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1. Introduction

The cognitive radio (CR) paradigm aims to design intelligent
radios that can sense the environment and adapt the
transceiver parameters as well as the resource allocation deci-
sions in order to exploit the spectrum availability aggressively
[1]. The motivation stems from the observation that the
current usage pattern of the licensed spectrum is not very
efficient; there are plenty of “white spaces” in spectral and/or
spatiotemporal domains that allow overlaying secondary
transmissions on top of the existing licensed (a.k.a. primary)
users without degrading the communication quality of the
latter [2].

To exploit the spectrum holes opportunistically, orthog-
onal frequency-division multiplexing (OFDM) transceivers
are often employed at the physical layer of the CR due to their
flexibility in communicating over a wide range of spectrum
bands efficiently [3]. OFDM radios can easily implement
transmission filters that suppress the signal in the undesired
subbands to prevent interference to the primary users (PUs).
CR transmissions target only the bands in which the PUs are
not present. In the time domain, the “quiet” periods of the
PUs are identified so as to interleave the CR data in-between
the PU transmissions [4].

Obviously, a key component of CR transceivers is the
sensing module that monitors spectrum occupancy of the
PUs in real time. Since the presence of CR links must be
oblivious to the PUs, hard misdetection constraints need
be imposed to the design of the detector in the sensing
module. However, this inevitably leads to increased sensing
time, which, in turn, leaves less time for the actual data
transmission before the PUs may kick back in. Thus, it is
important to factor in the sensing overhead in the design
of the sensing module, especially for scenarios where the
PU occupancy changes dynamically in time as well as in
frequency.

However, the sensing task is often challenging. First of all,
as the licensees may have invested heavily on the spectrum to
run commercialized services in their bands, it is likely that
very strict interference-preventing masks are placed to the
CRs. In IEEE 802.22, for example, the sensing threshold for
the digital TV (DTV) signal is set as low as −116 dBm over
6 MHz bandwidth [5]. Secondly, in some situations, coherent
detectors such as matched filters cannot be used because the
required a priori knowledge of the PU signal characteristics
is not available or simply because hardware complexity is to
be kept minimal. Thus, the sensing module often needs to
employ noncoherent receivers with reduced complexity but
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also performance such as energy detectors [6, 7] or feature-
based detectors [8].

The wideband sensing problem for OFDM-based CRs
was considered in [9], where the detection thresholds for a
bank of energy detectors were optimized jointly to maximize
throughput performance. To improve the sensing perfor-
mance, cooperative sensing scenarios were also considered
in [10] by collecting measurements from multiple CRs at
the fusion center (FC) to improve detection performance.
A cooperative sensing strategy was also pursued in [11],
where a linear-quadratic fusion rule was developed based on
the deflection criterion to process correlated observations.
The tradeoff between sensing duration and throughput
was studied in [12] using the energy detectors. These
developments, however, assume batch (or fixed sample size
(FSS)) detection strategies, where the number of samples
collected for detection is a predetermined design parameter,
which does not depend on the actual values of the received
samples.

Sequential detection schemes on the other hand exploit
the fact that the number of samples required to achieve a
given reliability level may well be dependent on the actual
realization of the observed samples. For example, in a
simple binary hypothesis testing context, Wald’s sequential
probability ratio test (SPRT) compares the likelihood ratio
with two thresholds, and the decision is made as soon as the
test statistic exceeds either one of the thresholds. It is known
that SPRT minimizes the average sample number (ASN)
among all tests with the same false alarm and misdetection
probabilities [13, page 21]. However, it is not clear how to
apply the SPRT approach to the wideband sensing problem,
where a bank of detectors must be run simultaneously.
Moreover, the relevant optimization criterion in this case
might not be as simple as the ASN. In [14], two layers
of SPRTs were employed at individual CRs and the FC
to reduce the overall detection delay for a single-channel
sensing problem. However, no claims on optimality were
provided.

In this work, rate-optimal wideband sequential sensing
algorithms are developed in the framework of optimal
stopping time problems. Such problems amount to deter-
mining the time to stop taking sequential observations so
that an expected value of payoff based on the accumulated
observations is maximized [15, 16]. The payoff in our CR
sensing setup will be chosen as the total rate achieved by
using all the available subchannels, where the availability is
determined under hard interference constraints. The sensing
overhead is captured by explicitly accounting for the sensing
time, which consumes portion of the frame duration.

In a companion paper [17], generalizations to sequential
cooperative sensing are also discussed, where a central
processing unit sequentially collects either raw (analog)
or quantized observations from multiple cooperating CRs.
However, the underlying problem formulation is different in
[17] in that the detector structure is optimally determined
in closed form as a likelihood ratio test, whereas the
conventional energy detector structure is adopted here.
Also, a recursive (on-line) counterpart of the batch training
algorithm developed here is presented in [17].

The rest of the paper is organized as follows. In Section 2,
the signal model and the problem formulation are presented
for the single-CR case. In Section 3, the optimal solution is
derived and a reduced-dimension sufficient statistic is iden-
tified. Section 4 develops a basis expansion-based reduced-
complexity algorithm to obtain a suboptimal yet tractable
solution. Numerical results are presented in Section 5, and
conclusions are provided in Section 6.

