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Conventional voice-driven wheelchairs usually employ headset microphones that are capable of achieving sufficient recognition
accuracy, even in the presence of surrounding noise. However, such interfaces require users to wear sensors such as a headset
microphone, which can be an impediment, especially for the hand disabled. Conversely, it is also well known that the speech
recognition accuracy drastically degrades when the microphone is placed far from the user. In this paper, we develop a noise robust
speech recognition system for a voice-driven wheelchair. This system can achieve almost the same recognition accuracy as the
headset microphone without wearing sensors. We verified the effectiveness of our system in experiments in different environments,
and confirmed that our system can achieve almost the same recognition accuracy as the headset microphone without wearing
SEensors.
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1. Introduction

Although various voice-driven wheelchairs have already been
developed to enable disabled people to move independently,
conventional voice-driven wheelchairs still have some associ-
ated problems [1-4]. Conventional voice-driven wheelchairs
employ a headset microphone that can record the user’s
voice command in a higher Signal-to-Noise Ratio (SNR),
even in the presence of surrounding noise, and can achieve
sufficient speech recognition accuracy. However, users need
to put on this headset microphone each time they use
the wheelchair. In addition, when the headset microphone
moves away from the position of the mouth, users need to
be able to adjust the position of the headset microphone
by themselves. These actions are not always easy, especially
for the hand disabled, who are one of the major users
of this wheelchair. Since such users need noncontact and
nonconstraining interfaces for controlling the wheelchair, we
appraised headset microphones as impractical. Conversely,
it is also well known that the speech recognition accuracy
drastically degrades when the microphone is placed far from

the user because surrounding noises can easily interfere with
the user’s voice.

In this paper, we develop a noise robust speech recog-
nition system for a voice-driven wheelchair [5]. This system
can achieve almost the same recognition accuracy as the
headset microphone without wearing sensors. To eliminate
the need for the user to wear a microphone, we devel-
oped a microphone array system that is mounted on a
wheelchair. Our proposed microphone array system can
easily distinguish the user’s utterances from other voices
without using a speaker identification technique, and it
can achieve precise Voice Activity Detection (VAD). We
also adopt a feature compensation technique following to
the microphone array system. As a result of combining
these two methods, the feature compensation method can
utilize the reliable VAD information from the microphone
array, which is necessary for correctly compensating the
noise-corrupted speech features. And the weak point of
the microphone array, which is processing omnidirectional
noises, can be compensated for by the feature compensation
method. Consequently, our system can be applied to a variety
of noise environments.
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FIGURE 1: A wheelchair with the developed microphone array system. (a) The developed wheelchair. (b)The microphone array unit.

2. Microphone Array System

In a voice-driven wheelchair, headset microphones should
be placed as close to the wheelchair user’s mouth as
possible to overcome the background noise. However, such
microphones can be both dangerous and inconvenient
for some users, such as those with cerebral palsy, who
have involuntary movements. Therefore, the microphone
should be positioned sufficiently far enough from the
user’s mouth so that it does not touch the user’s head.
However, using this configuration often results in decreased
accuracy or functioning by speech recognition systems
which are typically sensitive to interference from back-
ground noise and other people’s voices. To overcome these
problems, we employed a microphone array system instead
of a headset microphone in the wheelchair we developed
(Figure 1(a)). Figure 1(b) shows one of the microphone array
units, which consists of two circuit boards. Each circuit
board is W130 x D10 x H5 mm in size and has four
omnidirectional silicon microphones (Knowles Acoustics,
SPMO0103ND3-C) soldered in a line at intervals of 3cm
in order to avoid spatial aliasing at frequencies up to
4 kHz. The circuit boards are placed in a diagonal direction
on black square sponges on the armrests as shown in
Figure 1. Because these black sponges are placed on the
edges of the arm rests, the user’s head never touches the
microphone array system, even during involuntary move-
ments.

2.1. Detection of User Utterances and Noises. A speech
recognition system should accept only the user’s voice and
reject voices coming from other sources. If we adopt a
speaker identification technique for this purpose, we need to
train the system every time a new user uses the wheelchair.
This is not always practical. Instead, with our microphone
array system, we can estimate the position or the direction
of arrival of the user’s voice. That is, the mouth position
of the seated user is always in a certain area, which is

near the center of the seat at a sitting height. We call this
the user utterance area. When the position of the voice
is estimated to be in the user utterance area, the speech
recognition system accepts the voice. However, when a voice
is judged to come from outside the user utterance area, the
speech recognition system rejects the command. By adopting
the microphone array system, we can easily distinguish
the user’s voice from other voices without any training
procedures.

