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1. Introduction

Multiuser multiple-input multiple-output (MIMO) com-
munication systems can use limited feedback of channel
state information obtained from the receiver to perform
multiuser transmission on the downlink [1]. With limited
feedback, channel state information is quantized by choosing
a representative element from a codebook known to both
the receiver and transmitter. The transmitter uses quan-
tized channel state information to design the transmission
strategy, for example to find the zero-forcing beamforming
vectors [2, 3]. Because imperfect channel state information
is used at the transmitter, multiuser MIMO systems are
quantization error limited at high signal-to-noise ratios.
Consequently, higher resolution is required than in compa-
rable single user systems [2]. Unfortunately, achieving high-
resolution in commercial wireless systems through the use of
large codebooks is challenging due to practical requirements
like low digital storage, fast codeword search, and variable
feedback allocation.

This paper proposes a new codebook design and quan-
tization algorithm that facilitates high-resolution limited
feedback beamforming. The key idea is the use of two
codebooks: a nonlocal codebook and a local codebook, to
implement a progressive refinement beamforming quanti-
zation algorithm. The base codebook is designed to be as
uniform as possible, using for example a Grassmannian
codebook [4]. The local codebook is inspired by recent work
on clustered codebooks that are designed to take advantage
of correlation or localization in the channel [5, 6]. The
local codebook consists of a root vector and a set of vectors
that are all “close” to the root vector and yet are far apart
from each other. The base codebook is used to generate an
initial quantization while successive rotations and shrinking
operations applied to the local codebook are used to generate
progressively better refinements. The proposed algorithm
allows for high-resolution using multiple refinements; it has
low-storage requirements since only a base and single local
codebook need to be stored; it facilitates fast codeword search



since each step only requires a search over a small local
codebook; it can be used with single user and multiple user
beamforming; and it allows variable feedback rate allocation
by assigning different numbers of refinements to different
users.

The main technical contributions of this paper are in
the area of local codebook design and in its application for
progressive refinement beamforming. We propose a specific
construction of a local codebook, called a ring codebook,
which consists of a root vector and several nonroot vectors
that are equidistant from the root vector. We provide several
specific ring constructions for two and four antennas using
uniform phase quantization and mutually unbiased bases|7,
8]. We also present an approach for building nonring local
codebooks from a general codebook, like a Grassmannian
codebook.

Using the local codebook concept we propose an
algorithm for progressively refining an initial base quan-
tization through several refinements that involve rotating
and shrinking the local codebook based on the previous
quantization value at each step. We also propose several low
complexity variations of the algorithm. To avoid rotating
the local codebook, we propose to rotate the vector to be
quantized instead of the whole local codebook, but requiring
a derotation operation on the resulting reconstruction. To
further reduce complexity, we show how ring codebooks
can allow a different rescaling operation where the vector
to be quantized is scaled prior to quantization. We suggest
an approach to choosing the amount of shrinkage at each
codebook step based on numerical optimization. While
our approach can be applied to both single user and
multiuser MIMO limited feedback scenarios, we focus on
the multiuser MIMO case with zero-forcing precoding due
to its high-resolution requirement. Simulations illustrate
the performance of the proposed refinement algorithms
in uncorrelated and correlated Rayleigh fading channels in
terms of sum rate for two- and four-user systems.

Local codebooks were first proposed in [5] and later
studied in [6] in more detail. That work motivates the
utility of local codebooks in single user MIMO for time
varying channels and channels with spatial correlation.
A successive refinement algorithm for single user MISO
beamforming in time-varying channels was considered in [9]
and later extended to MISO-OFDM [10]. Local codebooks
were considered in [9, 10] but specific constructions beyond
a Lloyd-like solution were not studied. Radius selection in [9]
was done based on single user MISO performance bounds
that do not necessarily correspond to the multiuser MIMO
case. Compared with [5, 6, 9, 10] we use the local codebook
definition, scaling, and rotations operations but we also
propose several local codebook designs, describe how to use
local codebooks to implement progressive refinement with
low complexity variations, and consider multiuser MIMO
communication. Hierarchical quantization was proposed in
[11] for time varying channels and was applied to the case
of multiuser MIMO. That algorithm uses a hierarchical
structured beamforming codebook derived through a smart
partitioning operation of a DFT beamforming codebook.
The number of levels though is fixed by the base codebook
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and the entire codebook must be stored unless special
structure is exploited. Our approach allows non-DFT code-
books (which are good primarily for line-of-sight channels
and uniform linear arrays), allows a variable number of
refinement levels, and has structure that permits reduced
storage and low search complexity. We provide performance
comparisons to show that our approach performs well in a
variety of channel conditions.

From the vector quantization perspective, the proposed
progressive refinement technique falls within the class of
constrained vector quantizers [26, Chapter 12] like tree-
structured vector quantizers or residual vector quantizers
[12]. Our work is not a straightforward extension of prior
work on vector quantization, however, since our quanti-
zation is on the Grassmannan manifold [13], involving
subspace distortion measures and non-Euclidean distance
concepts. Unlike typical work on vector quantization, we
use mathematical concepts to build structured codebooks
instead of relying on the variations of the Lloyd algorithm to
build a codebook from a training set. Exploring deeper con-
nections between our work and structured vector quantizers
is an interesting topic of future research.

Organization. In Section2 we review the multiuser
MIMO beamforming system model. In Section 3, we present
the concept of progressive refinement using a base and local
codebook. Then in Section4 we define local codebooks
and local codebook operations. In Section 5 we present
several preferred codebook designs including the general
ring codebook, ring codebook from Kerdock codes, and a
procedure for deriving a local codebook from a nonlocal
codebook. Then in Section 6 we present the progressive
refinement algorithm, discussing two approaches to reduce
complexity and remarking on the selection of the radius. In
Section 7 we present several simulation results for the case of
two and four transmit antennas. Finally in Section 8 we draw
some conclusions and mention directions for future research.

