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1. Introduction

Autonomous navigation is of growing interest in science as
well as in industry. The key problem of most existing outdoor
systems is the dependency on GPS data. Since GPS is not
always available we integrate an image-based approach into
the system. Landmarks are used to update the actual position
and orientation. Thus it is necessary to select the landmarks
carefully. This selection takes place in an offline phase before
the mission. The evaluation of these landmarks is the main
contribution of this paper. For the online phase, we compute
3D reconstructions from the scene and match them with the
selected georeferenced landmarks.

In our terms a landmark is a subset of a point cloud
consisting of highly accurate LiDAR data.

There are already some systems that rely on image-
based navigation by recognition of landmarks. At present
all landmarks are manually selected by a human supervisor.
We address the question if this is the optimal solution.
The question arises since a human does the recognition or
registration of the data due to very high level features while
the system that has to deal with the landmarks operates on
similarities on low level features such as the 3D point cloud.

The proposed automatic evaluation of landmarks in
terms of matching distance (or convergence radius) enables

us to select the density of the landmarks in a manner that
assures that even in the presence of IMU drift (which can be
predicted from the previous measurements) the landmarks
can still be recognized by the system.

The matching distance (or convergence radius), which is
used in our evaluation method, is the maximum misplace-
ment of the position of a landmark, that can be corrected.
Thus it is a measure of the robustness of the considered
landmark.

Scene reconstruction and (relative) pose estimation are
very important tasks in photogrammetry and computer
vision. Some typical solutions are given in [1-5]. While
Akbarzadeh et al. [1] and Nistér et al. [5] work with a
camera system with at least two cameras with known relative
position, they are able to determine the exact scale. In
contrast the solutions in [2—4, 6] are only defined up to
scale. In addition [6] evaluates the positioning problem in
terms of occlusion, speed, and robustness. Our work is based
on [7] where the 3D reconstrction is computed by feature
tracking [8] and triangulation [9] from known camera
positions.

The advantage of this method is that with the (approxi-
mately) given camera positions the resulting reconstruction
has an exact scale. Therefore the reconstruction and pose
estimation are only biased—by the drift of the Inertial
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FiGUrg 1: Overview of our landmark-based navigation system.
In the offline phase before the mission landmarks are evaluated
and fused with the path planning. During the online phase the
navigation data are updated by mean of the registation of the
landmarks with the SfM point cloud.

Navigation System (INS) or in absence of GPS of the IMU
alone—resulting in fewer parameters in the registration
process, which is based on Iterative Closest Point (ICP) [10]
in our approach. Reference [11] showed an application of
ICP-based registration of continuous video onto 3D point
clouds for optimizing the texture of the point cloud. A
different solution to the registration that is not adressed here
is described in [6]. Lerner et al. [12] provide a solution
to pose and motion estimation based on registration with
a Digital Terain Model (DTM). While saving the DTM
for the complete flight path is critical we focus on the
selection of “good” landmarks. For pedestrians and cars
some evaluations of landmarks had been done in terms
of permanence, uniqueness, and visibility [13-17]. In our
context uniqueness and matching distance are the most
relevant factors.

Our paper is organized as follows. The second part
of the paper describes the different methodologies used
throughout the paper. The focus is on the evaluation of
landmarks, which is described first. Path planning by means
of given landmarks, a simple approach for 3D-reconstruction
and an approach to image-based navigation update are
outlined as part of the complete system. In the following
part experiments, first the experimental setup and used
data sets are presented. Then we give the results of the
evaluation of several landmarks. Additionally results of tests
of the complete system are shown. The paper closes with a
discussion and conclusion.

2. Methodology

It is assumed that highly accurate 3D data of an area are
given. A landmark will be called optimal if the probability
to recover it in the later mission is maximal. For that purpose
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meaningful measures for evaluation of landmarks have to be
developed.