2. Problem Statement

2.1. Signal Model. Consider a CR that shares M orthogonal
bands opportunistically with PUs in its network. In order not
to interfere with on-going PU transmissions, the CR must
identify the bands that are not occupied by the PUs before
transmitting its own data.

The nth received signal sample at the CR on band m ∈
{1, 2, . . . ,M}, when a PU is transmitting on that band, can
be modeled by

r(m)
n = h(m)

n s(m)
n + z(m)

n , n ∈ {1, 2, . . . ,N}, (1)

where {h(m)
n } are the channel coefficients, {s(m)

n } are the
PU signal samples, {z(m)

n } are independent and identically
distributed (i.i.d.) complex Gaussian additive noise samples
with mean 0 and variance σ2, and N denotes the maximum
number of samples that can be collected in the sensing phase.
Under the assumption that PU occupancy is independent
across the M bands, the CR must perform a binary
hypothesis test per band m to discriminate the following two
hypotheses:

H(m)
0 : r(m)

n = z(m)
n , n ∈ {1, . . . ,N},

H(m)
1 : r(m)

n = h(m)
n s(m)

n + z(m)
n , n ∈ {1, . . . ,N}.

(2)

The prior probabilities Pr{H(m)
0 } and Pr{H(m)

1 } are denoted
by p(m)

0 and 1− p(m)
0 , respectively.

As in, for example, [6], each CR receiver relies on energy
detection to decide the occupancy of each band. The test

statistic t(m)
n is calculated at each time step n as

t(m)
n =

n∑

k=1

y(m)
k , y(m)

n �
∣∣∣r(m)

n

∣∣∣
2
. (3)

For simplicity, assume that the channel coefficients {h(m)
n }

do not vary over the detection interval such that |h(m)
n |2 can

be denoted as G(m), ∀n ∈ {1, . . . ,N}, and the transmitted
signal has unit power; that is, E{|s(m)

n |2} = 1, ∀n,m.
The CR receiver in the scenarios considered can acquire
its channel with the PU blindly, or, by overhearing the
pilot signal transmitted by the PU system. This is clearly
feasible when the transceivers are stationary so that the
channel is quasistatic; see also [9] for a justifying argument
in the context of DTV systems. In addition, it is possible to
extend the ensuing formulation and algorithms to the case
where only the distribution of G(m) is known by considering
appropriate averages over those channel gains; however, this
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case goes beyond the scope of the present paper and will not
be detailed here.

Then, the observations {y(m)
1 , y(m)

2 , . . . , y(m)
N } are i.i.d.

under H(m)
0 and H(m)

1 with the conditional univariate
densities under the two hypotheses for all m given by the
(non)central χ2 densities [18, Section 2.2]:

p
(
y | H(m)

0

)
= 1

σ2
e−y/σ

2
1{y≥0}, (4)

p
(
y | H(m)

1

)
= 1

σ2
e−(y+G(m))/σ2

I0

⎛
⎝

√
G(m)y

σ2/2

⎞
⎠, (5)

where I0(·) denotes the zeroth-order-modified Bessel func-
tion of the first kind, and 1{·} the indicator function that
equals 1 if the condition {·} is true and 0 otherwise.

In the batch Neyman-Pearson framework, the decision
with maximum detection probability under a given false-
alarm rate is based on the threshold rule

Decide H(m)
1 if t(m)

n > γ(m)
n ,

Decide H(m)
0 if t(m)

n < γ(m)
n

(6)

due to the monotonicity of the log-likelihood ratio, where

γ(m)
n is the threshold at time n for band m, and the decision

can be either way when t(m)
n = γ(m)

n . Invoking the central
limit theorem, one can show that for large enough n

the probability of false alarms α(m)
n and the probability of

misdetection β(m)
n for band m with sample size n are given

by [19]

α(m)
n = Pr

{
t(m)
n > γ(m)

n | H(m)
0

}
= Q

⎛
⎝γ(m)

n − nσ2

σ2
√
n

⎞
⎠, (7)

β(m)
n = Pr

{
t(m)
n < γ(m)

n | H(m)
1

}

= 1−Q

⎛
⎝
γ(m)
n − n

(
σ2 + G(m)

)

σ
√
n(σ2 + 2G(m))

⎞
⎠,

(8)

where Q(·) denotes the Gaussian tail function.
In the context of spectrum sensing for CRs, the mis-

detection probabilities signify the probabilities of failing to
detect the presence of the PUs, which could lead to causing
interference to the PU transmission. For this reason, the
sensing algorithms must be designed to guarantee very small
misdetection probabilities. On the other hand, small false
alarm probabilities are desired to increase the usage of the
available channels. These dual goals can be accomplished
by increasing the sample size n. However, increasing the
sample size leads to larger sensing overhead, which effectively
reduces the time left for actual data transmission. In the next
subsection, a sequential sensing problem is formulated to
optimize the overall transmission rate by taking into account
the overhead due to sensing.

2.2. Sequential CR Sensing as an Optimal Stopping Problem.
The sequential sensing problem can be formulated in the

Sensing
phase

Band 1

Band 2

Band M

Frame duration T

Ts

nTs

Data transmission phase

· · ·

· · ·

· · ·

...
...

...

