using the philosophy of CEC, we convert the
stochastic control problem into a deterministic one,
that is, considering the expectations of change times,

T
t
n � E[Tn | Xt

0], to be the true values.

The following proposition provides expressions for the
expected changing time.

Proposition 4. For any n, the expected changing time of
channel n is given by

T
t
n =

∑t
s=0

(
s
∏s−1

r=0,r∈O1
P0n(Xr)

∏
r=s,r∈O1

P1n(Xr)pe(s)
)

∑∞
s=0

(∏s−1
r=0,r∈On

P0n(Xr)
∏t

r=s,r∈On
P1n(Xr)pe(s)

)

+

(

t +
1
ρ

)
(
1− (pt

)
n

)
.

(25)

Obviously, the denominator of the first term in (25) can
be computed using (14). The corresponding numerator can
be computed recursively (similar to (13)) as follows:

dnt
(
Xt

0

)
� numerator of (25)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dnt−1

(
Xt−1

0

)
P1n(Xt)

+tant−1

(
Xt−1

0

)
P1n(Xt)pe(t), if t ∈ On,

dnt−1

(
Xt−1

0

)
+tant−1

(
Xt−1

0

)
pe(t), if t /∈On.

(26)

For compensating the false alarm probability and state
transition time ds, we do the following adjustments for
channels 1 and 2:

T̃t
1 = T

t
1 +

1
c

(
1− (pt

)
1

)
(27)

T̃t
2 = T

t
2 +

1
c

(
1− (pt

)
2

)
+ ds. (28)

Note that 1/c is used to convert the penalty of false alarm to
detection delay, and ds is applied to channel 2 since there is
no blind period if we continue to monitor channel 1.

Then, a heuristic decision of state transition is given by
(as illustrated in Figure 4) as the following.

(i) Case 1: if T̃t
1 ≤ t, stop using frequency channel 1 and

switch to monitor frequency channel 2.

(ii) Case 2: if T̃t
1 > t and T̃t

1 > T̃t
2, continue using

frequency channel 1 and switch to monitor frequency
channel 2.

(iii) Case 3: if T̃t
1 > t and T̃t

1 ≤ T̃t
2, keep monitoring

frequency channel 1.

7. Numerical Results

In this section, we use numerical simulation results to
evaluate the performance of the proposed selective quickest
spectrum sensing. The following configurations are used for
all simulations.

(i) We assume M = 2, that is, there are two frequency
channels used by the secondary user.

(ii) We consider sensed power (in dB scale) as obser-
vation which satisfies Gaussian distribution, that is,
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Current time t
 Case 1

Case 2

Case 3

T̃t
1

T̃t
2 T̃t

1

T̃t
1 T̃t

2

Figure 4: Illustration of three cases in the heuristic strategy.

H0 : Xt ∼ N (P0, σ2
n) and H1 : Xt ∼ N (P1, σ2

n), where
P0 and P1 are the expected receive power (in dB) with
and without primary users, respectively, and σ2

n is the
variance of measurement error incurred by fading,
noise and interference. We assume that the signal-to-
noise ratio (SNR) is 10 dB. Note that the normality
assumption is mainly for simplicity of simulation and
is correct if log-normal distributed shadow fading is
considered. Such a normality assumption has been
used in many other publications, for example, [25]. It
is also straightforward to incorporate other possible
observation distributions, for example, incorporat-
ing Raleigh or Ricean fading and thermal noise, into
the framework of selective quickest spectrum sensing.

(iii) ds is set to 10 time slots.

Each simulation statistic is obtained from 1000 realiza-
tions of the spectrum sensing procedure.

7.1. Discretized DP. For computing the cost-to-go functions,
we discretize the a posteriori probabilities by dividing the
range (between 0 and 1) of each probability into 30 equal
length intervals. 100 iterations are used to compute these
cost-to-go functions. Then, the obtained control policy is
applied to the spectrum sensing. Note that the computation
of control policy is offline and does not affect the realtime
operation of the secondary user.

Figure 5 shows the trace of control action in one real-
ization of the spectrum sensing process. The upper slashed
black curve represents the current frequency channel being
monitored. Four events are labeled in the figure:

(i) event 1: primary user emerges in channel 2;

(ii) event 2: primary user emerges in channel 1;

(iii) event 3: the secondary user quits channel 2;

(iv) event 4: the secondary user quits channel 1.