We adopted the MUSIC [6] method for estimating
the position and direction of arrival of noises under the
assumption that the microphone array system receives a
sound source occurring in the user utterance area as a
spherical wave. The steering vectors in the user utterance area
are defined as follows:

P, = [Px, Py, Pz)", q=1,....8

Ro=[pa=po| =[x, 2] +{2y,2y0) + (2, Par)
8 = g(w’ Rq)

. . T
a(w,Po) = [gie i, gse In |,
(1)

where Py is the position of the sound source in the user
utterance area, P; - - - Pg are the positions of the micro-
phones, 7, is the propagation time, R, is the distance between
the gth microphone and the sound source, v is the sound
velocity, g(w,R,) is a distance-gain function, a(w, Py) is the
steering vector of a user utterance, e is the base of natural
logarithms, j is an imaginary number, and T represents
the transposition of a vector or matrix. We measured the
distance-gain function at several distances and fitted a model
function to the measured values. We also assumed that noise
sources outside the wheelchair are received as plane waves by
the microphone array system. The steering vectors are thus
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defined as
¢k = [cos ¢y cos Ok, cos Py sin O, sin ¢ |

T’q,k

ok = Pq - ¢k Tok = W (2)
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where ¢, is the normal line vector of the plane wave emitted
by the kth outside sound source, 6x and ¢ represent
the azimuthal and elevation angles of the kth plane wave,
respectively, 7,k and T,k are the propagation distance and
time of the kth plane wave between the gth microphone
position and the origin of the coordinate, and b(w, Ok, ¢x)
represents the steering vector of the kth plane wave.
The spatial correlation matrix is defined as

N
R@) = > ye(@,myf () 5
n=1

yr(w,n) = [Yri(w,n),..., Yeg(w,n)],

where Yr 4 (w, ) represents the FFT of the nth frame received
by the gth microphone. The eigenvalue decomposition of
R(w)is given by

R(w) = E(w)L(w)E ! (w), (4)

where E(w) denotes the eigenvector matrix that consists of
the eigenvectors of R(w) as E(w) = [e;(w),...,es(w)], and
L(w) is a diagonal matrix whose diagonal elements consist of
the eigenvalues A1 (w) = - - - = Ag(w),

L(w) = diag(A;(w), ..., As(w)). (5)

The number of sound sources is estimated from the

eigenvalues, as follows. First, we evaluate the threshold value,
defined as

Cegn

Tegn(w) = Al (1_Cegn

@ x M @), 0<Ca<1, (6)

where Cegy is a constant that is adjusted experimentally. The
number of sound sources Nsq(w) is then estimated as the
number of eigenvalues larger than the threshold value:

M(@),.. s ANy (@) = Tegn(w). (7)

The eigenvectors corresponding to these eigenvalues form
the signal subspace Ej(w) = [ej(w),...,en,,(w)]. The
remaining eigenvectors E,(w) = [en, +1(@),...,es(w)] are
the noise subspace. User utterances are detected according
to the following method. First, we search for the position
Py that absolutely maximizes the following value in the user
utterance area

1

AP = S (@ P ()

Py = arg PglL%(A(Q (P).
(8)

If the absolute maximum value @ (P,) exceeds the threshold
value Tys, we judge that the user made a sound. The

FIGURE 2: Schematic diagram of wave propagation.

arrival directions of outside sound sources are evaluated as
directions that locally maximize the following value:

1
S |67 (0,60, ¢)E,(w) |

U(6,¢) = (9)

2.2. Enhancement of the User Utterance. When a user utter-
ance and noise occur simultaneously, we need to suppress
the noise to recognize the user utterance correctly. For
this purpose, we adopted the modified minimum variance
beamforming (MVBF) technique [7]. The modified MVBF
can generate a spatial inverse filter of high performance with
a relatively small amount of data. This capability is suitable
for our wheelchair application, because the sound source
localization and the spatial inverse filter need to be updated
frequently.