In contrast to simply defining a cost function for
evaluation of a landmark, the method to find the landmark
is used directly for evaluation. As further requirement the
rotation and translation which align the reconstructed area
with the found landmark are needed. For that purpose the
ICP method [10] is used, which is a standard approach for
registering two point clouds.

The evaluation and thus the selection of landmarks will
take place in an offline phase before the mission. In this phase
all given information are fused and the path planned. Then
during mission in the online phase, both the reconstructed
point cloud, obtained by the SfM system, and the landmarks
are registered and the final landmark position estimated.
The calculated transformation information can be used for
an image-based navigation update. The whole system is
presented in Figure 1.

2.1. Evaluation of Landmarks. A landmark given by many
highly accurate 3D points will be evaluated by means of all
available information. Considering the functionality of the
used ICP, the following design issues are important.

(i) Size and structure of the landmark.
(ii) Structure of the local area surrounding the landmark.

(iii) Uniqueness of the landmark in the wider considered
area.

These issues led to a combination of a local and a global
evaluations. The local evaluation fulfills the constraints in
taking the size and structure of the landmark as well as the
structure of the surrounding area into account. A house in a
highly cluttered area is not a very meaningful landmark since
ICP would not be able to retrieve the exact orientation of the
landmark and thus should get a bad evaluation. The third
constrain, the uniqueness of the landmark in the considered
area, needs a global view on the area. Objects similar to
the tested landmark, which could lead to confusion in the
recovery process have to be detected and therefore should
receive a bad evaluation result. For example a house next to
a similar house is not a very meaningful landmark and thus
should get a bad evaluation.

2.1.1. Local Evaluation. Let Dipdmark be a set of 3D points
describing a landmark and let Dy, be a set of 3D points
defining the given area. If there is an error in the estimated
pose of the observer, the area will be rotated and translated.
Thus the coordinate system is first rotated around the center
of the landmark with R and then shifted by t. The rotation
matrix R is constructed as follows:

cos(6,) —sin(6;) 0
R = |sin(6,) cos(6,) 0], (1)
0 0 1

where 6, is the rotation angle around the z-axis. The changes
in the 3D points p € R? of D,e, can be calculated with

D;rea = {P, | P/ =Rp+t, pe Darea}' (2)
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Input parameters: Diandmarks Dareas @x> Ay Omax
1: forall —60,,.x < 0, < O do

2:  forall-d, <y <d,do

3: forall -d, < x <d,do

4: t— (x, y,O)T

5: R — euler2rot(6,)

6: D;’lrea(_{p/|p/:RP+t)P€Dareu}
7: Rcalc» teale < ICP(D;W,, Dlandmark)
8: Et(x>y) - ”t_tcach

9: €o(x, y) — |6, — rot2euler,(Reac)|
10: end for

11:  end for

12: end for

ArcoriTHM 1: Landmark grid test method.

For the evaluation a landmark is tested for different
translations and rotations. As already mentioned in (1) we
ignore rotations and translations that effect the ground plane
(z = 0) for reducing the complexity of the simulation.
The previous experiments showed that these parameters can
be ignored because ICP always registered the ground plane
correct, because all the data expand along this plane.

In each cycle the ICP algorithm is performed with D,
and Diandmark- For later evaluation the position error €,(x, y)
and rotation error €¢(x, ¥) in a grid around the landmark
position and different angles are calculated. Algorithm 1
shows the implementation of this “Landmark Grid Test
Method.” The algorithm iterates over all angles and grid
points given by the input parameters. The used methods
euler2rot and rot2euler convert a rotation angle to a rotation
matrix and vice versa. As main function call, see step 7,
the method ICP calculates the transformation parameters
aligning D}, with Diandmark-

For each applied angle 0, € [—0Omay Omax] the error
images €; and €y are obtained. These slices contain errors
with respect to translation and rotation for each grid point.
They are converted by means of defined thresholds for
maximum allowed translation and rotation error. The results
are binary images with the entry one where the method
converged to the right result and zero otherwise. The sum of
all ones in each slice is used as a measure for the evaluation
and comparison of the landmarks. Additionally vectors to the
minimum and maximum grid points with a value one are
used in the evaluation of the landmarks, too. These vectors
are depicted in the second row of Figure 9. Appart from
the evaluation measure they define a minimal and maximal
matching distance which is required for the path planning.
While the minimal matching distance is equivalent to the
radius of convergence, the maximum matching distance is
the largest distance from which the ICP converged against
the solution.