Notation. Bold lowercase a is used to denote column
vectors, bold uppercase A is used to denote matrices, non-
bold letters a, A are used to denote scalar values, and
caligraphic letters # to denote sets or functions of sets. Using
this notation, |a| is the magnitude of a scalar, [|af| is the
vector 2-norm, A* is the conjugate transpose, AT is the
matrix transpose, A~! denotes the inverse of a square matrix,
A" is the Moore-Penrose pseudo inverse, [A]y; is the scalar
entry of A in kth row /th column, [A].j is the kth column
of matrix A, [a], is the kth entry of a, || is the cardinality
of set 4, and := denotes by definition. We use the notation
N (m, R) to denote a complex circularly symmetric Gaussian
random vector with mean m and covariance R. We use E to
denote expectation.

2. Multiuser Zero-Forcing Beamforming
with Limited Feedback

Consider a multiuser MIMO system with limited feedback
beamforming. Following prior work we assume that there
are U = N; active users, each with a single receive antenna
[2]. We do not consider user scheduling; it is known



EURASIP Journal on Advances in Signal Processing

that scheduling reduces the required codebook resolution
[3]; thus we expect our approach to work seamlessly with
scheduling. The received signal at the uth user for discrete-
time # is given by

yuln] = hifusu[n] +hl > fise[n] +vy(n], (1)
k#u

where y,[n] is the scalar received signal, hl is the 1 x
N; complex channel vector, f, is the unit norm transmit
beamforming vector, s,[n] is the complex transmitted sym-
bol, and v,[n] is a realization of an i.i.d. random process
with circularly symmetric complex Gaussian distribution
N (0, N,).

A zero-forcing beamforming system with limited feed-
back uses quantized channel direction information from
each user to derive the beamforming vectors {fu}ff:l. The
feedback channel is generally assumed to be error-free and
zero-delay [1]. In prior work, the channel direction is
quantized by selecting an element from a codebook ¥, in this
case an ordered set of unit norm vectors. Each user performs
quantization by solving

Q(h,, F) = arg mind( h, ,w) (2)
weF [1: 9]

where d(a,b) := /1 —|a"b|2 is the subspace distance
function for unit norm vector arguments a and b. This
is a proper distance function for points a and b on the
Grassmann manifold G(Ny, 1), which is the collection of one
dimensional subspaces in CMt. The form of quantization in
(2) minimizes the angle between the normalized channel
vector h,/||h,|| and the entries of the codebook. Under the
zero-forcing criterion, the transmit beamforming vectors f,
is computed from normalized columns of the pseudo inverse

of the effective channel F = [ @, F)"3QMh,F)T5.5Qhy, 7). ]

Implementing the quantization in (2) is challenging
because the number of entries in the codebooks F can
be quite large in multiuser systems [2]. For example, to
maintain a constant gap from the sum rate in zero-forcing,
the size of the codebook in bits log, | # | grows linearly with
the signal-to-noise ratio (SNR), measured in dB, and the
number of users assuming N; = U [2].

Commercial wireless systems use codebooks with special
structure to implement beamforming vector quantization.
Desirable properties of such codebooks for multiuser systems
include low digital storage, fast codeword search, high-
resolution, and variable feedback allocation. Low digital
storage means that either the codebook coefficients can be
stored with low precision (saving valuable on-chip RAM)
or the codebook can be generated with a simple algorithm.
Fast codeword search means that the vector quantization
operation can be implemented with lower computational
complexity using, for example, fewer mathematical opera-
tions or simplified operations like sign flips. High resolution
means that large codebook sizes are feasible, for example,
codebooks with |F| = 22 = 4096 entries may be
required to enable multiuser MIMO operation. Variable
feedback allocation means that different codebook sizes can

be allocated to different users, based on their operating
conditions. Unfortunately, previous codebook designs lack
one or more properties that are desirable for practical
implementation. This motivates the locally refined search
strategy as described in this paper.

3. Progressive Refinement of
Beamforming Vectors

To reduce the complexity of codeword search, this paper
proposes to progressively refine an initial beamformer
quantization using successively smaller local codebooks. The
idea is illustrated in Figurel. The first quantization is
performed with a nonlocal base codebook. In the next stage
quantization occurs using a local codebook, in this case a
ring codebook with the center of the previously chosen code-
word. The process repeats with progressively smaller local
codebooks. In each step, the previously chosen codeword is
used as a center for the next local refinement. We enlarge
the effective codebook size by progressively applying a local
codebook in a smaller and smaller area. Note that search
complexity is reduced: instead of implementing directly the
brute force search over & in (2), our approach employs
several searches over multiple smaller sized codebooks.

A block diagram for the proposed multiuser MIMO
system with progressive quantization and reconstruction
is illustrated in Figure 2. Unlike a conventional limited
feedback system, the transmitter and receiver have two
codebooks of unit norm vectors: a base codebook denoted F
and a local codebook denoted 4. Rather than using multiple
local codebooks each with smaller radius, we rotate and scale
a single local codebook. This reduces storage requirements
and allows us to exploit structure in the local codebook to
reduce computational complexity.

The base codebook should be as uniform as possible.
This objective is already achieved by codebooks found in
literature including Grassmannian codebooks that maximize
the minimum subspace distance between vectors [4, 14],
DFT codebooks [15, 16], Kerdock/mutually unbiased bases
codebooks [7, 8], and others. Variations of these codebooks
appear in several commercial wireless systems including
IEEE 802.16¢ wireless system [17], 3GPP LTE systems [18,
19], and 3GPP2 UMB systems [20]. In this paper we
assume that a good uniform base codebook is given. For
example for our simulations with Ny = 4, we use the 6 bit
|F| = 64 Grassmannian codebook and the 4 bit |F| =
163GPP LTE codebooks as a base codebook. Because we have
multiple levels of refinement, it is not necessary to choose a
large codebook for the initial quantization—codebooks that
facilitate low-storage and search complexity can be used at
this stage.