In the following, we assume that the estimated position
of the user utterance is Py, the estimated number of noises
is K, and the estimated arrival directions of noises are given
by (0, ¢x),k = 1,...,K. Instead of using the estimate of
spatial correlation matrix R(w), the modified MVBF uses the
following virtual correlation matrix:

V(w) = a(w,Py) - a(w, Py)

K (10)
+ Z b(w, 9k,¢k) . bH(a), ek,¢k) + ol
k=1

The last term ol is the correlation matrix of the virtual
background noise, and the power of the virtual noise ¢ can
be arbitrarily chosen. By using this virtual correlation matrix,
the coefficient vector of the spatial inverse filter becomes

V! (w)a(w,Py)
al (w,Py)V-1(w)a(w,Py)”

(11)

w(w) =



FIGURE 3: An example of the directional characteristics.
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FIGURE 4: An example of the segregation of a user’s voice from
surrounding noise sources. (a) Waveform of mixed sounds. (b)
Waveform of segregated user voice.

The FFT of the emphasized speech signal is given by
yr(w,n) = w () - yr(w, n). (12)

The emphasized speech signal of the time domain is obtained
by calculating the inverse FFT of (12).

Figure 3 shows an example of the directional character-
istics determined by the modified MVBE. In this example,
there are two directional noise sources. The green lines
indicate the estimated arrival directions by the MUSIC-
based method mentioned above. The blue line indicates the
directional characteristics of 1.4 kHz. The gains in the noise
directions are set to almost zero. Consequently, the sur-
rounding noises are suppressed well with this beamformer.
Figure 4 is an example of the segregation of a user’s voice
from surrounding noise sources. Two loudspeakers emitting
different TV program sounds were placed facing the user,
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with one to their right and the other to their left. The user
uttered voice commands several times. Figure 4(a) shows
the waveform of the mixed sounds while Figure 4(b) shows
the waveform of the segregated user’s voice; the SNR of
the user’s voice was drastically improved. However, because
directional noises cannot be completely eliminated and some
omnidirectional noises still exist, the speech recognition
accuracy is actually not very high. We therefore apply a
feature compensation method after the microphone array
processing.

3. HMM-Based Feature Compensation

The microphone array system is very effective at suppressing
directional noise sources. However, it tends to be less effective
for omnidirectional noises. In order to make the speech
recognition more robust in a variety of noise environments,
we added hidden Markov models (HMM:s), based feature
compensation method [8], to the microphone array system.

There is an additional advantage associated with com-
bining the microphone array system and the feature com-
pensation method. The feature compensation method needs
precise voice activity detection. Generally, it is not always easy
to detect voice activity from a noise-corrupted speech signal
of a single channel. Such poor accuracy of voice activity
detection degrades the accuracy of feature compensation.
In contrast, the microphone array system can detect voice
activity even in the presence of surrounding noises. In our
system, therefore, the feature compensation method can
utilize reliable voice activity detection to guarantee feature
compensation accuracy.

The feature compensation method assumes that distor-
tion of the noisy speech feature in the cepstral domain
can be divided into stationary and nonstationary distortion
components. The temporal trajectory of the nonstation-
ary distortion component is assumed to be zero almost
everywhere, although it temporarily changes. The stationary
distortion component is absorbed by adding the estimated
stationary distortion component to the expectation value
of each Gaussian distribution in the output probability
density functions (pdfs) of HMMs of the clean speech. The
degradation of feature compensation accuracy caused by
the non-stationary distortion component is compensated
by evaluating each noise-adapted Gaussian distribution’s
posterior probability multiplied by the forward path prob-
ability.

The noisy speech feature x¢ in the cepstral domain can
be represented by x¢ = sc + g(sc,n¢), where sc is the clean
speech feature in the cepstral domain, nc is the noise feature,
and g(sc, ne) is the distortion component given by

g(sc,nc) = C-log[1+exp{C ! - (n¢c —sc)}], (13)

where log(a) and exp(a) calculate the logarithm and expo-
nential of each element in a vector a, and C and C!denote
the DCT matrix and its inverse transformation matrix,
respectively.
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The feature compensation process consists of the follow-
ing six steps.

(1) Generate the copied Gaussian distributions of clean
speech in an output pdf of each state.

The output pdf of the jth state is represented by

M
bj(sc) = > WimN (Scstjm> Vim)- (14)
m=1

(2) Evaluate the stationary distortion component d;,, for
each copied Gaussian distribution.