2.1.2. Global Evaluation. In global consideration a landmark
will be evaluated by means of the whole area. For that
purpose a binary mask of the area is generated, by projecting
the 3D points to an image plane parallel to (z = 0) with a

pixel size of 10 by 10 meters. The entries of this image are
one if there is at least one 3D points projected to the pixel
otherwise zero. Next, the binary image is preprocessed for
our purposes by means of morphological operations. First
the operation closing is performed to fill holes (zeros) in the
mask of the area. Then the mask is eroded with a mask of
the landmark as structured element to avoid the border of
the area. The different steps of this approach are shown in
Figure 2.

For each entry of the mask equal one, the landmark is
moved to the corresponding position in the area but not
rotated and the ICP method is applied. The result is assigned
to that position. With this described approach local minima
with respect to the ICP’s cost function can be spotted. The
global minimum is expected to be at the center of the origin
landmark position.

Considering that the ICP error function erfi, is a sum
of least squares, the error function is equivalent to the
Log-Likelihood function describing the probability that the
data are an instance of the model. The original likelihood
is a natural measure for the instances. Assuming that ICP
converges towards the global minimum Xgobalmin (ground
truth) or the second smallest local minimum Xjocalmin the
probability for matching the model with the ground truth
is given by

e~ erfi(:p (Xglohalmin )

G =

e~ ¢*ficp Xglobatmin) 1 p—erficp (Xiocalmin) * 3)
Indeed this measure depends on the precision of the data. But
assuming that all the derived 3D points have approximately
the same deviation (approximately one) there is just a linear
scaling between the likelihood and the probability which is
approximately compensated by the denominator in (3). The
normalization leads to the codomain [0, 1).

2.2. Fusion and Path Planning. When selecting landmarks
for navigation the first problem one has to address is the
uniqueness of the landmarks. A measure for the uniqueness
is the discriminatory power of the landmarks to local minima
during the ICP/registration process. In the absence of the
absolute probabilities, randomly chosen landmarks within a
search region are first sorted by the global measure (3) which
corresponds to the discriminatory power. The best 20% of
the landmarks are treated further with the local evaluation.

The local evaluation gives a measure for the volume
of the parameter space from which ICP converges against
the ground truth. Therefore it is related to the speed of
convergence and the radius of convergence. Within the local
evaluation one can compute the smallest distance of the
surface to the reference position. This distance describes the
precision that the UAV should have during approaching the
landmark. Knowing the drift of the UAV one can define the
search region for the next landmark.

The resulting path planning algorithms work as follows.
Starting from the target landmark one measures the smallest
radius of convergence. The prediction of the system’s drift
(known from IMU specification) defines a region for the
preceding landmark. This region is sampled with manually
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FIGURE 2: Creation of the binary mask for the tests. (a) Initialized mask with black pixels if a 3D laser point is found in the defined
neighborhood. (b) Mask after the closing operation. (c) The gray area is eroded by means of a mask of the landmark as structured element
(upper left, red box). The final mask consists of the residual black pixels.

or randomly chosen landmarks. These landmarks are then
evaluated with the methods described in Sections 2.1.1 and
2.1.2 resulting in a decision for the best landmark. This
method is repeated until one reaches the starting point of the
UAV.

2.3. Structure from Motion/3D Reconstruction. In this section
the Structure from Motion (SfM) system to calculate a
3D point cloud from given IR images is described briefly.
Additionally the approach using orientation and position
information of the sensor to obtain more accuracy in the
reconstruction is described. The implementation is based on
Intel’s computer vision library OpenCV [18].