The a posteriori probabilities P(Ti ≤ t | Xt
0), i = 1, 2,

are both plotted in the figure. In the figure, the procedure of
spectrum sensing is as follows:

(1) at the very beginning, both a posteriori probabilities
are small and the secondary user switches to channel
2 from channel 1;

(2) during the blind period, the node cannot monitor
any frequency channel; then the secondary user
begins to monitor channel 2;

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Time

Event 1 Event 2 

Event 3 

Event 4 

Probability
of band 1 

Probability 
of band 2 

Band being monitored 

Figure 5: An example of control action trace.

(3) when the a posteriori probability of channel 1 (black
solid curve) becomes much larger than that of chan-
nel 2, the secondary user switches back to channel 1;

(4) when the a posteriori probability of channel 2
becomes much larger than that of channel 1, the
secondary user switches back to channel 2; after the
blind period, the node detects the change of channel
2;

(5) the secondary user quits channel 2 and begins to
monitor channel 1; after the blind period, it detects
the change of channel 1.

Figure 6 shows the cumulative distribution function
(CDF) of detection delay when ρ = 0.05, 0.1, 0.15, where we
set c = 0.05. We observe that the performance is improved
when ρ is increased. An intuitive explanation is that the
emergence of the primary users is less random when ρ is
larger.

Figure 7 shows the tradeoff between false alarm rate
and detection delay ARL (recall that the detection delay
ARL is defined as E[(tm − Tm)+]), where we set ρ =
0.05, 0.15. We change the weighting factor c to generate
curves characterizing different tradeoffs between false alarm
and miss detection and observe that the tradeoff curve is
much better when ρ = 0.15.

7.2. Approximate DP. Figures 8 and 9 show the performance
(CDF of detection delay and tradeoff curves) of approximate
DP in Section 6. In Figure 9, the approximate DP even
outperforms the discretized DP at some points; for example,
for ρ = 0.05 and detection delay ARL equaling 8, the
false alarm rate of approximate DP is smaller than that of
the discretized DP. Note that this does not contradict the
optimality of DP since the DP uses discretized probabilities
while the approximate DP does not.

Although the approximate DP achieves good perfor-
mance when false alarm rate is small, our simulation shows
that it cannot achieve low detection delay ARL even if we set
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Figure 6: CDF of detection delay for ρ = 0.05, 0.1, 0.15 when
discretized DP is used.
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Figure 7: Tradeoff between false alarm rate and detection delay ARL
when discretized DP is used.

the weighting factor c to a large number (i.e., emphasizing
more on the penalty of detection delay). For the optimal DP,
the controller tends to close the current frequency channel
immediately to avoid the penalty of detection delay if c
diverges to infinity. However, when we set c = ∞ in the
approximate DP, the only effect is that the second terms in
both (27) and (28) vanish, which does not necessarily imply
stopping transmitting over the current frequency channel
immediately. Therefore, the proposed approximate DP is less
flexible than the optimal (or discretized) one.

8. Conclusions and Open Problems

We have applied the framework of DP to the problem of
selective quickest spectrum sensing with blind period in
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Figure 8: CDF of detection delay for ρ = 0.05, 0.1, 0.15 when
approximate DP is used.
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Figure 9: Tradeoff between false alarm rate and detection delay ARL
when approximate DP is used.

multichannel cognitive radio systems. A cost-to-go function
based control policy is established for the restless watchdog
to achieve tradeoff between detection delay and false alarm.
A posteriori probabilities of primary user emergence are used
as sufficient statistics with efficient recursive computation
formulas. We have proposed a heuristic and approximate
algorithm to avoid the curse of dimensions in DP. Numerical
simulation shows that both the DP and approximate DP
frameworks yield good performance for spectrum sensing.

