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It is well known that channel state information at the transmitter (CSIT) leads to higher throughput in fading channels. We
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a framework for the joint design and analysis of feedback (FB) and feed-forward (FF) information in fading channels. We then
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just one bit of feed-forward information of TBIR.
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1. Introduction

It is well known that the Shannon capacity of a discrete mem-
oryless channel (DMC) does not increase with feedback from
the receiver [1]. However, the capacity of fading channels
increases with channel knowledge at the transmitter, and the
capacity gain has been quantified for both single-antenna
[2] and multiple-antenna [3] systems. Capacity with channel
state information (CSI) at both transmitter and receiver has
been studied [4], and the effect of errors on the channel
knowledge has been quantified [5, 6]. Also, see [7] for a
comprehensive review of communication through fading
channels. The importance of incorporating traffic conditions
in physical layer design has been well recognized [8–10], and
cross-layer optimization has been an area of active recent
research [11–16]. The use of queue information to optimize
physical layer design has been investigated in many settings
[17–20].

In this paper, we consider delay-bounded transmission of
variable bitrate (VBR) traffic through a block-fading chan-
nel. We propose to use transmit buffer information at the
receiver (TBIR), and discuss an exemplary implementation
system. The novelty in the proposed system is twofold. (i)
A new transmission system architecture with a feed-forward
channel that transmits queue state information from the

transmitter to the receiver is introduced, and (ii) the CSI that
is sent to the transmitter via a feedback channel is chosen
adaptively based on instantaneous or statistical knowledge of
TBIR (the terms buffer and queue are used interchangeably
in this paper). The design objective is to minimize overall
packet loss for a given buffer size under a long-term power
constraint.

The main contributions of this paper may be succinctly
summarized as follows.

(i) We provide a framework for the joint design and
analysis of feedback (FB) and feed-forward (FF)
information over a block-fading channel. We con-
sider two specific forms of TBIR, namely, statistical
and instantaneous. The statistical or instantaneous
FF information is used to adapt the mechanism that
generates the FB information. In particular, a scalar
quantizer of the channel fading gain is considered to
generate the FB information, and this quantizer is
computed based on the available TBIR.

(ii) The performance gain resulting from using the statis-
tical FF information to adapt the channel quantizer
at the receiver and generate the CSI is quantified.
Further, the additional gain of having instantaneous
TBIR over statistical TBIR is shown and quantified in
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some simple cases. It turns out that having just one
additional bit of FF information can provide about
1 dB saving in power.

(iii) The performance gain of using FF information is also
quantified using a simple practical adaptive QAM-
based multirate transmission scheme.

The use of FF information does not provide any gain
in the two extreme cases of full CSIT and no CSIT. When
complete CSIT is available, the number of packets to transmit
and the transmission power are determined jointly on
the channel and buffer conditions. Also, when no CSIT
is available, the transmission rate and power cannot be
adapted based on channel conditions, and the use of FF
information does not provide any performance benefits.
However, for finite (nonzero) FB rates, FF information can
lead to reduction in average packet loss. At the receiver,
the channel state information (typically, fading amplitude)
is measured and quantized to a finite number of bits. If
transmit buffer information is not available at the receiver,
the quantization thresholds are fixed. However, when buffer
information is available at the receiver, the quantization
thresholds are adapted based on the TBIR available.

The TBIR is applicable in any point-to-point communi-
cation system. In this paper, we consider only a frequency
division duplex (FDD) system (in time division duplex
(TDD) systems, the channel information can be obtained
from data received in prior time slots without requiring
explicit FB from the receiver to the transmitter, and such
systems are not considered here). The proposed design can be
implemented very easily in an 802.11-based WLAN system,
where a handshaking mechanism (exchanging RTS and CTS
packets) is used prior to actual data transmission. There
are also schemes which transmit quantized buffer occupancy
information to the receiver in multiuser scenarios; the goal
in such situations is to provide fairness or throughput
guarantees. In this paper, buffer information is sent to the
receiver, even in single-user scenarios, to reduce packet
error rate by making more efficient use of the channel
state information at the receiver. In a multiuser scenario,
information on the various users’ transmit buffers can be
used both for outage reduction (at the physical layer) and to
implement fairness (at MAC layer). For uplink transmissions
in cellular systems, even though FF information has to be
transmitted from the mobile handset, which could have
limited resources, the proposed method can be used to
additionally ensure fairness among flows. For downlink
transmission, since feedback from receiver to transmitter is
limited, feed-forward information can be used to reduce
packet loss.