The choice of the local codebook and the use of local
codebooks to implement progressive beamforming vector
refinement are the main subjects of this paper. A formal
definition of a local codebook, desirable properties of local
codebooks, and the rotation and scaling operations are
provided in Section 4. Several preferred local codebooks are
identified in Section 5. Finally, the progressive refinement
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Figure 1: Illustration of progressive quantization with a local codebook, in this case a ring as described in more detail in Section 4. Points on
a sphere are used for visualization purposes. (a) Quantization with a base codebook to choose the starting point for progressive refinement.
(b) Quantization with a ring codebook centered around the previously chosen codebook point. (c) Next level of refinement with a smaller
ring, centered around the previously chosen codebook point. (d) The process repeats with a smaller ring until the desired performance is

reached.
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FiGure 2: [llustration of a multiuser MIMO system with limited feedback beamforming. Progressive quantization is employed at the receiver
while progressive reconstruction is used at the transmitter. A nonlocal base and a local codebook, both known to transmitter and receiver,

are used in the progressive quantization and reconstruction.

algorithm and low complexity variations that exploit local
codebook structure are described in Section 6.

4. Local Codebook Operations

In this section we define the concept of a local codebook,
scaling, and rotation operations.

4.1. Local Codebook Definition. A local codebook is a code-
book that consists of a root or centroid vector and several
other vectors that are all sufficiently close to a root vector
[5, 6]. Let the size of the local codebook be denoted N; >
N; + 1. To aid in the definitions of scaling and rotation, all

local codebooks are built using the special N X 1 root vector:
e :=[1,0,..., O]T. We define a local codebook as follows.

Definition 1. A local codebook with N; entries has the
following properties.

(1) It contains e;. Let the codebook be 8 = ({ei,
W05+ > WN—2 .

(2) All vectors must have a nonzero distance to the root
vector d(e;,wy) >0fork =0,1,...,N; — 2.

(3) No vector can be orthogonal to the root vector
d(e;,wy) <lfork=0,1,...,N; — 2.
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Property 1 ensures that the local codebook contains the
root vector. The structure of the root vector is used to define
scaling and rotation operations. The presence of the root
vector also ensures that the codeword used at the previous
quantization step is also present, ensuring that distortion
is non-increasing with increasing refinements. Property 2
means that no vector is parallel to the root vector. This is
to ensure no redundancy and only a single root vector in
the codebook. Property 3 ensures there are no orthogonal
vectors to the root vector. The reason is that orthogonal
vectors cannot be scaled, thus cannot be local.

The radius of the local codebook is used to define a
measure of locality.

Definition 2 (codebook radius). The radius of a local code-
book & is

max  d(si,e). (3)
sKES,SK 7€)

Yo =

Note that yo < 1 from Definition 1. Essentially the radius
is the smallest diameter of a ball centered around the root
vector that covers all the elements of the local codebook.

Associated with the radius of the local codebook, we also
need to define a notion of a covering radius.

Definition 3 (local covering radius). The covering radius of a
local codebook 4§ with radius y, is defined as

min d(s, sg). (4)

skES

c(8):= sup

s s.t.lsll=1,d(s,e1)<yo

The radius of the codebook captures the overall region
occupied by the local codebook while the covering radius
captures the minimum radius of a ball that would cover all
the Voronoi quantization regions for the codebook, defined
in terms of subspace distance, without holes in the interior
of the codebook. Note that from geometry it should be clear
that ¢;(8) < yo.

An equivalent definition of the covering radius for a
nonlocal codebook can also be defined, which we call
c(¥). The main difference between the covering radius
for a nonlocal and local codebook is that the latter is
only computed for vectors that lie inside the radius of
the codebook. The covering radius of the base codebook
provides a bound on the radius of the local codebook.
The local covering radius provides a bound on the amount
of shrinking required during each stage of the proposed
refinement algorithm.

4.2. Scaling a Local Codebook. We use the scaling function
defined in [5, 6] to scale the vectors in the local codebook
to a new radius yyy. Scaling is applied to the canonical local
codebook centered around the root e;.

Definition 4 (scaling function). For w € CV*! et w =

T
[neisl raei®2 -y, o/t ] . Define the vector scaling operation s :
CN1 o R[0,1] = CN*T as

1 —a2(1—rf)el®

ar, el
s(w,a) = ‘ . (5)

ary, e/

The scaling operation preserves the unit norm property for
€ [0,1], that is, [|s(w, &) || = 1.

Definition 5 (scaled codebook). Define the scaled codebook
function as

S(8,y) = {er,s(w1,y),...,s(Wn-2,7) }. (6)

As established in the following Lemma, the scaling function
scales the distance of the nonroot and root vectors by y. Note
that no guarantees are made about scaling of the distance
between nonroot vectors.

Lemma 1 (radius of scaled codebook). The scaling function
in Definition 5 satisfies for w € S(8,y) and w # ey,

d(ei,s(w,y)) = yd(e;,w) = yy. (7)
Proof. See [5, 6], for example. O

4.3. Rotating a Local Codebook. The codewords surround the
generating vector e;. To perform a local quantization, it will
be necessary to define a function that rotates a vector v to a
vector e; as well the rotation from e; to v. First let us define
a unitary transformation from e; to v.

Definition 6 (center rotation). Let U: CNex! — YNNi be the
matrix function that determines a unitary matrix that rotates
e; tovthus U(v)e; = v.

There are several ways to compute the rotation matrix
using either the singular value decomposition [5, 6] or the
complex Householder matrix [9] (as summarized here).

Example 1 (rotation with complex householder matrix [9]).
Let Hyyse = I — uu®/u*e; where u := e; — v denote the
complex Householder matrix [21]. The first column of Hyyse
contains the entries of v while the remaining columns are
orthogonal to v. Further note that Hoyse is a unitary matrix.
Thus if U(v) = Hoyse then v = U(v)e; as required.

Definition 7 (codebook rotation function). Let the codebook
rotation function as the function that applies the rotation
U(v) to each entry of codebook 4 as follows:

T(8,v) = {UW)e;, UW)wy, UW)wy, ..., UWV)wy,—2}. (8)

The resulting codebook is rotated such that the first entry
aligns with v. Note that because of the unitary invariance
of the subspace distance function, the rotation operation
preserves the distance properties of the local codebook.