There are still many open problems for the selective
spectrum sensing. Major open problems include (a) when
the statistics of primary user’s activity are unknown or
change in time, how to learn the optimal strategy adaptively?
(b) when multiple secondary users exist, how to handle the
competition among them?
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Appendices

A. Dynamic Programming

In this section, we briefly introduce the principle of DP,
making this paper self-contained. Consider a discrete-time
Markovian system, whose evolution is described by

st+1 = f (st,ut,wt), (A.1)

where f is a deterministic function, st is the state at time t, ut
is a legal action when the state is st , and wt is some random
perturbation. Consider a finite time interval [1,T]. The cost
function of the system is given by

J =
T∑

t=1

E[c(st ,ut,wt)], (A.2)

where c is a function mapping to a real number.
Following the basic idea of DP, that is, decomposing a

problem into subproblems, we define cost-to-go function (it
is also called value function if we consider reward instead of
cost) , Jt(s), that is, the expected cost after time t−1 provided
that st = s, which is given by

Jt(s) =
T∑

τ=t
E[c(sτ ,uτ ,wτ) | st = s]. (A.3)

Denoting by the optimal (equivalently, minimal) cost-to-
go function by J∗t (st), we have Bellman’s Equation, which is
given by

J∗t (s) = min
ut

E
[
c(s,ut,wt) + J∗t+1(st+1)

]
, (A.4)

and the corresponding optimal control policy can be
obtained by

μ∗t (s) = arg min
ut

E
[
c(s,ut,wt) + J∗t+1(st+1)

]
. (A.5)

B. Proof of Proposition 1

Proof. We do induction on time slot t. Due to (6),
{P(Tn ≤ Γ | XΓ

0 )}n∈Ω is sufficient for JΓ(SΩm | XΓ
0 ).

Then, suppose that the a posteriori probabilities {P(Tn

≤ t + 1 | Xt+1
0 )}n∈Ω are sufficient for the cost-to-go function

Jt+1(SΩm | Xt+1
0 ). Now, we consider time slot t. Due to (17),

P(Tn ≤ t + s | Xt
0) is a function of P(Tn ≤ t | Xt

0), for all
s ≥ 0. Then, (7) implies that Jt(SΩm | Xt

0) depends on only
P(Tn ≤ t | Xt

0) according to the induction assumption. This
concludes the proof.

C. Proof of Proposition 2

Proof. It is easy to verify that the probability conditioned on
known times of primary users’ emergence on all channels
P(Xt

0 | T1 = s1, . . . ,TM = sM) is given by (recall that Om

is the set of time slots in which channel m is sensed)

P
(
Xt

0 | T1 = s1, . . . ,TM = sM
)

=
M∏

m=1

sm−1∏

r=0,r∈Om

p0m(Xr)
t∏

r=sm,r∈Om

p1m(Xr)pe(sm).
(C.1)

Similarly, we have

P
(
Xt

0 | T1 = s1
)

=
t1−1∏

r=0,r∈O1

p01(Xr)
t∏

r=t1,r∈O1

p11(Xr)

×
∞∑

s2=0

· · ·
∞∑

sm=0

M∏

m=2

sm−1∏

r=0,r∈Om

p0m(Xr)

×
t∏

r=sm,r∈Om

p1m(Xr)pe(sm).

(C.2)

Based on the above results, the unconditional probability
P(Xt

0) is given by

P
(
Xt

0

)

=
∞∑

s1=0

· · ·
∞∑

sm=0

P
(
Xt

0 | T1 = s1, . . . ,TM = sM
)

× P(T1 = s1, . . . ,TM = sM)

=
∞∑

s1=0

· · ·
∞∑

sm=0

M∏

m=1

sm−1∏

r=0,r∈Om

p0m(Xr)

×
t∏

r=sm,r∈Om

p1m(Xr)pe(sm),

(C.3)

where sm stands for the possible time when primary users
emerge on channel m.

On applying Bayes formula, the a posteriori probability
P(Tn ≤ t | Xt

0) for frequency channel n is given by

P
(
Tn ≤ t | Xt

0

)

= P
(
Xt

0,Tn ≤ t
)

P
(
Xt

0

)

=
P
(
{Xτ}τ∈On,τ≤t ,Tn ≤ t

)

P
(
{Xτ}τ∈On,τ≤t

)

=
∑t

s=0

(∏s−1
r=0,r∈On

p0n(Xr)
∏t

r=s,r∈On
p1n(Xr)pe(s)

)

∑∞
s=0

(∏s−1
r=0,r∈On

p0n(Xr)
∏t

r=s,r∈On
p1n(Xr)pe(s)

) .