A system overview is given in Figure 3. After initializa-
tion, detected features are tracked image by image. In order
to minimize the number of mismatches between the corre-
sponding features in two consecutive images the algorithm
checks the epipolar constraint by means of the given pose
information retrieved from the INS. Triangulation of the
tracked features results in the 3D points. Each 3D point
is assessed with the aid of its covariance matrix which is
associated with the respective uncertainty. Finally a nonlinear
optimization yields the completed point cloud.

The modules are described in more detail in the following
sections.

2.3.1. Tracking Features. To estimate the motion between
two consecutive images the OpenCV version [19] of the
KLT tracker [8] is used. The algorithm tracks corners or
corner-like point features. For robust tracking a measure of
feature similarity is used. This weighted correlation function
quantifies the change of a tracked feature between the current
image and the image of initialization of the feature.

2.3.2. Retrieve Orientation and Position. The INS gives the
Kalman-filtered [20] absolute position and orientation of the
reference coordinate frame. After converting the data into
absolute rotation matrices R and position vectors C; for
the absolute orientation and position of the ith camera in
space, the projection matrices P;, needed for triangulation,
are calculated as follows:

P; = KR™[I; | -Ci], (4)

where K is the intrinsic camera matrix and P; a 3 X 4-matrix.

N2 N2
Retrieve pose
and position

Track features

Check features

Pose/position

Triangulate

Refine 3D points [—

3D point cloud

FiGUre 3: Overview of the SfM modules. Features are tracked in
consecutive images and checked for satisfaction of the epipolar
constraint. Linear Triangulation of each track of the checked
features gives the 3D information. In both steps—constraint
checking and triangulation—the retrieved orientation and position
information is used. Finally each 3D point are evaluated and
optimized.

2.3.3. Epipolar Constraint. With the aid of the epipolar con-
straint mismatches in the feature tracking can be detected.
Both the relative rotation R and the relative translation t
between two consecutive images are given. As described in
[3] the fundamental matrix can be calculated according to

F=K'"[t],RK". (5)

With the skew-symmetric matrix [t], of the vector t. To
check whether x’ is the correct image point corresponding
to the tracked point feature x of the previous image, x’ has to
lie on the epipolar line 1" defined as

I' = Fx. (6)

Normally a corresponding image point does not lie exactly
on the epipolar line, due to noise in the images and
inaccuracies in pose measures. Thus we allow for some
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distance (error) of x’ to I'. But we reject the feature if the
distance becomes too large and the track ends.

2.3.4. Triangulation. During iteration over the IR images,
tracks of detected and tracked point features are built and
the corresponding 3D point X is calculated. In [9] a good
overview of different methods for triangulation is given as
well as a description of the method used in our system.

Let xi,...,X, be the image features of the tracked 3D
point X in » images and Py,...,P, the projection matrices
of the corresponding cameras. Each measurement x; of the
track represents the reprojection of the same 3D point

x;=P;X fori=1,...,n. (7)

With the cross-product the homogeneous scale factor of (7)
is eliminated, which leads to x; X (P;X) = 0. Subsequently
there are two linearly independent equations for each image
point. These equations are linear in the components of X,
thus they can be written in the form AX = 0, where A is the
corresponding action matrix [9]. The 3D point X is the unit
singular vector corresponding to the smallest singular value
of the matrix A.

2.3.5. Nonlinear Optimization. After triangulation the repro-
jection error can be estimated as follows:

1
X
€ p;iX
€ = ( y) =d(X,Pi,x) = o | (8)
€ _piX
7T X

With the assumption of a variance of the 2D position of one
pixel, the back-propagated covariance matrix of a 3D point
is calculated

-1

o = ("5Y) 9)

In this case the covariance of 2D position ;' equals the

2D identity matrix, with the Jacobian matrix J, which is the

partial derivative matrix de/0X. The Euclidean norm of Xx

gives an overall measure of the uncertainty of the 3D point X

and enables the algorithm to reject poor triangulation results.