5. Preferred Local Codebooks

In this section we propose several local codebook designs
and provide a general recipe for constructing local codebooks
from a nonlocal codebook. The proposed local codebooks
each have different features that make them attractive for
progressive refinement including low complexity, reduced
storage, or good distance properties.

5.1. Ring Codebook. The ring codebook is constructed from
a collection of vectors that are equidistant from the centroid,
conceptually illustrated in Figure 1(a). Ring codebooks have
mathematical structure that permits certain simplifications
in the progressive refinement algorithm. As such, in this
section we introduce ring codebooks and discuss some of
their mathematical properties.

Definition 8 (ring codebook). A ring codebook with radius

yo < 1 consists of Nj — 1 vectors {w, 1:1:52 that are equidistant
from the root vector e;. The nonroot entries of a ring
codebook satisty d(wy,,e;) = yp for n = 0,1,...,N; — 2.

Lemma 2. The first nonroot entry of the vectors of a ring

codebook can be chosen to be equal to \|1 — y§ without loss of
generality.

Proof. Observe that d(wy,e;) = 1 — [[w,]1|> = yo for n =
0,1,...,N; — 2 thus |[w,];| = {/1— yé for all n. Since the

subspace distance is phase invariant, that is, d(a, bel?) =
d(a,b), the first entry [w,]; can be chosen to be real without
loss of generality. O

Corollary 1. The nonroot entries of a ring codebook with
radius yo can be chosen to have the following form:

2
we = {Vl V°], 9)

YoWk
where Wy is a N; — 1 X 1 unit norm vector.

We now summarize some general principles for con-
structing a ring codebook.

5.1.1. Uniform Phase Ring for Ny = 2. With N; = 2, the
nonroot codebook vectors can have the form

.2
we=[ ! )’o:|. (10)

yoe'*

A good ring codebook has elements on the ring that are
far apart, in other words ming e ed (Wi, we) is as large as
possible. For the ring codebook with N; = 2, d?(wg, we) =
1-1]1- y(2) + ygej(ek*92)|2_

Using a little calculus, it is possible to see that the Ny — 1
roots of unity is one solution that maximizes the minimum
distance. Thus we propose to take 6, = 27¢/(N; — 1) for € =
0,1,...,N;—2.
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5.1.2. General Principles for Constructing a Ring Codebook for
N; > 2. Now let us consider the distance properties of the
codewords on the ring to find some design principles for N; >
2 that result in large ming e » ed (W, we). Using the notation
in Corollary 1, note that

2
(Wi, wp) =1 — ’w;fwe’

2
L= 1= 93+ 3w |
(11)
2 ~
= 1= (1-9)" =201 - )y} [Wi e |
il |2
X cos(Oke) — 5 ‘Wk We ‘
where O, = phase(W; We).
Using the worst case value of cos 0k, = 1 it follows that

P (wiowe) = 1— (1= 73)° = 2(1 - y3) 93 |Wirive |

~yb || (12)

= yé(l — ’Wfﬁ’g’z)

Since yy < 1, maximizing the minimum absolute correlation
maximizes the minimum of the lower bound in (12) over
the collection of unit norm vectors {wi}. This leads us
to the following somewhat surprising observation that a
Grassmannian codebook [4, 14] with vectors of length N; — 1
can be used to build a ring codebook. Note, however, that the
phase of the vectors plays a role in this case since we used the
worst case phase to find the lower bound in (12). Suppose
that a Grassmannian codebook of vectors with dimension
N, — 1 x 1 s given by {g,}2;*. We find that choosing W, =
g.e/% with ¢, = 2€/(N;—1) tends to “randomize the phase”
and give good performance.

One important question when constructing ring code-
books is how large should N; be? For example, consider
Figure 1(b), which shows a uniform phase ring with 11
points on the circle. Suppose that it had many points on the
circle. As the number of points are increased, the Voronoi
regions of the points on the circle would be narrow, like the
spokes on a bicycle wheel; adding more points to the circle
would not improve substantially quantization performance.
Essentially the question for a fixed feedback size is how
to tradeoft between the size of the local codebook and
the number of refinements. In our simulation results in
Section 7.1, we find that ring codebooks with a moderate
number of points give the best performance.

5.2. Ring Codebooks Built from the Kerdock Codebook. Ker-
dock codebooks are structured beamforming codebooks [7],
based on quaternary mutually unbiased bases [22] also
known as Kerdock codes [23]. The Kerdock limited feedback
codebook consists of the columns of multiple N; X N; unitary
matrices M = {Mk}kM=0 that satisfy the mutually unbiased
property [{[Mk].,, [Me¢].,,)| = I/JN; for all n € [1,Ny]
and m € [1,N;]. We show how to design a ring codebook
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with good distance properties from the Kerdock codebook
after presenting several facts about collections of mutually
unbiased matrices.

Summary 1 (properties of collections of mutually unbiased
bases). (1) For a given Ny, at most M + 1 bases where M <
N; can be found that satisfy the mutually unbiased property,
with equality when N; is a prime or a power of a prime [24].

(2) A collection of mutually unbiased bases can be
transformed to include the identity matrix. To see this
note that if {Mm}f\,f:o are mutually unbiased bases then
SO are {M;‘Mm}%zo for any k = 0,1,...,M. We refer to
mutually unbiased bases that contain an identity matrix as
transformed mutually unbiased bases.

(3) Let n and m denote two distinct columns of My €
M. Then d(m,n) = 1.

(4) Let n denote a column of My € M and m denote a
column of M, € M where k # £. Then d(m,n) = /1 — 1/N;.

Definition 9 (kerdock ring codebook). Suppose that
{Mm}ﬁ\,f:0 are a transformed mutually unbiased bases with
M, = I. The Kerdock ring codebook is constructed as

K = fer, M1, Mg M) M)y, |
(13)

and has at most MN; + 1 entries.