Figure 1: Frame structure of the CR.

framework of optimal stopping problems [20, Section 4.4],
[15, 16, 21]. Based on the observations collected up to a
certain point, the optimal stopping problems seek to find the
“best” time to stop taking observations, “best” in the sense
of maximizing the expected value of a chosen reward. An
optimal stopping problem can thus be defined by specifying
(i) a sequence of observed random variables with their joint
distribution and (ii) a sequence of random variables, whose
joint distributions with the observations are known, each
representing the per-step reward that could be obtained
should one decide to stop at the corresponding time step.
In our setup, the sequence of i.i.d. observations is {yn}Nn=1,
whose joint p.d.f. is expressible in terms of the univariate
p.d.f. in (4) or (5). In the ensuing subsections, the sequential
CR sensing problem is posed as an optimal stopping problem
by defining the reward sequence, which will be finally given
in (27). But first it is prudent to specify the optimality
criterion.

2.2.1. Average Throughput Criterion. To capture the effective
throughput of the CR while accounting for the sensing
overhead, consider the frame structure shown in Figure 1.
The deterministic frame duration T is divided into the
sensing and the data transmission phases, where the dura-
tions of both phases are random variables. Denote the
sampling interval of the detector by Ts, where T ≥ NTs.

Let yn � [y(1)
n y(2)

n · · · y(M)
n ]T and likewise for the

corresponding vector tn � [t(1)
n · · · t(M)

n ]T , collecting
the test statistics defined in (3). The PU occupancy over the
M bands is denoted by an M × 1 random vector H with the

mth entry H (m) taking values from {H(m)
0 ,H(m)

1 } and the rate
that can be achieved in band m by R(m).

If the CR stops sensing after the nth sampling interval, the
duration of the sensing phase is nTs. The CR then proceeds
to data transmission on the bands that are sensed idle for the
remaining part of the frame of duration T − nTs. Therefore,
the overall throughput is given by

f ′n (H , tn)

= T − nTs

T

M∑

m=1

R(m)1{H(m)
0 }1{t(m)

n <γ(m)
n }, n = 1, 2, . . . ,N ,

(9)
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where the first indicator function in (9) allows rate to be
transmitted over band m only if H (m) is indeed H(m)

0 ; while
the second indicator function allows usage of band m if also

the energy detector correctly declares H (m) = H(m)
0 (cf. (6)).

Note that the per-step reward f ′n (·) is a function of
the underlying true spectrum occupancy H , which is not
directly observable. It can be shown that the optimal
stopping problem based on the per-step reward f ′n (·) is
equivalent to the one based on the conditional average per-
step reward E{ f ′n (H , tn) | Yn}, n = 1, 2, . . . ,N , where
Yn � [y1 · · · yn] and the expectation is taken over H
[21], [20, Section 5.1]. Expected values of binary random
variables corresponding to the indicator functions can be
replaced by probabilities; for example, E{1{H(m)

0 } | Yn} =
Pr{H(m)

0 | y(m)
1 , . . . , y(m)

n }. Hence, the conditional average
per-step reward can be expressed as (cf. (9))

fn(πn, tn) � E
{
f ′n (H , tn) | Yn

}

= T − nTs

T

M∑

m=1

R(m)π(m)
n 1{t(m)

n <γ(m)
n },

(10)

where πn � [π(1)
n · · ·π(M)

n ]T denotes the belief vector with
entries

π(m)
n � Pr

{
H(m)

0 | y(m)
1 , . . . , y(m)

n

}
. (11)

Clearly, the factor (T − nTs)/T in the per-step rewards in
both (9) and (10) diminishes as n approaches N , which
encourages stopping as soon as possible, while collecting
more samples in tn can potentially identify more available
bands, as captured by the indicator functions 1{t(m)

n <γ(m)
n },

leading to a tradeoff.
The goal is to obtain the average (over H and

YN ) throughput-optimal stopping policy that determines
whether to stop sensing or not at each time n ∈ {1, 2, . . . ,N−
1} given the observations Yn. To be precise, let un ∈
{stop, continue} denote a control variable at time n. The
stopping policy Un(·) per time n is the rule specifying the
mapping Yn ∈ (R+)nM � Un(Yn) ∈ {stop, continue}. With
the introduction of an auxiliary state variable xn ∈ {S, S},
where xn = S indicates the “stop” state and xn = S the
“nonstop” state, the system evolution is characterized by

xn+1 =
⎧
⎨
⎩
S, if xn = S, or xn /= S, un = stop,

S, otherwise,

n = 1, 2, . . . ,N − 1,

(12)

where x1 = S. The reward function at the final stage N is
given by

f̂N (YN , xN ) = fN (πN , tN )1{xN /= S} (13)

and at stage n by

f̂n(Yn, xn,un)

= fn(πn, tn)1{xn /= S,un=stop}, n = 1, 2, . . . ,N − 1.