Distortion component d;,, is evaluated using the expec-
tation value of each Gaussian distribution and the noise-only
frames prior to each utterance. This can be represented as

Nn
b e Sl ol -]
(15)

where nc¢(n) represents the noise feature extracted from
the noise-only frame, and N,, is the number of noise-only
frames.

(3) Adapt each copied Gaussian distribution of clean
speech to the noisy speech.

This adaptation can be achieved by adding each evaluated
stationary distortion component to the expectation value of
each copied Gaussian distribution. In this noise adaptation
process, we take into account only the expectation value of
each Gaussian distribution. The diagonal covariance matrix
in the noise-adapted Gaussian distribution is assumed to be
the same as the covariance matrix of the clean speech. The
noise-adapted output pdf is given by

M
bi(x) = > Wi N (% ftjon + djons Vi) (16)
m=1

(4) Evaluate the importance of each noise-adapted Gaus-
sian distribution.

The importance of each noise-adapted Gaussian distri-
bution is evaluated by the posterior probability multiplied
by the normalized forward path probability:

o (j,n— l)wij<x;yjm + djm,ij>

ZseAllStates 224:1 o (S) n-—= 1)quN (X§ Usq + dsq) Vsq)
(17)

P

where o' (j, n) denotes the normalized forward path proba-
bility, given by

o (j,n—1) —exp{a(j’n_l)}. (18)

n

The forward path probability a(j,n) is obtained from the
Viterbi decoding process.

(5) Estimate the average stationary distortion compo-
nent.

The average stationary distortion component is esti-
mated by averaging the stationary distortion components
dj, weighted by the importance of each noise-adapted
Gaussian distribution:

- M
d= > Pimdjm. (19)

jeAllStates m=1

(6) Compensate the noise-corrupted speech feature.

The compensated speech feature § is obtained by sub-
tracting the average stationary distortion component from
the noise-corrupted speech feature:

§=x-d (20)

The original Gaussian distributions of clean speech are
used to evaluate the output probability of the compensated
speech feature b;(s) in the Viterbi decoding process.

4. System Overview

Our system consists of one CPU board of a Pentium-M
2.0 GHz, 8-channel A/D converter, and a DC-DC converter.
These devices are placed in an aluminum case of size W30 x
H7 x D18 cm, which can be hidden under the seat of the
wheelchair. The system devices that can be easily seen are
only the microphone array system and the LCD showing the
recognition results.

The system embedded in the wheelchair must execute
the following five functions: (1) detection of user utter-
ance and noises, (2) enhancement of user utterance, (3)
speech feature compensation, (4) speech recognition, and
(5) wheelchair control. We developed software that can
execute these functions in real time on the CPU board.
The sampling rate of the A/D converter is set to 8 kHz due
to the limitation of the processing capacity of the CPU
board.

A motor controller is connected to the CPU board by an
RS232C serial cable. The wheelchair shown in Figure 1 has
two motors to drive the left and right wheels independently.
The CPU board can dictate the rotation speeds of the motors
independently by the controller. So, not only the speed of the
wheelchair but also the radius of the wheelchair rotation can
be easily controlled from the CPU board.