In constructing the Kerdock ring codebook, the only
column of My present is the first one, e;, because the
other columns are orthogonal to e;, which is forbidden by
Definition 1. The radius of the Kerdock ring codebook is
¥o = +/1 — 1/N; . The nonroot vectors satisfy

yo for m and n in different bases

d(m,n) = <| (14)

1 for m and n in the same basis.

We conclude with some examples.

5.2.1. Kerdock Ring with N; = 2. In this case, M = N; thus
N; = 5. Using the construction from [7], derived from [22],
we obtain the codebook

N

(15)

A further advantage of this codebook is that, to a scaling
factor, the entries are plus/minus 1 or plus/minus j, which
can be used to simplify computation.

5.2.2. Kerdock Ring with N; = 4. For the case of N; = 4, M =
N; and N; = 17. Using the construction from [7] derived
from [25] gives the codebook

2 1 1 1 1
5 1|0 j -j j —j
N;=4 2 0 ) 1 > 1 > 1 5 1 5
0] [—J j j —J
F1 7 11170717
j j —jl|-J
] bl _] bl _] bl ] bl
-1 [ 1] |-1] [
o (16)
1 1 1 1
1 1 -1 | -1
_] bl J bl ] bl _] bl
L Jd L=l L] L)
1 1 1 1
1 [-1 1 -1
11 -10-1
1l [=1] -1 1

Like the case of Ny = 2, this codebook also has plus/minus 1
or plus/minus j, which can be used to simplify computation.

5.3. General Procedure for Constructing a Local Codebook.
While ring codebooks are attractive, and have a computa-
tional advantage discussed in the sequel, it will no doubt be
of interest to construct other local codebooks either for other
values of N; or nonring codebooks. With this in mind, we
present a technique for deriving a local codebook from any
given codebook ¥ . This approach can be used to randomly
generate a local codebook or to convert a Grassmannian
codebook to a local codebook. Suppose that a codebook ¥ is
given. It is desired to construct a local codebook that satisfies
all the requirements of Definition 1. This can be performed
as follows.

(1) Rotate the codebook to the first entry f; € F so
that f; becomes the root vector e;. Of course, any

entry can be chosen to become the root. Define the
codebook

G = {U*(fo)fo, U*(fo)fy,..., U* (fo)fn,—1 }. (17)

The first entry of the resulting codebook is e;.

(2) To meet the requirements of Definition 1, remove
any vectors that are orthogonal to e; as required in
Definition 1. Essentially this amounts to removing
vectors with a zero in their first entry. This step is
only required with special hand designed codes (as
we did in constructing the Kerdock Ring code in
Definition 9).



The resulting local codebook may not have good distance
properties but this construction can be used as an aid in
the design of numerical algorithms for finding good local
codebooks.

6. Progressive Refinement Algorithms

In this section we explain the progressive refinement algo-
rithm described in Section 3 in more detail. We discuss how
symmetry in the distance function and structure in ring
codeboks can be used to reduce computation. Finally, we
comment on selection of the contraction radius.

6.1. Basic Algorithm. Consider a minimum distance quanti-
zation function Q(h, ) that produces an element of ¥ from
channel h = h,, observed by user u. We assume the quantizer
implements the function described in (2). Suppose that a
total of R refinements are desired. At each refinement level
r, let I(r) denote the scaling of the local codebook (scaling
is discussed in Section 6.3). Using this notation, the basic
progressive refinement algorithm is described as follows.

Algorithm I (progressive Refinement). (i) Perform the initial
quantization step and let f[0] = @(h, ¥).
(ii) Let ¢[1] = f[0] denote the desired centroid for the
first refinement.
(iii) Letr = 1,2,...,R denote the refinement level. For
each refinement r:
(a) form the scaled codebook & = S(8,1(r));
(b) form the rotated codebook §; = T'(4;,¢c[r]);
(c) let the rth refinement be f[r] = @(h, §;);
(d) update the centroid c[r + 1] = f[r];
(iv) The final refinement is f[R].

The basic algorithm requires storing the base and local
codebook. The complexity of the base quantization step is
due to the search over the entries of #. Each refinement
step requires N; — 1 rotation and scaling operations, not to
mention a search over N; entries to perform the quantization.
The scaling operations could be avoided by storing multiple
codebooks for each scaling, but this increases the memory
requirements.

Quantization using progressive refinement is comparable
to quantization with an effectively larger codebook. Of
course quantizing with the proposed algorithm involves a
constrained search so it is not exactly the same as quantizing
with the corresponding compound codebook. The effective
codebook size assuming R refinement steps is

Neffective = |?||5|R (18)

and the amount of feedback (assuming independent coding
of the base and refinement operations) is log, | # | +Rlog, | 8|.

Notice that the amount of feedback depends on the
number of refinements R in the algorithm. If users are
operating at different SNR levels, it may be desirable to
allocate different sized codebooks to each user. This can
be performed easily by assigning different numbers of
refinement steps to each user.
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. Sum rate at 20 dB SNR

Sum rate (b/s/Hz)
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FIGURE 3: Sum rate performance of multiuser MIMO with N; =
U = 2 at SNR = 20 dB for different ring codebooks. For comparison
the dashed lines correspond to sum rates achieved with random
vector quantization with a total codebook size corresponding to the
phase base plus refinements.

6.2. Complexity Reduction. In Algorithm 1, the entire
local codebook is rotated during each refinement.
Reduced complexity, though, is possible by recognizing
symmetry in the quantization function. First notice
that d(h/||h|,U(c[r])w) = d(U*(c[r])h/]h],w). Thus
Q(h,48;) = Q(U*(c[r])h, 4;). Consequently, the codebook
does not actually have to be rotated. It suffices to rotate the
observation to match the canonical local codebook with root
€.

Algorithm 2 (progressive refinement with rotated observa-
tion). (i) Perform the initial quantization step and let f[0] =
Q(h, 7).
(ii) Let c[0] = f[0] denote the initial centroid.
(iii) Initialize the rotation matrix V[0] = L.
(iv) Let r = 1,2,...,R denote the refinement level. For
each refinement r:
(a) form the scaled codebook 8, = S(8,1(r)).
(b) form the rotation matrix V[r] =U(V[r—1]c[r—1]).
(c) update the centroid c[r + 1] = @(V*[r]h, 4;).
(v) the final refinement is V[R]c[R].