(14)

Note that the reward at stage N does not include the control
variable because UN ≡ stop since sensing must end a fortiori
after N sampling intervals. The “bookkeeping” variable xn
ensures that the reward f̂n(·) may be nonzero only upon
the first instance of un being equal to “stop”; for the rest of

the time steps, f̂n(·) evaluates to zero due to the indicator
functions in (13) and (14). (As a mnemonic for the notation
used, functionals with hat (e.g., f̂n) depend on the control
(un) and the “bookkeeping” variables (xn) as well as the
rewards (e.g., fn), which are functions of the data Yn through
πn and tn.) Expressions (13) and (14) allow the average
throughput to be expressed as the sum of the per-step rewards

R(U1, . . . ,UN−1)

� E

⎧
⎨
⎩ f̂N (YN , xN ) +

N−1∑

n=1

f̂n(Yn, xn,Un(Yn))

⎫
⎬
⎭,

(15)

where the expectation is with respect to YN .
The average throughput in (15) is to be maximized

over the finite horizon comprising N sampling intervals,
with respect to the stopping policy {U1, . . . ,UN−1} with
Un(Yn) = un ∈ {stop, continue}. Certainly, to perform this
functional (i.e., variational) optimization, it is necessary to
know the data p.d.f. required to evaluate the expectation in
(15). The reason behind expressing R in (15) as a cumulative
sum of the per-step rewards in (13) and (14) is our intention
of casting the sequential CR sensing task as a dynamic
programming (DP) problem, the subject discussed next.

2.2.2. Constrained Dynamic Programming Formulation.
Given the observations y1, y2, . . . , yn per time n, the CR
performs hypothesis testing in each band to determine
whether the band is occupied or not. When the sensing
is stopped, the CR transmits on those channels that the
detector determines to be unoccupied. However, it is critical
to constrain the “collision” probability P(m)

c for each channel
m, which is the probability that the CR interferes with the
PU transmission due to misdetection. It is thus desired for
the DP formulation to be introduced later to enforce the
constraints

P(m)
c ≤ β, m = 1, 2, . . . ,M, (16)

where β is a small positive constant.
For nonsequential FSS tests with sample size n, the “colli-

sion” probability coincides with the misdetection probability

β(m)
n in (8). Thus, (16) is equivalent to β(m)

n ≤ β for all m,

and the threshold γ(m)
n that maximizes the probability of false

alarm can be calculated from (8) as

γ(m)
n = Q−1

(
1− β

)
σ
√
n(σ2 + 2G(m)) + n

(
G(m) + σ2

)
. (17)

Interestingly, in the case of sequential sensing, constrain-

ing β(m)
n is not equivalent to constraining the “collision”

probabilities. To establish this, we recall that sensing can
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terminate at any time n ∈ {1, . . . ,N}. Hence, P(m)
c can be

expressed as

P(m)
c =

N∑

n=1

Pr
{
xn /= S, Un = stop, t(m)

n < γ(m)
n | H(m)

1

}
, (18)

where UN ≡ stop for the fixed horizon N considered here.
Using Bayes’ rule, (18) can be rewritten in terms of β(m)

n as

P(m)
c =

N∑

n=1

β(m)
n Pr

{
xn /= S, Un = stop | t(m)

n < γ(m)
n ,H(m)

1

}
.

(19)

Thus, if the events {xn /= S, Un = stop} and {t(m)
n <

γ(m)
n } were independent conditioned on H(m)

1 for all n, then

imposing the condition β(m)
n ≤ β would be sufficient to

guarantee P(m)
c ≤ β. Since this is not the case in general,

capping the misdetection probability under β does not

necessarily ensure P(m)
c ≤ β.

Ideally, the optimal {γ(m)
n } should be obtained by for-

mulating a constrained DP problem that maximizes (15)

under the constraints (16), after incorporating {γ(m)
n } as

optimization variables in addition to {Un}. The resulting DP
is significantly more complex to solve because the feasible

space for {γ(m)
n } is infinite and discretization needs to be

employed for tractability. For this reason, we adopt a less

ideal yet intuitive rule for determining the thresholds γ(m)
n ,

namely using the thresholds in (17) obtained from the FSS
tests. The “collision” probability will still be guaranteed by
explicitly imposing the conditions (16) in the constrained DP
formulation described next.

First, note that the collision probability on band m given
in (18) can be rewritten as

P(m)
c =

N∑

n=1

E
{
1{xn /= S,Un=stop, t(m)

n <γ(m)
n } | H

(m)
1

}

= E

⎧
⎨
⎩

N∑

n=1

1{xn /= S,Un=stop, t(m)
n <γ(m)

n }
1− π(m)

n

1− p(m)
0

⎫
⎬
⎭,

(20)

where in deriving the second equality we used Bayes’ rule

and the facts that Pr{H(m)
1 | y(m)

1 , . . . , y(m)
n } = 1 − π(m)

n and

Pr{H(m)
1 } = 1 − p(m)

0 . To render (20) compatible with the
constrained DP formalism, define per-step costs for channel
m ∈ {1, 2, . . . ,M} as

ĉ(m)
N (YN , xN ) � 1{xN /= S}c

(m)
N

(
π(m)
N , t(m)

N

)
,

ĉ(m)
n (Yn, xn,un) � 1{xn /= S,un=stop}c(m)

n

(
π(m)
n , t(m)

n

)
,

n = 1, 2, . . . ,N − 1,

(21)

where

c(m)
n

(
π(m)
n , t(m)

n

)

� 1{t(m)
n <γ(m)

n }
1− π(m)

n

1− p(m)
0

, n = 1, 2, . . . ,N.
(22)