With nonlinear optimization, a calculated 3D point can

be corrected. Using the Gauss-Newton method [21] yields
the corrected 3D points.

2.3.6. Results. Working on an IR sequence with 470 images
and taking orientation and position information into
account the system had calculated an optimized point cloud
of about 17 500 points see Figure 4. The height of each point
is coded in its color. Although it is a sparse reconstruction,
the structure of each building is well distinguishable and
there are only a few gross errors due to the performed
optimization.

2.4. Image-Based Navigation Update in the Complete System.
In the previous sections only highly accurate 3D points are

FiGure 4: Calculated point cloud of an IR image sequence with
the magnification of one building. The overall number of points
is 17 606.

used for evaluation or selection of landmarks. That can be
considered as the preparation phase of a mission, where
LiDAR or other advanced sensors are used for measuring the
structure of the area.

The goal of the image-based navigation update is to
correct the INS drift with the help of the selected landmarks.
For this purpose the system descriped in Section 2.3 is used
to estimate a 3D point cloud on base of the INS poses
during the flight. Aligning this point cloud with the accurate
landmark models yields the transformation that is needed to
correct for the INS drift.

3. Experiments

3.1. Experimental Setup. As sensor platform a helicopter is
used. The different sensors are installed in a pivot-mounted
sensor carrier on the right side of the helicopter. The
following sensors are used.

IR camera. An AIM 640QMW is used to acquire midwave-
length (3-5pm) infrared light. The lens has a focal
length of 28 mm and a field of view of 30.7° x 23.5°.

LiDAR. The Riegl Laser Q560 is a 2D scanning device which
illuminates in azimuth and elevation with short laser
pulses. The distance is calculated based on the time of
flight of a pulse. It covers almost the same field of view
as the IR camera.

INS. The Inertial Navigation System (INS) is an Applanix
POS AV system which is specially designed for air-
borne usage. It consists of an IMU and a GPS system.
The measured orientation and position are Kalman-
filtered to smooth out errors in the GPS.

The range resolution of the LiDAR system is about 0.02 m
according to the specifications given by the manufacturer.
The absolute accuracy specifications of the Applanix system
state the following accuracies (RMS): position 4—-6 m, veloc-
ity 0.05 m/s, roll and pitch 0.03°, and true heading 0.1°.



FIGURE 6: The four manually chosen landmarks (I-IV). Each
landmark is of different size and structure.

Both the coordinate frame of the IR camera and of the
laser scanner are given with respect to the INS reference
coordinate frame. Therefore coordinate transformations
between the IR camera and the laser scanner are known.

3.2. Used Data Sets. For evaluation of the landmarks,
LiDAR data are used. The point cloud consists of highly
accurate 3D points. The results should be meaningful
regarding the later usage in a system working with 3D
points calculated by Structure from Motion algorithms
as described in Section 2.3. For that purpose the LiDAR
point cloud is randomly downsampled by factor 100 for
the evaluation. However the evaluated landmarks are only
randomly downsampled by factor 10. These landmarks will
be used in the later navigation update process which runs in
real time.

The LiDAR point cloud of the considered area is
presented in Figure 5.

For tests two different types of landmarks are used.
The main difference between these manually and randomly
chosen landmarks is the criteria applied by the selection.
The manually selected landmarks normally contain whole
buildings and other obvious structures; whereas the other
selection strategy works completely random. Figure 6 shows
the manually chosen landmarks. Each landmark is of
different size and structure. The first one is a single building,
whereas the second landmark consists of that building and
parts of neighboring buildings. In the third landmark there
are also trees and a few building parts. A long strip over
almost the whole considered area is used as fourth landmark.