5. Experiments

The proposed system consists of two noise robust methods:
the microphone array and the feature compensation. We first
evaluate the relative gains of each method and then compare
the performance of the proposed method with the headset
microphone.
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TABLE 1: Recognition accuracy of the single microphone.
Single Microphones
A con- In front
Near a . Under ofan  Abuilding A . Along A con- In front In front
. struction | . . Wind . Aroad . .
Avg.  kinder- . train amuse- under con- public . a big . struction ofa of aticket Avg.
Site near . . noise crossing . shop .
garten . rails  ment  struction office street site station gate
a train
arcade
Clean 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  100.00 100.00 100.00 100.00 100.00
SNR20 90.83 98.61 97.08 90.00  97.78 91.67 54.03 99.72 6833  94.17 94.44 97.78  95.00 89.96
SNRI15 73.47  92.08 82.64 58.19 91.11 62.22 34.03 98.47 45.69  73.89 69.58 84.72  69.72 71.99
SNR10 50.69 58.61 52.50 24.72  74.17 34.72  25.69 88.33 27.08  47.22 35.00 49.72  35.42 46.45
SNR5 32.78 33.89 33.89 20.00  49.58 27.64 21.53 59.31 21.53 29.72 21.81 23.75  22.22 30.59
SNRO 25.00 23.47 27.36. 20.00  31.11 20.42 21.53 36.81 20.14  21.81 19.86 20.28  20.42 23.71
SNR-5 21.67  20.00 20.28 20.00  23.19 19.86 22.78 29.86 20.00 20.14 19.86 20.00  20.00 21.36
Avg. 49.07 b54.44 52.29 38.82 61.16 42.76 29.93 68.75 33.80 47.83 43.43 49.38 43.80 47.34
TaBLE 2: Recognition accuracy of the single microphone followed by feature compensation.
Single Microphone + Feature Compensation
A con- In front
Near a . Under ofan  Abuilding A . Along A con- In front In front
. struction | . . Wind . Aroad . .
Avg.  kinder- . train  amuse- under con- public . a big . struction ofa of a ticket Avg.
Site near . . noise crossing . shop .
garten . rails ment struction office street site station gate
a train
arcade
Clean 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  100.00 100.00 100.00 100.00 100.00
SNR20 97.64 99.72 99.58 99.03  99.72 99.72  97.22 100 99.03 99.58 99.72  99.86  99.58 99.26
SNR15 91.67 99.03 99.31 97.78  98.61 99.72  94.44 100 96.53 99.03 99.17 99.72  98.89 97.99
SNR10 72.78 97.5 98.06 90.28  95.56 97.36  88.19 99.86 88.06  95.56 96.94 98.89  97.22 93.56
SNR5 52.78 92,5 92.78 57.08 91.53 89.17 80.14 98.75 68.19  89.58 91.81 9556 91.53 83.95
SNRO 40.42 75.42 73.33  25.83  77.92 64.58 69.31 9431 43.89 68.61 67.78 80.28  67.92 65.35
SNR-5 32.36 45.14 49.44 2236  53.75 37.36  53.61 85.69 28.47  44.72 36.25 43.61 38.75 43.96
Avg. 64.61 84.89 85.42 65.39 86.18 81.32 80.49 96.44 70.70 82.85 81.95 86.32 82.32 80.68

5.1. Recognition Accuracy Evaluations. To assess the noise
robustness and relative gains of each method, we evaluated
the recognition accuracies of the following methods:

(i) Method (A): Single microphone,

(ii) Method (B): Single microphone followed by feature
compensation,

(iii) Method (C): Microphone array,

(iv) Method (D): Microphone array followed by feature
compensation (proposed method).

In the methods using the single microphone, the user’s
utterances were recorded by the microphone closest to
the user on the right-hand microphone array unit. Each
voice command was manually segmented to include silence
durations and then recognized. The recognition accuracies
of the methods using the microphone array were evaluated
without any segmentation information except the voice
activity detection by the method described in Section 2.1.

We recorded clean speech signals and environmental
noises separately and then mixed the digital signals of these
together at six different SNR levels (20 dB, 15 dB, 10 dB, 5 dB,

0dB, —5dB) to generate noise-corrupted speech signals. We
define the SNR of the multichannel signals of the micro-
phone array as follows. Let S%“(n) and N%{A‘(n) represent
a clean speech signal and environmental noise, respectively,
in the time domain recorded by the ith microphone. The
average powers of the clean speech signals and environmental
noise signals are given by

1 &2 2
T MA
Sma = SN izl,; {ST,i (n)} >
21)
_ 1 & 2
NMA = @ i:“gl {NT,i (71)} .
The SNR of the multichannel signals is given by
_ Sma
SNRMA[dB] = IOIOglo = . (22)
Nma