For simplicity of analysis, a memoryless source with an
i.i.d. packet arrival distribution is considered. The analysis
directly extends to Markovian source arrivals. Although
more sophisticated source models exist, it turns out that
the analysis is nontrivial even with these simplified models.
Hence, we restrict ourselves to such simple sources in this
paper. To demonstrate the applicability of the results, a
block-fading channel with Rayleigh fading statistics is used.
However, the proposed methods are applicable in general for

any block-fading channel, with other fading statistics. We
consider a system with finite buffer length, which also results
in an upper bound on the average packet delays. Further,
with finite buffer length, there is a finite probability of buffer
overflow. The overall design objective is to minimize the total
packet loss rate resulting from buffer overflows and errors in
the transmission over the channel.

The remainder of this paper is organized as follows. In
Section 2, we present the basic system under consideration.
Sections 3, 4, and 5 focus, respectively, on packet loss rate
analysis and optimization with no TBIR, statistical TBIR,
and instantaneous TBIR. Numerical results are presented in
Section 6. Finally, we conclude in Section 7.

2. SystemModel and Problem
Formulation

Consider a time-slotted system in which an fixed-size packets
arrive at the transmitter during time slot n and are stored in
a buffer of L-size packets before transmission. Let qn and un
denote, respectively, the number of packets in the buffer and
the number of packets transmitted during time slot n. The
buffer update is given by qn+1 = min(qn + an − un,L). For
simplicity of exposition, we consider a memoryless source
arrival model with the distribution of packet arrivals given
by Pr(an = l) = cl, l = 0, . . . ,M, where M is the maximum
number of packet arrivals in one time slot. Clearly, for a
valid distribution, cl ≥ 0 and

∑M
l=0 cl = 1. The analysis

and results in this paper can be easily extended to other
traffic models. Using Little’s law [21], the finite buffer length
imposes an upper bound on the average delay experienced
by the traffic. Further, if a first-come first-serve (FCFS)
ordering of the packets in the buffer is assumed, along with a
work-conserving scheduler, then the finite-length buffer also
implies an upper bound on the absolute delay experienced by
the packets.

We consider transmission over a block-fading channel,
and assume that the length of one time slot equals Tc, the
number of symbols in the coherence interval of the channel.
The transmit signal xn depends on the number of packets
transmitted in each time slot and the coding and modulation
schemes. The complex received signal yn is given by yn =
hnxn + zn, where zn is the additive noise which is modeled
as being circularly symmetric Gaussian with zero mean and
covariance σ2ITc , and hn is the channel gain in time slot
n. The real and imaginary parts of hn are assumed to be
independent zero-mean Gaussian, each with variance 1/2.
The transmit signal xn, the received signal yn, and the noise
at the receiver zn are Tc-dimensional complex vectors, where
Tc is assumed to be a positive integer.

The average packet loss (Π) depends on the packet loss
due to buffer overflows Πb and the frame error rate of the
actual coding scheme. In this paper, we use the probability
of outage (2) to bound the frame error rate. In [22], it is
shown that for large Tc, the conditional mutual information
I(yn, xn|hn), between xn and yn, is a good indicator of the
performance of practical codes. This mutual information is
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given by

I
(
yn; xn | hn

) = Tc log

(

1 +
Pn
∣
∣hn

∣
∣2

σ2

)

= Tc log
(
1 + Pnγn

)
,

(1)

where γn = |hn|2/σ2 is the normalized instantaneous channel
gain and Pn is the transmit power during time slot n. Without
loss of generality, we let σ2 = 1 and hence γn has an
exponential distribution. Thus, its density function is given
by fγ(x) = e−x, 0 < x, where for simplicity the average value
of the exponential distribution is assumed to be unity. The
probability of outage in the channel Γ during time slot n
(which is a good indicator of the frame error rate in practical
systems [22]) is given by

Γ
(
un, γn

) = Pr
{
I
(
yn; xn

∣
∣γn
)
< Run

}
, (2)

where un is the number of packets of size R transmitted in
time slot n. Note that in (2) all un packets are encoded jointly
and transmitted in time slot n. When an outage occurs,
un packets are lost. Hence, the average packet loss due to
outages in the channel equals Eu,γ[uΓ(u, γ)]. By using the
information theoretically defined outage probability Γ, we
abstract away the actual coding scheme used.