A main observation about this algorithm is that a
rotation matrix needs to be updated based on the previous
rotated refinement. In terms of rotation computations, it
requires 2R + 1 rotations versus the R(N; — 1) rotations
required by the basic algorithm.

To further reduce complexity, it would be nice to
also avoid rescaling the codebook. The rescaling operation
though is more delicate due to nonlinear transformation of
r1 in (5). This can be simplified though for ring codebooks
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Comparison with hierarchical quantization

Sum rate (b/s/Hz)

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

—-©— ZF
—»— 3 bit Grassmannian base
—&— 3Dbit Boccardi et. al. base

--- 3bit phase refinements
—— Boccardi et. al. refinements

FIGURE 4: Sum rate performance comparison of multiuser MIMO
with N; = U = 2 in an uncorrelated Rayleigh channel. The dashed
lines correspond to increasing numbers of 3 bit phase refinements
while the solid lines with no markers correspond to increasing
numbers of refinements for the Boccardi et. al. algorithm (which
happen to overlap).

exploiting [wi]; = /1 — 3 and the use of a dual scaling
function.

Definition 10 (alternate scaling for ring codebooks). Forw e

CNe<1 let w = [wy, wT]”. Define the vector scaling operation
t: CVX xR — CNeXT ag

i . (19)

With this revised scaling algorithm we have the following
lemma.

Lemma 3. For the scaling operation in Definition 10, w,, from
a local ring codebook, and unit norm v

d(s(wy,, a),v) = d(w,, t(v,a)). (20)

Proof. follows by direct substitution using the ring structure
in Lemma 2. O

Using this novel scaling function, a new algorithm is
described with even lower complexity, specifically for ring
codebooks.

Algorithm 3 (progressive refinement with rotated and scaled
observation). (i) Perform the initial quantization step and
let £f[0] = @(h, ).

(ii) Let c[0] = £[0] denote the initial centroid.

(ii1) Initialize the rotation matrix V[0] = L.

Comparison with hierarchical quantization

Sum rate (b/s/Hz)

0 2 4 6 8 100 12 14 16 18 20
SNR (dB)

—— ZF --- 3bit phase refinements
—— Base with 3 bit phase —— Boccardi et. al. refinements
—6— Base with 3 bit Boccardi et. al.

FIGURE 5: Sum rate performance comparison of multiuser MIMO
with N, = U = 2 in a spatially correlated channel. The dashed lines
correspond to increasing numbers of 3 —Dbit phase refinements while
the solid lines with no markers correspond to increasing numbers
of refinements for the Boccardi et. al. algorithm (which happen to
overlap).

(iv) Let r = 1,2,...,R denote the refinement level. For
each refinement r:
(a) form the scaled input vector h, = t(h/[/hll, (r)).
(b) form the rotation matrix V[r] =U(V[r—1]c[r—1]).
(c) update the centroid c[r + 1] = Q(V*[r]hy, 4,).
(v) the final refinement is V[R]c[R].

Algorithm 3 exploits the ring structure of a local
codebook to remove the codebook scaling requirement in
Algorithm 2, saving R(N; — 1) scaling operations. Note that
the scaling operation does not impact the reconstruction in
any way.

Other codebook structures facilitate further complexity
reductions. If the complex Householder matrix is used to

compute the rotation of a ring codebook, then for wi #e; €
4
1 *
House (V) =1 — ———=(e1 — wi)(e1 — wi) (21)
1—+/1-9}

where e; — wy can be computed simply by recognizing that

the first coefficient is /1 — y§ — 1 so the subtraction is not
actually required and the normalization factor is a constant.

The nature of the entries of the codebook can also
be used to reduce complexity. For example the quartenary
structure of the Kerdock ring codebook can be used to
compute the inner product used in the distance function
between h; and w € W without actually doing any
multiplies. These computational advantages motivate the use
of ring codebooks in general, and specifically the preferred
codebooks that we suggested.
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Refinements
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FIGURE 6: Sum rate performance of multiuser MIMO with N; =
U = 4 at SNR = 20dB for the Grassmannian, Kerdock, and
Grassmannian/Kerdock ring codebooks.

To summarize, rotation of the local codebook is not
required, saving R(N; — 1) rotation operations. For ring code-
books, scaling of the local codebooks is also not required,
saving R(N; — 1) scaling operations or an equivalent amount
of memory, depending on how the scaling is implemented.
By avoiding the rotation and scaling operations, the structure
in the local codebook can be employed to further reduce
hardware implementation complexity.

6.3. Radius Selection. An important question associated with
the proposed progressive refinement algorithm is the choice
of the scaling radius I(r) during refinement step r. Scaling
the radius too aggressively can cause an error floor while not
scaling aggressively enough will require an excessive number
of refinements to reach a target average distortion. Even more
fundamentally, does there exist a sequence of radii {I(r)} that
reduces quantization error as R grows large? This question is
answered in the following theorem.

Proposition 1. Given a base codebook ¥ with covering radius
c(F) < 1 and a local codebook 8 with local covering radius
c1(8), there exists a sequence of radii {1(r)} that guarantees the
quantization error is decreasing.