Additionally to these four manually chosen landmarks,
three landmarks are selected randomly. The selection of these
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FiGure 7: The three randomly chosen landmarks (AI-AIII).

landmarks is not oriented on buildings or structure (see
Figure 7).

3.3. Evaluation of Landmarks. As described in Section 2.1.1
each landmark is locally evaluated by means of a grid search
for the size of its region of convergence. Images of the
absolute position and rotational errors for the four manually
selected landmarks are shown in Figure 8. For each landmark
(I-1V) are two rows of error images presented. The first row
consists of images of the angular errors €4. In the second row
the translation errors €; are shown. Each column represents
a different tested rotation of the landmark from —12 degree
to +12 degree. The size of the test grid is 61 x 61 meters, thus
30 meters in each direction. Because of that, the resolution
of the error images is 61 X 61. Darker means less error. Each
type of error is scaled uniformly through the four landmarks.

Only small errors are accepted as correct result, thus
thresholds for € and €; are defined as three degrees and
two meters. The obtained binary images €p and €; are simply
linked through

é\total = €9 A é\t~ (10)

Stacking these combined binary images for all different
rotations, volumes of convergence are obtained. This graphic
rendition gives a good overview of the different behavior
of the ICP method for the landmarks. The volumes are
illustrated in the first row of Figure 9. We take the sum
of all binary volume slices as local evaluation measure for
comparison. The radii of convergence are shown in the
second row of the figure. For each landmark the minimum
and maximum vectors are plotted, where the right position
and rotation could be retrieved. Additionally a red and a blue
circles symbolize the radius of convergence.

The local evaluation results of the randomly selected
landmarks are only given as short version for comparison
in Table 1. There all evaluation results are summarized.
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FIGURE 8: Results of local evaluation for the four landmarks. For each landmark (I-IV) the error images €4 and €, are shown for different
rotation. All images of the same error type are scaled in the same way. Darker means less error.

The dimensions of the bounding boxes, and the number
of laser points reveals the sizes of the landmarks. The local
evaluation (volume) and the global evaluation measures are
displayed to compare the landmarks.

3.4. Tests in the Complete System. Until now all tests were
performed only with highly accurate LiDAR data. In this
section we present the performance evaluation of the
landmarks aligned with the reconstructed point cloud from
the IR sequence (see Figure4) via ICP. For the tests the
same method as for the local evaluation is used. However,
in contrast to the evaluation we have chosen a different
grid for the search. As before 30 meters in every direction
was searched, but the distance between the grid points was
increased two meters instead of one meter because the details
of the areas do not matter. Since the drift of the IMU

in the rotation is very small due to single integration of
the measurement instead of double integration as for the
translation, we restricted the rotations to a maximum three
degrees in the tests.

Figure 10 shows the results of the test runs. The error
images €g and €; for the four landmarks are of the same
scale as in Figure 8. Additionally the radii of convergence are
shown on the right side of the figure.

4. Discussion

In the local evaluation landmarks are tested in respect of
the possible misplacement and rotation where the approach
converges to the right result. The obtained error images are
shown in Figure 8. It is noticeable that landmarks of bigger
sizes (landmarks II and IV) are more vulnerable to rotations
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FIGURE 9: (a) The evaluated volume of landmarks I to IV. Note that the volumes are scaled to match the image domain. (b) The radii of
convergence of the landmarks. The red circle and the corresponding vector are the minimum area, where the method converges to the right
result. The maximum distance is displayed by the blue circle with its maximum vector.

TaBLE 1: Overview of the evaluation results of the manually and randomly selected landmarks.

Manually Randomly
I 11 111 v Al All AlIL
Bounding Box [m] 98 x 93 204 x 147 182 x 151 636 X 67 145 x 60 145 x 115 230 x 145
Number of points 28265 80764 42135 82142 4374 35998 96823
Local evaluation (volume) 4470 4578 5679 3942 2084 6009 6134
Global evaluation equation (3) 0.5063 0.7458 0.7279 0.7410 0.5065 0.6495 0.7215

than smaller landmarks. Smallest errors, which means the
biggest dark area, is found in the fourth column, with no
rotation applied, as expected.