To make it possible to compare the results of a single micro-
phone with the results of the microphone array, the SNRs of
the noise-corrupted speech signals in the single microphone
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TABLE 3: Recognition accuracy of the microphone array.
Microphone Array
A con- In front
Near a . Under ofan  Abuilding A . Along A con- In front In front
. struction | . . Wind . Aroad . A .
Avg.  kinder- . train amuse- under con- public . a big . struction ofa of aticket Avg.
Site near . . noise crossing . shop .
garten . rails  ment  struction office street site station gate
a train
arcade
Clean 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  100.00 100.00 100.00 100.00 100.00
SNR20 99.72 100.00 99.58 96.94  99.86 99.31 89.03 100.00 96.94  99.44 99.58 99.86  99.86 98.47
SNR15 9597  99.58 96.67 81.81  99.31 95.69 7194 100.00 85.14 97.78 97.22 9847  98.19 93.67
SNR10 85.28 93.33 84.86 39.86  96.25 79.17 50.00 99.72 59.03 87.64 81.67 92.08  85.56 79.57
SNR5 62.50 63.06 56.25 22.08 87.92 44.17 38.75 95.00 37.64 58.61 48.06 61.94 5097 55.92
SNRO 42.92 30.28 36.39 20.00 62.08 2931 34.44 72.08 24.17  34.03 2542 28.33  28.06 35.96
SNR-5 26.81  20.69 25.14 20.00  31.39 27.50 32.22 40.97 20.97 25.42 20.42  20.00 21.53 25.62
Avg. 68.87 67.82 66.48 46.78 79.47 62.53 52.73 84.63 53.98 67.15 62.06 66.78 64.03 64.87
TaBLE 4: Recognition accuracy of the microphone array followed by feature compensation.
Microphone Array + Feature Compensation
A con- In front
Near a . Under ofan  Abuilding A . Along A con- In front In front
. struction | . . Wind . Aroad . A .
kinder- . train  amuse- under con- public . a big . struction ofa of aticket Avg.
Site near . . noise crossing . shop .
garten . rails ment  struction office street site station gate
a train
arcade
Clean 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  100.00 100.00 100.00 100.00 100.00
SNR20 99.03 100.00  99.72 98.61 100.00 100.00 99.31 100.00 98.47 99.58 99.86 100.00 99.86 99.57
SNR15 98.06 99.58 99.17 96.39  99.44 99.17 97.64 100.00 92.22 98.47 98.75 99.44  98.19 98.19
SNR10 90.56 98.61 97.08 89.03  96.67 96.39 9597 99.86 85.00  96.25 94.58 98.47  96.53 95.00
SNR5 78.89 95.14 86.25 78.47  88.19 85.28 90.28 98.61 71.94 83.89 81.53 93.61 89.17 86.25
SNRO 67.08 83.06 65.00 57.22 68.33 62.78 82.36 97.36 55.69 60.69 49.86 78.06 68.47 68.92
SNR-5 54.17 52.78 42.08 41.67 40.69 34.44 67.78 88.19 40.28 37.92 16.53 4597  39.03 46.27
Avg.  81.30  88.20 81.55 7690  82.22 79.68 88.89 97.34 7393  79.47 73.52 8593  81.88 82.37

experiments were evaluated using all the channel signals of
the microphone array in the same manner shown in (21) and
(22). The clean speech signals were recorded with the user,
sitting in the wheelchair and uttering a command in a silent
room. Because the purpose of the experiments was to assess
the noise robustness, the users (29 females and 19 males)
were able-bodied. The users uttered 13 commands in the user
utterance area while looking forward and to the right and
left. In this experiment, we used five Japanese commands:
mae (forward), migi (right), hidari (left), ushiro (backward)
and teishi (stop). The environmental noises were recorded by
actually moving the wheelchair in 13 locations:

(1) a construction site near a train,
(2) a construction site only,

(3) a building under construction,
(4) under train rails,

(5) in front of an amusement arcade,
(6) near a kindergarten,

(7) a public office,

(8) in wind,

(9) along a big street,
(10) a road crossing,
(11) a store,
(12) in front of a train station,

(13) in front of a ticket gate.

The sound source localization and beamforming
of the microphone array system were executed every
125 milliseconds. Triphone acoustic models were trained
from clean speech data obtained by downsampling the JNAS
[9] data to 8 kHz.

Figure 5 shows the average recognition accuracies over all
the environmental noises for all the methods. Table 1 shows
the evaluated recognition accuracy of the single microphone
(Method A). In the table, the average recognition accuracies
were calculated using the accuracies ranging from the
20dB to —5dB. Table2 shows the results of the single
microphone followed by feature compensation (Method
B). The recognition accuracies are drastically improved in
comparison with those of the single microphone. Table 3
shows the results of the microphone array (Method C). If
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TABLE 5: Recognition accuracy of a headset microphone.