Then, the desired optimization problem can be formulated as
a constrained DP problem given by (cf. (15) and (20)–(22))

max
{Un(Yn)}N−1

n=1

E

⎧
⎨
⎩ f̂N (YN , xN ) +

N−1∑

n=1

f̂n(Yn, xn,Un(Yn))

⎫
⎬
⎭ (23)

subject to E

⎧
⎨
⎩ĉ

(m)
N (YN , xN ) +

N−1∑

n=1

ĉ(m)
n (Yn, xn,Un(Yn))

⎫
⎬
⎭

≤ β, m = 1, 2, . . . ,M.
(24)

One approach to solving constrained DP problems is
through Lagrange relaxation [22]. Given a set of Lagrange
multipliers λ � [λ(1) λ(2) · · · λ(M)]T with λ(m) ≥ 0,
m ∈ {1, 2, . . . ,M}, the relaxed unconstrained DP problem to
solve is

max
{Un(Yn)}N−1

n=1

E

⎧
⎨
⎩ĝN (YN , xN ; λ) +

N−1∑

n=1

ĝn(Yn, xn,Un(Yn); λ)

⎫
⎬
⎭,

(25)

where

ĝN (YN , xN ; λ) � f̂N (YN , xN )−
M∑

m=1

λ(m)ĉ(m)
N (YN , xn),

ĝn(Yn, xn,un; λ) � f̂n(Yn, xn,un)−
M∑

m=1

λ(m)ĉ(m)
n (Yn, xn,un),

n = 1, 2, . . . ,N − 1.
(26)

Note that this is an optimal stopping problem with observa-
tion sequence {yn}Nn=1 and reward sequence

gn(πn, tn; λ)

� fn(πn, tn)−
M∑

m=1

λ(m)c(m)
n

(
π(m)
n , t(m)

n

)
, n = 1, 2, . . . ,N.

(27)

The approaches to solve the problems (25) and (26) for a
given λ are described in Sections 3 and 4.

The Lagrange multipliers λ need to be updated to satisfy
the constraints in (24). A simple approach is to use the
subgradient method (see, e.g., [23, Chapter 2])

λ(m)
	+1 = max

{
0, λ(m)

	 + μ	
(
P(m)
c − β

)}
, m = 1, 2, . . . ,M,

(28)

where 	 denotes the iteration index, and μ	 the step size.
The subgradient update increases the Lagrange multipliers
when the constraints are violated to effect larger penalty in
the objective function of (25), so that the constraints are
enforced. A remark on the signal model is in order.
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Remark 1. Recall that the PU occupancy was assumed
independent across the M bands. In practice, the resource
allocation decision of the PU system may render the spec-
trum occupancy of the PU transmissions correlated across
bands. In principle, it is possible to cope with correlated
PU spectrum occupancy. Consider, for example, M = 2
channels, where the possible occupancy states are

{(
H(1)

0 ,H(2)
0

)
,
(
H(1)

1 ,H(2)
0

)
,
(
H(1)

0 ,H(2)
1

)
,
(
H(1)

1 ,H(2)
1

)}

(29)

with an associated prior for each state. By exploiting the
correlation across subchannels, the sensing performance
can be improved. However, the number of states and
consequently the dimension of the belief vector increase
exponentially in M, rendering the complexity prohibitive.
This explains why we adopted the simple assumption on the
spectrum occupancy being independent across the subbands.

3. Optimal Solution

In principle, the DP problem with finite horizon given in (25)
and (26) can be solved optimally via the method of backward
induction [20]. It can be easily verified that the backward
induction for this dynamic program leads to the backward
induction of the optimal stopping problems detailed next;
see also [15]. To this end, define the value function Vn(·)
recursively as follows:

VN (YN ; λ) = gN (πN , tN ; λ), (30)

Vn(Yn; λ) = max
{
gn(πn, tn; λ),E

{
Vn+1

(
Yn, yn+1; λ

) | Yn
}}

for n = N − 1, . . . , 1, 0,
(31)

where f0 ≡ 0 is used for g0 in (27). This recursive definition
specifies offline functions {Vn(·)}N−1

n=0 , which will be used in
the optimal stopping policy that is implemented on-line.

Equation (31) proceeds backward from n = N − 1 to n =
0 by computing the value functions Vn(·) inductively. For
each step n, this involves taking the expectation of the value
function of the next step Vn+1(·) over the observation vector
yn+1 conditioned on the observation history. Supposing for
now that this expectation can be obtained, the optimal value
of the objective in (25) for a given Lagrange multipliers λ
is provided by V0(λ). In the following, it is understood that
the exposition is for a given λ, and λ is suppressed from the
notation.

Once the value functions {Vn(Yn)}N−1
n=1 are available, the

optimal stopping rule can be applied forward in time and is
given by [15]

Un(Yn) =
⎧
⎨
⎩

stop, if Vn(Yn) = gn(πn, tn),

continue, otherwise,

n = 1, 2, . . . ,N − 1.

(32)

In practice, carrying out the backward induction is not
computationally tractable. An immediate obstacle is that

one has to deal with the state vector Yn, whose dimension
increases over time. Thus, it is desirable to find a statistic with
lower dimensionality that is still sufficient for finding the
optimal control policy. The following proposition identifies
such a sufficient statistic for the problem at hand.