Proof. We provide a sketch of the proof. Consider an
observation given by h. Suppose that h is quantized to fj
with the base codebook. Now define a ball Bs(x) of radius
¢ and center x € G(Nj, 1) using subspace distance. From the
definition of covering radius, a ball of radius § > ¢(¥') with
center fi covers the Voronoi region of fi for the minimum
distance quantizer. Thus the maximum error is less than
c(F). Suppose that I(1) = c(F)/yo (the yo is required
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Sum rate increase with number of refinements
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—— Kerdock base
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- -~ Refinements

FIGURE 7: Sum rate performance of multiuser MIMO with N; =
U = 4 for the N; = 64 Grassmannian base and ring codebook
compared to various base codebooks. The sum rate increases with
each refinement, with an error floor at higher SNR. The first
refinement overlaps the 8 bit Grassmannian base curve.

since the local codebook radius is by default y, but this can
be adjusted by an initial scaling). Then the local codebook
covers the Voronoi region of f;. For refinement r let 8, denote
the scaled local codebook 4, = S(4,1(r)) and let I(r + 1) =
c1(4;). Since the covering radius of the local codebook is
strictly less than the codebook radius at each r, the maximum
error is decreasing. O

It follows from Proposition 1 that with appropriate
selection of I(r) = ¢;(48;) and I(r + 1) < [(r), the maximum
quantization error will eventually go to zero since at every
step the rescaled local codebook completely covers the
Voronoi region from the previous quantization and that all
observations in this Voronoi region are inside the radius
defined by the next shrunk local codebook. Choosing the
smallest possible /(r) ensure the most aggressive refinement
and the fastest potential convergence.

Calculating the local covering radius is challenging. For
the first refinement, the minimum distance of the base
codebook dpin(F)/2 is a lower bound for the covering radius
while 1 can be taken as an upper bound. For subsequent
refinements, the minimum distance of the local codebook
Amin(8,)/2 is a lower bound for the covering radius while
yr, the radius of 4,, is an upper bound on the covering
radius, measured by the distance from the centroid to the
furthest quantization point. These bounds provide a range
over which to search for an appropriate scaling I(r) for each
r, based on I(r — 1). Because it is difficult to calculate the
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covering radius for either the base or local codebooks exactly,
we propose to use a greedy numerical method to optimize the
radius at each step.

Given {l(1),...,I(r — 1)} are already determined, we
propose to simulate numerically the sum rate performance
through 10000 simulations of an ii.d. Rayleigh fading
channel at a target high SNR (say 20dB) and choose the
best radius. Note that the ad hoc and greedy nature of
the radius computation is not a serious deficiency of the
algorithm since the sequence of radii {/(r)} are computed
offline and would be known to both the transmitter and
receiver. In fact, such ad hoc calculations are used in the
vector quantization in the design of tree-structured vector
quantizers [26]. Optimizing using the uncorrelated channel
is reasonable since the correlation is not known a priori,
though it could be used to dynamically adjust the radius (we
do not pursue this due to lack of space).

7. Simulations

In this section we present several simulation results to
illustrate the performance of the proposed local codebooks
and progressive refinement algorithm. As with related papers
on multiuser MIMO [2], we compute the sum rate under the
assumption that all users experience the same average SNR
Es/N, as

U
C(%) = > log,(1+ SINR,), (22)
0 u=1

where the SINR (signal-to-interference-plus-noise ratio) at
the uth user is given by

(E/UN,) |hIf, |
1+ (E/UN,) Y+, | I

SINR, := 2 (23)

The interference is a byproduct of quantization error: with
quantization the zero-forcing solution does not perfectly
cancel interference. The sum rate in (22) is a genie-aided
performance measure since it assumes the rate for each user
is chosen based on the measured SINR,,. This is realizable
assuming that pilots are sent over the chosen beamforming
vectors to measure SINR, as in most commercial wireless
systems. Further we assume that N; = U and that there
are 4,000 Monte Carlo simulations for each SNR point. The
numerically optimized radius values listed in Table 1 were
used for each codebook configuration.

7.1. Two Transmit Antennas and Two Users. First we study
the impact of increasing refinements on the sum rate at
20dB average SNR. We compare the phase ring codebook
in Section 5.1.1 with N; = 4,8,16 (corresponding to 2, 3,
and 4 bits), the Kerdock ring codebook in Section 5.2.1 with
N = 5, a variation where only the vectors from one basis are
chosen with N; = 3. We use the N = 8 vector Grassmannian
codebook [27] for the base codebook for the phase ring while
we use the Kerdock codebook for the base codebook with
the Kerdock ring. From Figure 3, we see that performance
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increases with increasing refinement levels. Now if the total
feedback size is fixed, what is the right distribution between
local codebook size and number of refinements? This is
difficult to answer in general. Comparing the performance of
the 4 bit local codebook for one refinement and the 2 bit local
codebook with two refinements, one refinement with a larger
codebook is better than two with a smaller codebook. We do
not expect this trend to continue with larger local codebook
sizes because there are diminishing returns. For example,
with the 3 and 4 bit codebooks have similar performance
for larger numbers of refinements. Intuitively this is because
the ring becomes more dense and the distance between
codebook vectors on the ring become much closer than
the radius of the ring. The Kerdock code with N; = 5
outperforms the 2 bit phase codebook and approaches the
3 bit codebook with more refinements. Notice also that the
Kerdock codebook needs all the vectors to work efficiently -
using only 3 (removing one basis) substantially reduces the
performance.

One relevant question is how does progressive refinement
compare with using codebooks of fixed dimension but with
the same number of feedback bits? Unfortunately, optimized
codebooks are not readily available for larger codebooks
sizes. Consequently we compare with random vector quan-
tization [28], where performance is averaged over randomly
generated codebooks. Random vector quantization has been
used in the analysis of multiuser MIMO (2], and is a lower
bound on what can be achieved with optimized codebooks.
In Figure 3, we plot the sum rate performance of random
vector quantization in dashed lines with same feedback size
as the corresponding three phase codebooks. For example,
the total feedback with the N; = 4 three phase codebook is 3
bits for the base quantization, 5 bits for the first refinement,
7 bits for the second refinement, and 9 bits for the final
refinement. We compare with random vector quantization
with the corresponding codebook dimensions in Figure 3.
In each case we see that the phase codebooks outperform
random vector quantization for total feedback constraint.