In time slot n, a buffer overflow occurs if qn +an−un > L.
Equivalently, buffer overflow occurs if an > L − qn + un.
The probability of buffer overflow is given by

∑
(m,l)Pr(qn =

m, un = l)
∑M

x=L−m+l+1cx. However, for given qn and un,
different values of an result in a different amount of lost
packets. Thus, the average packet loss due to buffer overflows
is given by

Πb =
∑

(m,l)

Pr
(
qn = m, un = l

) M∑

x=L−m+l+1

(x − L + m− l)cx.

(3)

In this sequel, we assume that packets that are lost (due to
buffer overflows or loss in the channel) are retransmitted
as necessary by higher-layer protocols like TCP. Real-time
video/audio traffic can tolerate certain amount of lost packets
without serious degradation in performance, and in such
cases lost packets may not be retransmitted.

The average packet loss (Π) is given by

Π =
L∑

m=1

∫

γ
mPr

(
un = m|γ)Pr(γ)Γ(m, γ)dγ

+
L∑

m=0

m∑

l=0

Pr
(
qn = m

)
Pr
(
un = l|qn = m

)

×
M∑

x=L−m+l+1

(x − L + m− l)Pr
(
an = x

)
.

(4)

In the first term above, since γ is a continuous variable,
we indicate the average operation using an integral. Also,
Pr(un = m/γ) represents the conditional probability that
m packets are transmitted in time slot n when the channel

gain γn equals γ. In subsequent analysis, only quantized
information on γ is assumed to be available at the trans-
mitter, and the integral is replaced by a summation. The
proposed adaptive transmission schemes choose both the
instantaneous transmission rate un and power Pn. In an
ideal system, the transmit power and rate are determined
based jointly on knowledge of instantaneous channel fading
and buffer state. Traditional approaches to this problem
assume a feedback channel of capacity of, say, Nb bits to
transmit the channel state to the transmitter. In this paper,
we propose a novel architecture in which partial information
about the transmit queue is sent to the receiver using a feed-
forward channel of capacity of Nf bits. As will become clear
from the numerical results, the proposed use of the Nf bits
significantly reduces the average packet loss.

The proposed framework for power and rate control
is characterized by the three functions f , g, and e. The
transmission rate and power are determined by function f ,
as (un,Pn) = f (qn, γ̂n). (In this paper, we assume that γ̂n is
an error-free quantized version of γn. The channel estimation
error and errors in the feedback channel are ignored.) With
some abuse in notation, we will use f (qn, γ̂n) to represent
both the rate and power. The estimate of γn at the transmitter
is given by γ̂n = g(γn, q̂n), where q̂n is the information
about qn that is sent as feed-forward (FF) information to the
receiver, that is, q̂n = e(qn). The schematic of the system is
given in Figure 1.

In this sequel, we consider a particular class of functions
f , g, e which are described in detail in Section 3. The
specific form of these functions can be used to calculate the
average transmission power and also to evaluate the average
packet loss Π.

The optimization problem of interest can be formally
stated as follows:

min
{ f ,g,e}

Π

s.t. E[Pn] ≤ P0,
(5)

where P0 is the long-term power constraint. The optimiza-
tion problem is solved for desired values of Nb and Nf ,
which will result in appropriate constraints on the functions
{ f , g, e}. We now discuss a few special cases.

(i) No CSIT. In this case, Nb = 0 and (un,Pn) =
f (qn) since γ̂n is a constant independent of the actual
channel realization (it is possible that (un,Pn) =
f (qn,E[γn]) if statistical channel knowledge is avail-
able at the transmitter; as discussed in Section 4, a
system with statistical CSIT is similar to a system with
statistical TBIR). The analysis of packet loss proba-
bility versus delay in this special case is provided in
[18, 23].

(ii) Full CSIT. In this case, which is mainly of theoretical
interest, γ̂n = g(γn, q̂n) = γn for all q̂n. Thus,
(un,Pn) = f (qn, γn); the outage performance in this
case is studied in [24, 25].