Proposition 1. The vector ψn � [πntn] is a sufficient statistic
for obtaining the optimal stopping policy.

Proof. Note first that πn+1 and tn+1 can be updated via

πn+1 = Φπ
(
πn, yn+1

)

�
[
Φ(1)

(
π(1)
n , y(1)

n+1

)
· · ·Φ(M)

(
π(M)
n , y(M)

n+1

)]T
,

n = 0, 1, . . . ,N − 1,

(33)

where

Φ(m)
(
π(m)
n , y(m)

n+1

)

=
p
(
y(m)
n+1 | H(m)

0

)
π(m)
n

p
(
y(m)
n+1 | H(m)

0

)
π(m)
n + p

(
y(m)
n+1 | H(m)

1

)(
1− π(m)

n

) ,

(34)

and from (3)

tn+1 = Φt
(
tn, yn+1

)
� tn + yn+1, n = 0, . . . ,N − 1. (35)

From (30) and (10), it is clear that VN (YN ) can be written
as VN (ψN ) for an appropriate function VN (·). To prove the
proposition by induction, suppose that Vn+1(Yn+1) can be
expressed as Vn+1(ψn+1). Then, by defining Φ(ψn, yn+1) �
[Φπ(πn, yn+1) Φt(tn, yn+1)], it follows that

Vn(Yn)

= max
{
gn(πn, tn),E

{
Vn+1

(
Φ
(
ψn, yn+1

))
| y1, . . . , yn

}}
,

(36)

which can be evaluated provided that ψn and the conditional
p.d.f. p(yn+1 | y1, . . . , yn) are known. However, the latter
quantity is expressible in terms of πn as

p
(
yn+1 | y1, . . . , yn

)

=
M∏

m=1

p
(
y(m)
n+1 | y(m)

1 , . . . , y(m)
n

)

=
M∏

m=1

[
p
(
y(m)
n+1 | H(m)

0

)
π(m)
n + p

(
y(m)
n+1 | H(m)

1

)(
1− π(m)

n

)]
.

(37)

Thus, the value function Vn is solely dependent on tn and πn,
and can thus be written as Vn(ψn).
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Based on the preceding proposition, an alternative
backward induction formula can be written by treating {ψn}
as the state variables:

VN

(
ψN

)
= gN (πN , tN ), (38)

Vn

(
ψn

)
= max

{
gn(πn, tn),E

{
Vn+1

(
Φ
(
ψn, yn+1

))
| Yn

}}

for n = 0, 1, . . . ,N − 1.
(39)

However, since the observation space (R+)M and the state
space [0, 1]M × (R+)M are infinite spaces, the optimal
backward induction must be implemented approximately via
discretization per step [24]. That is, the state space at each
step is partitioned into a finite number of sets and a grid
point is chosen in each set. Then, the value functions are
approximated to be piecewise-constant and the backward
induction is used only for the grid points. The expectations
are evaluated via finite sums by quantizing the observations
to a finite number of quantization levels. Thus, if one uses
a given number of grid points for each channel m, it is
immediate that the complexity of the discretized algorithm
grows exponentially in the number of subchannels M. There-
fore, even with the reduced-dimension sufficient statistic, the
implementation of the optimal backward induction can be
prohibitively complex even for moderate number of OFDM
subchannels.

4. A Basis Expansion-Based
Reduced-Complexity Solution

To alleviate the “curse of dimensionality” associated with the
optimal solution, suboptimal policies that approximate the
optimal policy closely with reduced complexity are desired.
For example, the k-step look-ahead policy decides to stop or
continue based on the optimal rule truncated at k steps ahead
of the current time [16], [20, Section 6.3]. In the case of k =
1, the one-step look-ahead rule decides to stop if

gn(πn, tn) > E
{
gn+1

(
Φ
(
πn, tn, yn+1

)) | Yn
}

(40)

and to continue otherwise at each step n < N .
Here, a regression-based method that has been applied

to problems in quantitative finance [25–27] is adopted to the
novel sequential CR sensing scenario. Let us define

Vn

(
ψn

)

� E
{
Vn+1

(
Φ
(
ψn, yn+1

))
| Yn

}
, n = 1, 2, . . . ,N − 1.

(41)

The idea is to approximate Vn(ψn) by V̂n(ψn) �∑K
k=1 an,kφn,k(ψn), where φn,k(ψn), n = 1, . . . ,N − 1,

k = 1, . . . ,K , are a set of basis functions and an �
[an,1 an,2 · · · an,K ]T is the coefficient vector. To facili-
tate numerical computation, a finite set of sample trajectories
of the state vector are simulated, and the coefficients an are

obtained via least-squares regression of the resulting sample
paths of the V-values [26].

Specifically, one first generates J independent sample
paths {yn[ j], n = 1, 2, . . . ,N}, j = 1, 2, . . . , J , by sampling
from the joint p.d.f.

M∏

m=1

⎡
⎣

N∏

n=1

p
(
y(m)
n | H(m)

0

)
p(m)

0 +
N∏

n=1

p
(
y(m)
n | H(m)

1

)(
1− p(m)

0

)
⎤
⎦.