Headset Microphone
A con- in front
near a . under ofan  abuilding a . along a con- in fron in front
. struction . . wind . © aroad . .
kinder- . train amuse- under con- public . a big . struction ashop ofa of aticket Avg.
Site near . . noise crossing . .
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FIGURE 5: Average accuracies of all the methods.

we compare the results of Method B and Method C, we
can say that feature compensation is more effective on these
environmental noises than is the microphone array. Table 4
shows the results of the proposed method (Method D). The
improvements in the recognition accuracies of the Method D
seem to be small in comparison with those of Method B. This
is because the environmental noises used in these evaluations
tended to be omnidirectional. So, the feature compensation
was rather effective than the microphone array. Furthermore,
in the evaluations of Method B, each voice command was
manually segmented. However, Method D detected each
voice command based only on the VAD given by the signal
processing of the microphone array. These results imply
that the accuracy of VAD based on the microphone array
is almost the same as that in manual segmentation. This
is a very important benefit of the microphone array in
addition to the sound source localization used to distinguish
the user’s voice from other voices. The microphone array is

thus very important for achieving the noise robustness in
the proposed method even if the environmental noises are
omnidirectional.

5.2. Comparison with Headset Microphone. In this section,
we evaluate the recognition accuracy of the conventional
headset microphone and compare it with the accuracy of the
proposed system.

The clean speech signals of 25 females and 25 males
were recorded with the headset microphone (Audio-technica
AT810X). The users uttered the same five commands of
the previous experiments. We used the same environmental
noises of the previous experiments to generate noise-
corrupted speech signals by mixing the clean speech signal
and the environmental noises at six different SNR levels.
Table 5 shows the evaluated recognition accuracy of the
headset microphone.

The SNRs of the noise-corrupted speech signals of
the headset microphone are evaluated by the following
equations:

1
N

M=

Susm = {S¥SM(H)}2a

l
—

n

Noey = = i {ism }2 (23)
HSM = 3y T (),

n=

SNRysy[dB] = 1010g10< ;ZZJIV:I )

To compare Table5 with Table4, we need to convert
the SNRs evaluated by (23) to the SNR defined by (21)
and (22), because these SNRs are defined under different
conditions. As defined in (2), we assume that the noise source
outside the wheelchair is received at each microphone with
uniform gains. In addition to this assumption, we assume
the headset microphone is omnidirectional. Based on these
assumptions, we can also say that Ny4 ~ Npsyr. Therefore,
the headset microphone was placed closer to the user than
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FIGURE 6: The Performance of the proposed method (Method D)
with the headset microphone and the single microphone (Method
A) in the microphone array.

the microphone array. We assume the simple relation Sy4 =
Susm/a, (a > 1) between speech signal powers. From these
assumptions, we obtain the relation between two SNRs, as
follows:

SNRMA[dB] ~ SNRHSM[dB] — lOlOglo((X). (24)

We actually measured o and obtained the value 10log,,(«) =
10.31[dB].

In Figure 6, the average recognition accuracies over all
the environmental noises of proposed method (Method D)
are compared with those of the headset microphone. The
recognition results of the headset microphone in Table 5
were plotted by shifting the SNR according to (24). The
recognition results of the single microphone (Method A)
in the microphone array are also plotted. The distance
between the headset microphone and the single microphone
is approximately 45 cm. The recognition accuracies of the
single microphone were drastically degraded. Two micro-
phone array units were also placed at approximately 45 cm
from the headset microphone. However, the microphone
array was able to achieve almost the same recognition
accuracies as those of the headset microphone.

6. Conclusions

We developed a noise robust speech recognition system for a
voice-driven wheelchair that combines the microphone array
with the feature compensation method. The developed noise
robust speech recognition system has the following advan-
tages: (1) the microphone array system can distinguish the
user’s utterances from other voices without using a speaker
identification technique, (2) the accuracy of VAD based on
the microphone array is almost the same as that in manual
segmentation, (3) the feature compensation method can
utilize the reliable information of VAD from the microphone
array, and (4) the weak point of the microphone array, which

is processing omnidirectional noises, can be compensated
by the feature compensation method. Consequently, our
system can be applied to various noise environments. We
verified the effectiveness of our system in experiments in
different environments and confirmed that our system can
achieve almost the same recognition accuracy as does the
headset microphone without wearing sensors. As a result, we
were able to develop a voice-driven wheelchair that does not
require the user to wear a headset microphone.
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