As noted earlier, in both of these cases, FF information is
not required and does not decrease the packet loss rate.
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Figure 1: Schematic of proposed system incorporating both feedback and feed-forward mechanisms.

(iii) Partial CSIT. This scenario is the main focus of this
paper. The analysis and design of FB information
are further subdivided into three scenarios: (i) partial
CSIT with no TBIR, (ii) partial CSIT with statistical
TBIR, and (iii) partial CSIT with instantaneous
TBIR. The following sections discuss each of these
cases in detail.

3. Partial CSIT: no TBIR

In this section, we derive the performance of a rate and
power adaptation scheme in which the feedback information
is generated without any knowledge of the packet arrivals,
transmit buffer, or delay requirements. The goal is to derive
a heuristic approach to solve (5). We first provide details on
the channel quantizer design, and then focus on the analysis
of the queue at the transmitter. We discuss the computation
of the average power, and finally formulate the optimization
problem of interest. The results of this section are also useful
in formulating the optimization problem in the presence of
transmit buffer information at the receiver.

3.1. Channel Quantizer Specification. In this case, since no
information about the transmit buffer or traffic arrivals
is available at the receiver, the design of the channel
quantizer depends only on the channel statistics. Further,
the quantization thresholds are chosen to generate a “good”
representation of the channel gain. The quantizer thresholds
are denoted as βj , j = 0, 1, 2, . . . , 2Nb . For notational
convenience, we let β0 = 0 and β2Nb = ∞. With no TBIR,
the βj coefficients are computed numerically to minimize
the mean squared error (MSE) representation of γn using the
Lloyd-Max algorithm [26]. (For certain source distributions
and optimization metrics, the quantizer thresholds βj can
be fully characterized analytically.) The quantized value of
the channel state (or gain) is represented as γ̂n. In this
paper, we use the terms of channel state and channel gain
interchangeably. However, in other systems, the transmitter
adaptation could be based on the channel phase rather than
on amplitude information. The rate and power adaptation
are now characterized by the number of packets transmitted
for different values of γn. Let Yij denote the number of
packets transmitted when there are i packets in the transmit
buffer, and the channel gain lies in the jth state, that is,

qn = i and βj ≤ γn < βj+1. There is also a natural constraint
imposed on the thresholds Yij , namely, Yij ≤ Yik for all k > j;
that is, more packets are transmitted when the instantaneous
channel gain γn is higher.

For simplicity of exposition and analysis, we map the βj

and Yij variables into the γk,l variables for 1 ≤ l ≤ k ≤ L such
that l packets are transmitted during time slot n if qn = k
and γk,l ≤ γn < γk,l+1, that is, if buffer has k packets and
channel gain lies between certain thresholds. No packets are
transmitted if buffer state qn = k and channel gain γn < γk,1.
For notational simplicity, we let γk,0 = 0 and γk,k+1 = ∞ for
all k. The constraint that Yij is a nondecreasing function of
j implies the following constraint on γk,l, namely, γk,l ≤ γk,m

if l ≤ m. The thresholding scheme is illustrated in Figure 2.
The mapping between {Yij ,βi} and γi, j is as follows:

γi, j = βk, where k = min
Yil= j

l. (6)

In (6), if k = φ for a given (i, j), then γi,m = ∞ for all m ≥ j.
In other words, in buffer state i, the transmission rate never
equals or exceeds j packets/time slot.

3.2. Queueing Formulation and Steady-State Analysis. Since
we consider stationary models for the traffic arrivals, the
channel fading, and the packet transmission policies, the
queue state qn forms a time-homogeneous Markov chain
with (L + 1) states, and the steady-state probabilities can
be calculated. The transition probabilities pji between the
different queue states are given by pji = Pr{qn+1 = j | qn =
i}. The transition probabilities are computed as

pji =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M∑

l=max[ j−i,0]

cl Pr
{
un ≤ i− j + l | i} if j = L,

min[M, j]∑

l=max[ j−i,0]

cl Pr
{
un = i− j + l | i} if j /= L,

(7)

where Pr(un = k | i), k = 0, 1, . . . ,L, is the probability of
transmitting k packets in buffer state i and can be computed
from the γi, j thresholds. The constraint on the lower bound
of l used in the summation in (7) arises from the requirement
that to transition from buffer state i to buffer state j, with
j > i, a minimum of j − i packets must arrive in that
time slot. Similarly, the upper bound on l arises from the
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qn = 5 γ5,1 = 0 γ5,2 = β1 γ5,3 = β2