(42)

From the sample paths of the observations, the sample paths
of {ψn[ j], n = 1, 2, . . . ,N} can be computed for j =
1, 2, . . . , J by applying (33) and (35), where t0 = 0 and

π0 = [p(1)
0 · · · p(M)

0 ]T . Given the initial aN−1, the regression
coefficients an for n = N − 2, N − 3, . . . , 1 can be obtained
recursively by

an = arg min
an

×
J∑

j=1

⎛
⎝max

⎧
⎨
⎩gn+1

(
ψn+1

[
j
])

,
K∑

k=1

an+1,kφn+1,k

(
ψn+1

[
j
])
⎫
⎬
⎭

−
K∑

k=1

an,kφn,k

(
ψn

[
j
])

⎞
⎠

2

,

(43)

and the initial aN−1 is found as

aN−1

= arg min
aN−1

J∑

j=1

⎛
⎝gN

(
ψN

[
j
])−

K∑

k=1

aN−1,kφN−1,k(ψN−1[ j])

⎞
⎠

2

.

(44)

Note that instead of specifying the functions {Vn}N−1
n=0 in

(31) or {Vn}N−1
n=0 in (39), the backward induction here is

to specify the corresponding expansion coefficients. Once
the regression coefficients are available, the optimal stopping
rule at step n ∈ {1, . . . ,N − 1} is to stop if gn(ψn) > V̂n(ψn),
and to continue otherwise.

Remark 2. Since the regression coefficients are obtained in
a batch fashion using the simulated paths, the associated
computational burden may be considerable. On the other
hand, it is emphasized that the regression coefficients need
to be updated only when the channel gains {G(m)} vary
significantly. Thus, when the PU transmitters and the SU
receivers are stationary such that {G(m)} do not change
too often, the computational complexity of implementing
the batch regression-based stopping policy is affordable.
Moreover, it is also possible to pursue a recursive approach
for computing the stopping policy, which allows online
training using the actual measurement data. This approach
is beyond the scope of this paper and will be presented
in [17].

An important issue in applying the regression method is
to choose the set of basis functions {φn,k(·)}. The a fortiori
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chosen basis functions should be able to extract the salient
features of the generally nonlinear value functions so that
the projected V-function onto the lower-dimensional space
remains close to the exact one. Here, we choose the following
K = 18 basis functions:

φn,1

(
ψn

)
= 1,

φn,2

(
ψn

)
= E

{
gn+1

(
Φ
(
ψn, tn, yn+1

))
| Yn

}
,

φn,3

(
ψn

)
= 1

M

M∑

m=1

π(m)
n ,

φn,4

(
ψn

)
= 1

M

M∑

m=1

π(m)
n m̂,

φn,5

(
ψn

)
= 1

M

M∑

m=1

π(m)
n

(
3m̂2

2
− 1

2

)
,

φn,7

(
ψn

)
= 1

M

M∑

m=1

t̂(m)
n ,

φn,8

(
ψn

)
= 1

M

M∑

m=1

t̂(m)
n m̂,

φn,9

(
ψn

)
= 1

M

M∑

m=1

t̂(m)
n

(
3m̂2

2
− 1

2

)
,

φn,10

(
ψn

)
= 1

M

M∑

m=1

t̂(m)
n

(
5m̂3

2
− 3m̂

2

)
,

φn,k

(
ψn

)
= φn,2

(
ψn

)
φn,k−8

(
ψn

)
, k = 11, . . . , 18,

(45)

where n ∈ {1, 2, . . . ,N}, m̂ � 2(m − 1)/(M − 1) − 1, and
t̂(m)
n � t(m)

n /γ(m)
n .

The basis functions {φn,k, k = 3, . . . , 6} and {φn,k, k =
7, . . . , 10} are defined as the inner products of Legendre

polynomials of order 0, 1, 2, and 3 with {π(m)
n } and {t̂(m)

n },
respectively; see also [25] for additional issues on selecting
φn,k and the expansion orderK . It is noted that albeit linear in
the coefficients an and hence computationally tractable, the
basis expansion approximates well the nonlinear dependency
of Vn(·) on πn and tn through the appropriately chosen basis
functions.

5. Numerical Results

Scenarios with M = 10, N = T = 100, and Ts =
1 were tested. Rates R(m) = m for m = 1, . . . ,M were
used, and the channel gains {G(m)} were generated from
the χ2-distribution. The observation noise variance σ2 was
set to 10−6, which corresponds to, for example, a subband
bandwidth of 100 kHz, with double-sided power spectral
density of the noise N0/2 = 5 × 10−12 W/Hz. The prior

probabilities p(m)
0 = 0.7 for all m, and the false alarm rate

β = 10−2 was used. To estimate the an coefficients involved

0

2

4

6

8

10

12

14

16

18

20

Im
m

ed
ia

te
an

d
fu

tu
re

re
w

ar
ds

0 20 40 60 80 100

Number of observations n

Immediate reward gn(·)
Future reward from regression
Future reward from 1- step look- ahead

Figure 2: A sample path of reward values.

in the regression-based suboptimal policy, J = 1000 sample
paths were generated.