(C.4)

This concludes the proof.

D. Proof of Equations (13) and (14)

Proof. We first show (13). From the proof of Proposition 2,
we know

bnt
(
Xt

0

) = P
(
{Xτ}τ∈On,τ≤t ,Tn ≤ t

)
. (D.1)
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When t ∈ On, we have

P
(
{Xτ}τ∈On,τ≤t ,Tn ≤ t

)

= P
(
{Xτ}τ∈On,τ≤t ,Tn ≤ t − 1

)

+ P
(
{Xτ}τ∈On,τ≤t ,Tn = t

)

= P
(
{Xτ}τ∈On,τ≤t−1,Tn ≤ t − 1

)
P(Xt | Tn ≤ t − 1)

+ P
(
{Xτ}τ∈On,τ≤t−1 | Tn = t

)
P(Xt | Tn = t)P(Tn = t)

= bnt−1

(
Xt−1

0

)
p1n(Xt)

+ ant−1

(
Xt−1

0

)
p1n(Xt)pe(t),

(D.2)

where we applied P(Xt | Tn ≤ t − 1) = P(Xt | Tn = t) =
p1n(Xt) and the definition of ant−1(Xt−1

0 ).
When t /∈On, the derivation is the same except that the

p1n(Xt) is not taken into account. This concludes the proof
of (13).

Now we show (14). From the proof of Proposition 2, we
know

cnt
(
Xt

0

) = P
(
{Xτ}τ∈On,τ≤t

)
. (D.3)

Then, when t ∈ On, we have

P
(
{Xτ}τ∈On,τ≤t

)

= P
(
{Xτ}τ∈On,τ≤t ,Tn ≤ t − 1

)

+ P
(
{Xτ}τ∈On,τ≤t ,Tn = t

)

+ P
(
{Xτ}τ∈On,τ≤t ,Tn > t

)
,

(D.4)

where the first two terms are the same as those of bnt (Xt
0). The

last term is equal to ant−1(Xt−1
0 )p0n(Xt)

∑∞
s=t+1 pe(s) since the

observation distribution is p0n before time t+ 1 when Tn > t.
We can also obtain cnt (Xt

0) by ignoring p0n(Xt) and
p1n(Xt) when t /∈On. This concludes the proof.

E. Proof of Proposition 3

Proof. Let Γ1 ≥ Γ2 ≥ 0, we have

JΓ1
t

(
SΩm | pt

)
> JΓ2

t

(
SΩm | pt

)
, ∀t, (E.1)

where the superscripts Γ1 and Γ2 indicate the final time, since
larger time interval means more possible false alarms and
detection delays.

However, JΓt (SΩm | pt) is upper bounded by M since it is
smaller than or equal to the cost of the simple strategy that
the secondary user claims the emergence of primary users
over all channels at time 0. Due to (3), the cost of the strategy
is M since P(Tm > 0) = 1 and P(Tm ≤ 0) = 0.

Therefore, JΓt (SΩm | pt) is an upper bounded increasing
function in Γ and thus converges as Γ → ∞. This concludes
the proof.

F. Proof of Proposition 4

Proof. Similar to the proof of Proposition 2 (in Appendix C),
we obtain

P
(
Tn = s | Xt

0

)

=
(∏s−1

r=0,r∈On
p0n(Xr)

∏t
r=s,r∈On

p1n(Xr)pe(s)
)

∑∞
s=0

(∏s−1
r=0,r∈On

p0n(Xr)
∏t

r=s,r∈On
p1n(Xr)pe(s)

) ,
(F.1)

when s ≤ t.
When Tn > t (this happens with probability 1−(p)n), the

conditional expectation is given by

E
[
Tn − t | Xt

0,Tn > t
] = 1

ρ
, (F.2)

where 1/ρ is the unconditional expectation of the time of
primary users’ emergence.

Then, we have

T
t
n =

t∑

s=0

sP
(
Tn = s | Xt

0

)

+
(
E
[
Tn − t | Xt

0,Tn > t
]

+ t
)
P
(
Tn > t | Xt

0

)
,

(F.3)

which concludes the proof.
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