A better overview of the total volume of convergence is
given by Figure 9, first row. The volume of convergence is the
integration of all possible misplacements and rotations of the
tested landmark from, where the ICP algorithm converges.
Because of the different scale the size of the volumes cannot
be compared by observation. Well distinguishable are the
shapes of the volumes. Each landmark has its characteristic
shape of the volume of convergence. Nevertheless for the
navigation approach only the minimal matching distance
matters. In the second row, the radii of convergence of the
landmarks are illustrated. The maximum radius of landmark
I is better than those of the others; however it lacks in
the minimum convergence radius. That means that if the
landmark is seen from the wrong direction, just a small
misplacement can lead to a wrong result. In that manner the
other bigger landmarks are more robust.

Manually and randomly chosen landmarks are compared
with each other in Table 1. The results are summarized
quantitatively. The smaller landmarks I and AI got a bad local
and global evaluation result. The best local evaluation was
obtained by landmark A3, which is also the biggest landmark.
Although in the global evaluation landmark II got the best
result. The long strip, landmark IV, performs quite well in
the global consideration whereas it lacks of local robustness.

The other landmarks in the midfield are all comparable. As
result we conclude that size does matter but not as significant
as expected. Landmarks greater than certain sizes perform
well, and there is no evidence that smaller landmarks are not
as reliable as larger ones. The randomly selected landmarks
scored a little higher in the local evaluation but apart from
that there is no significant difference between the manually
and randomly selected landmarks. We suggest that using the
automatic selection method desrcibed in Section 2.2 with
a large number of randomly generated landmarks would
result in comparable or even better results than using manual
selected landmarks.

Focusing on the results of the tests with the StM point
cloud (see Figure 10), the following issues are significant.

(i) The error images of the local evaluation (see Figure 8)
of LIDAR data and those of the SfM test (see
Figure 10) are striking similar.

(ii) The radii of convergence and the corresponding
vectors for both the local evaluation and the results
with the calculated point cloud are also similar with
a few exceptions.

Therefore the evaluation measure of a landmark is significant
for the performance of this landmark in the mission. Thus a
landmark can be selected using a local and global evaluation.
With these measures one can predict where and how many
landmarks are needed to guarantee a successful navigation.
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FIGURre 10: Results of tests with the calculated SfM point cloud. As described in Figure 8 for each landmark the error images are given.
Additionally the radii of convergence are shown for each landmark on the right side.

5. Conclusion

For navigation update a landmark-based approach using
the ICP method is suggested. The success of the used
ICP method for registering two point clouds (a model
of the landmark and the area) is very dependent on the
size and structure of the landmark model. Using such an
approach for a navigation update therefore strongly depends
on the chosen landmarks. Thus it is important to select
the landmarks very carefully. Additionally the result of this
approach is normally not unique on a considered area,
therefore local minima may occur.

We introduced a landmark evaluation which consists of
both local and global considerations reflecting uniqueness
and matching distance. For evaluation the same method is
used as in the later registering process. Tests with real IR
images and calculated 3D points showed that this evaluation
measure is transferable to the detection performance in the

later application in the proposed system for image-based
navigation update.

This transferability is caused by using the same registra-
tion method for evaluation of the landmarks and navigation.
The concept can be transferred to any registration method
giving a measure for the matching quality.

A possibility to improve the automatic landmark selec-
tion in a given area from simple random sampling might be
the following. First the whole area has to be tested to obtain
the most significant landmark with respect to the evaluation
criteria. For that purpose the area is partitioned into small
rectangular regions and each region is tested. In the next
step regions with a high-evaluation result are merged and
evaluated again. If the evaluation result of merged regions
is better than each of the two single regions, a new landmark
consisting of both regions is created. This is repeated until
the whole area is searched and no better landmark can be
created by merging regions.
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