Figure 2 depicts a sample path of the immediate reward
gn(ψn) for n = 1, 2, . . . ,N and a sample path of the future

reward V̂n(ψn) of the regression-based method as well as
that of the one-step look-ahead policy, given by the r.h.s. of
(40), for mean SNR = −3 dB and λ = 0. In this particular
example, the one-step look-ahead policy declares “stop” at
n = 3 (the smallest n such that (40) is satisfied) with a reward
of 4.8, while the regression-based policy stops at n = 26
(the smallest n such that gn(ψn) > V̂n(ψn)) to obtain a total
rate reward of 11.7. If it were possible to make a noncausal
decision after seeing all N observations, a “genie-aided” rule
would be able to maximize the objective in (25) over the Un’s
that potentially depend on YN . Thus, the “genie-aided” rule
asserts that Un = stop for a given λ if n is the maximizer of

max
n∈{1,2,...,N}

gn
(
ψn; λ

)
. (46)

Since the feasible set of policies for the “genie-aided” case is
a superset of that of the original problem (25), the optimal
objective corresponding to the “genie-aided” rule represents
an upper-bound to the throughput that can be obtained from
the optimal sensing policy. In the particular example under
discussion, the “genie-aided” rule would be able to achieve
a reward of 14.6 by stopping at time n = 37, at which the
maximum of gn(ψn) is achieved.

Figure 3 shows the convergence of the collision proba-

bilities {P(m)
c } obtained from Monte Carlo simulations of

2000 independent runs, versus the iteration index 	. The
corresponding Lagrange multipliers as updated per (28) are
also shown, for the regression-based method at a mean SNR
of −3 dB. The different curves correspond to the M = 10

bands. A constant step size μ	 = β
−1

was used. The dual
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Figure 3: Evolution of the collision probabilities (a) and the
Lagrange multipliers (b).
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Figure 4: Average throughput versus mean SNR.

update algorithm is seen to converge and the collision
probability constraints are met in each band.

Figure 4 plots the achieved average total rates of the
proposed regression-based scheme when the mean SNR
of the PU-to-CR channels is varied. For comparison, the
average throughput of the genie-aided and the one-step look-
ahead schemes are also shown. Averaging was performed
over 2, 000 independent Monte Carlo realizations. It can be
seen that the regression-based scheme attains throughput
close to the genie-aided upper-bound over a wide range of
SNR values. Also, the one-step look-ahead scheme is clearly
suboptimal especially in the moderate-to-high SNR range.
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Figure 5: The ratio of the average throughput achieved to the genie-
aided throughput.

To compare the performance of the sequential regres-
sion-based sensing policy to that of the batch scheme,
the FSS test is designed and optimized in the following
way. For the given set of channel gain values {G(m)} and
noise variance σ2, the detection threshold to satisfy the
misdetection probability constraint at the sample size n is
given by (8), and the corresponding false alarm probability
by (7). Then, the average throughput due to the FSS test with
sample size n can be computed as

E
{
f ′n (H , tn)

} = T − nTs

T

M∑

m=1

R(m)p(m)
0

(
1− α(m)

n

)
. (47)

The average throughput of the optimized FSS test is then
defined as the value of

max
1≤n≤N ,n∈N

E
{
f ′n (H , tn)

}
, (48)

where the expectation is over H and {yn}. The sample size
n for the optimized FSS test is computed given the channel
gains before receiving any samples. The computational
complexity associated with the one-dimensional search in
(48) is rather trivial.

Figure 4 depicts the average throughput of the optimized
FSS scheme versus the mean SNR level. It can be seen that
the proposed regression-based sequential sensing scheme
outperforms the optimized FSS over all SNR levels tested.
Figure 5 plots the ratio of the average throughput of the
various schemes to that of the genie-aided scheme. It is seen
that the regression-based policy achieves significant portion
of the genie-aided throughput, but the optimized FSS test
degrades as the SNR decreases. In fact, at SNR as low as
−12 dB, even the one-step look-ahead policy outperforms
the optimized FSS test, which corroborates the value of
sequential CR sensing.
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Figure 6: The average throughput of the regression-based policy for
different numbers J of simulated paths.

To test the sensitivity of the proposed algorithm to
the number J of the simulated paths used for computing
the regression coefficients an, Figure 6 plots the average
throughput of the regression-based policy for different values
of J . It can be seen that when J is as small as 100, there is
some degradation in performance in the low SNR regime.
However, the performance improvement as J is increased
saturates very quickly when J is larger than 500.

6. Conclusions

Sequential sensing algorithms for OFDM-based wideband
CR systems have been developed. The tradeoff between the
sensing time and the chance of identifying more unoccupied
subchannels were captured in the effective rate achieved by
the CR system. Optimal stopping problems were formulated,
which maximized the effective rate given the past and current
observations. Although a sufficient statistic with dimension
lower than that of the accumulated samples was identified,
the computational complexity of the optimal solution of
the associated dynamic programming problem was still
prohibitive. A basis expansion-based reduced-complexity
solution was derived, whose performance was shown to be
close to the genie-aided upper-bounds and hence close to
that of the optimal solution.

In a companion paper [17], an extension to the cooper-
ative sequential sensing will be considered. A recursive (on-
line) version of the batch training procedure developed here
will also be presented, which further reduces the computa-
tional burden and the memory requirements associated with
the batch counterpart developed here.
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