Now we compare the sum rate performance versus
SNR of the proposed progressive refinement operation with
different numbers of refinements with the hierarchical quan-
tization proposed by Boccardi et al. in [11]. For the Boccardi
algorithm, we use a codebook size of 8 to compare with the
N; = 8 uniform phase codebook. With these parameters, we
require 3 bits per refinement while the Boccardi algorithm
actually requires 4 bits (since there are 9 possibilities at
each level). In Figure 4, we see that the Boccardi algorithm
provides only marginal performance improvement as the
number of levels in the hierarchy are increased. The reason
for this is that the Boccardi algorithm uses a DFT codebook,
which has poor subspace distance properties but has a
structure that is better suited for correlated channels.

To demonstrate performance in correlated channels,
we consider transmit correlation with a single cluster for
each user, truncated Laplacian power azimuth spectrum,
uniform linear array, and half-wavelength element spacing
[29]. The first user has an angle of departure 7/4 and
angle spread 7/16, while the second user has angle of
departure of 77/2 and angle spread 7/16. The corresponding
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TaBLE 1: Numerically optimized radius values.

Codebook name

Optimized radius values

N, =2, N = 4,8, 16, uniform phase ring codebook
N; = 2, Kerdock ring codebook

N; = 2, Kerdock ring w/ one basis

N; = 4, Kerdock base, Kerdock ring

N; = 4, Grassmannian base, Kerdock ring

N; = 4, Grassmannian base, Grassmannian local

{0.35,0.18,0.09}
{0.4,0.2,0.1}
10.45,0.2,0.1}
10.5,0.25,0.2,0.15,0.1,0.075,0.05}
{0.4,0.25,0.175,0.125,0.09,0.06}
{0.4,0.25,0.175,0.125,0.09,0.06}

results are illustrated in Figure 5. Notice in this case that
the base refinement with the Boccardi algorithm performs
much better than the Grassmannian base codebook. The
reason is that the channel is highly correlated with a poorly
conditioned correlation matrix. The local codebook is able to
adapt, achieving the same performance as the base Boccardi
algorithm with just one refinement. Subsequent levels of
the Hierarchical approach from the Boccardi algorithm do
not yield substantial improvements while the progressive
approach is able to zoom in on the channel estimation, more
closely approaching the unquantized sum capacity.

7.2. Four Transmit Antennas and Four Users. Now we
consider the more challenging case of N; = U = 4 under
the same simulation assumptions as before. For this case
we consider three different scenarios. First we use the full
Kerdock codebook with N = 20 entries as the base codebook
and the Kerdock ring codebook described in Section 5.2.2
for the local codebook. Second we consider the 6 bit
Grassmannian codebook [27] for the base codebook paired
with the Kerdock ring codebook described in Section 5.2.2.
Finally we consider the 6 bit Grassmannian codebook [27]
for the base codebook paired with a local codebook derived
from the base codebook according to the procedure in
Section 5.3. Five refinements were considered in each case
with numerically optimized refinement values provided
in Table 1. The Kerdock refinements require 5 bits while
Grassmannian refinements require 6 bits each. We do not
compare with the Boccardi strategy due to the complexity of
our implementation of the Boccardi approach.

We compare the performance of the different progressive
refinement approaches at an average SNR of 20dB as a
function of increasing refinement levels in Figure 6. The
Grassmannian base codebook with Kerdock refinements
outperforms the Kerdock base codebook with Kerdock
refinements since it starts with a better initial quantization.
The Grassmannian codebook with Grassmannian codebook
refinements outperforms both cases with Kerdock codebook
refinements. In part this is due to the fact that it has a larger
size (N; = 64 versus N; = 17) and also since it is more
dense. The main penalty is that Grassmannian refinements
require higher complexity to compute, since they cannot take
advantage of the ring structure to reduce the number of
scaling operations.

Now we compare the sum rate performance versus SNR
with different fixed sized codebooks in Figure 7. We use the

Grassmannian base and local codebooks, since they give the
best performance, and compare with the 6 bit Grassmannian
codebook, the 3GPP codebook LTE 4 bit codebook [19],
an 8 bit near Grassmannian codebook, and a 12 bit near
Grassmannian codebook. We see that the 6 bit base codebook
and one 6 bit refinement gives approximately the same
performance as an 8 bit near-Grassmannian codebook (the
lines almost exactly overlap). Three refinements are required
to beat the 12 bit Grassmannian codebook, at a penalty
of an extra 12 bits. The performance difference is not
unexpected—performance penalties are common in the
implementation of structured vector quantizers [26] and
residual vector quantizers [12]. Nonetheless, the complexity
with the proposed progressive refinement algorithm is
reduced, requiring in this example 42° = 23 searches and
some additional scaling and rotation operations instead of
a search over a 2!2 dimension codebook, not to mention the
memory savings.

8. Conclusions and Future Work

In this paper we proposed a progressive refinement algorithm
that refines an initial quantization from a base codebook
using progressively smaller local codebooks to achieve high-
resolution quantization of beamforming vectors in multiuser
MIMO beamforming systems. We discussed several criteria
for designing local codebooks and presented a number of
constructions for two and four transmit antennas. Monte
Carlo simulations confirm that the proposed algorithms
provide a flexible means of increasing quantizer resolution
using multiple refinement levels.

There are several directions for future work. While we
considered the specific application to multiuser MIMO it
should be clear that the algorithm can be extended to
single user MIMO by changing the quantization function.
Throughout the paper we assumed the channel was static
but it is also of interest to use progressive algorithms in
time varying channels. Extending the MISO analysis in [9]
to our case or the hierarchical algorithm that adjusts the level
based on the channel variation in [11] seem to be promising
directions of future research. We assumed all the users had
the same average SNR, which may not be true in practice.
A leverage of our algorithm is that users can be assigned
different effective codebook sizes based on their average
SNR (smaller codebooks for lower SNRs, bigger codebooks
for higher SNRs). Studying sum feedback rate tradeoffs in
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this context seems to be promising. Unlike the hierarchical
DFT based codebook in [11], the proposed codebook with
refinements does not satisfy the constant modulus property,
which incurs a peak-to-average power ratio penalty. An
interesting topic of future research is to find local codebooks
that also have near constant modulus property. Finally,
it would be interesting to investigate structured nonring
codebooks that retain the complexity reduction properties of
ring codebooks.
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