γ5,4 = β3 γ5,5 = ∞
0 β1 β2 β3 ∞

Channel gain γn

Figure 2: Examples of functions e(qn), g(γn, q̂n), and f (qn, γ̂n) used when no TBIR or statistical TBIR is available. The corresponding γi j
values are also indicated. Number of feedback bits is Nb = 2 and buffer length is L = 5.

requirement that when i > j a maximum of j arrivals is
allowed. Consequently, we can evaluate pji as

pji =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M∑

l=max[ j−i,0]

cl
(
1− e−γi,i− j+l+1

)
if j = L,

min[M, j]∑

l=max[ j−i,0]

cl
(
e−γi,i− j+l − e−γi,i− j+l+1

)
if j /= L.

(8)

The stationary probability of being in buffer state qn = i,
denoted by si (which is also the invariant distribution of the
Markov chain), is then given by

Cs = s, (9)

where s = [s0 s1 s2 · · · sL
]′

and C is an (L + 1) × (L + 1)
matrix whose ith row and jth column are pi j .

Thus, the average packet loss Π, which depends on power
and rate control policy through the choice of thresholds γi, j ,
is given by

Π =
L∑

m=1

∑

γ̂

mPr
(
un = m, γ̂

)
Πo
(
m, γ̂

)

+
L∑

m=0

m∑

l=0

sm Pr
(
un = l | m)

×
M∑

x=L+l−m+1

(x − L + m− l)Pr
(
an = x

)

(10)

which upon simplification results in

Π =
L∑

k=1

2Nb∑

i=1

Ykisk
(
e−βi−1 − e−βi

)
Πo
(
Yki,βi

)

+
L∑

m=0

m∑

l=0

sm
(
e−γm,l − e−γm,l+1

)

×
( M∑

x=L+l−m+1

(x − L + m− l)cx

)

.

(11)

In this paper, we choose Γ(Yki,βi) = 0 for all k = 1, . . . ,L−1,
which is the probability of outage when Yki packets are
transmitted in buffer state k and channel state i. (If we
set Γ(m,βi) = ε > 0, then power Pn can be selected

appropriately as Pn = (elR − 1)/β̂, where
∫ β̂
γk,l
e−γdγ = ε;

one such scheme is illustrated in Section 6 using a practical
multirate system.) Further, we set Γ(YLi, i) = 0 for all i =
2, 3, . . . , 2Nb . We consider transmission schemes in which
outage occurs in the channel, only when qn = L and 0 <
γn ≤ β1, that is, Γ(YL1, 1) /= 0. For all other buffer states and
channel gains, packet loss could occur only due to buffer
overflows. Qualitatively, the chosen heuristics imply that the
only time during which we take a chance on the channel
is when the buffer is about to overflow. (Clearly, a more
generalized strategy would be to consider more aggressive
scheduling for other buffer values also. Such schemes should
be considered in future work.) Zero outage in the channel
can be guaranteed by transmitting with sufficient power to
ensure that the instantaneous mutual information is greater
than R (see (12). Note that with no CSIT, zero outage in
the channel cannot be guaranteed for all channel fading
statistics.

3.3. Average Power Analysis. Recall that Yij packets are
transmitted in buffer state qt = i when the channel gain γn
satisfies the condition βj ≤ γn < βj+1. The corresponding
transmit power that ensures zero outage in the channel is
given by

Pn = eYijR − 1
βj

. (12)

This particular formula for the transmit power is just a
restatement of the Gaussian capacity formula [27]. In case
YL1 /=0, then the transmit power when qn = L and 0 < γn < β1

is chosen as

Pn = eYL1R − 1

β̂
, (13)

where 0 < β̂ < β1 is chosen at the transmitter to satisfy
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the power constraint. Clearly, using this transmission power,
zero outage in the channel cannot be guaranteed for all 0 <

γn < β1. Zero outage is only guaranteed for β̂ ≤ γn < β1. The
average packet loss can now be rewritten as

Π = YL1sL
(

1− e−β̂
)

+
L∑

m=0

m∑

l=0

sm
(
e−γm,l − e−γm,l+1

)

×
( M∑

x=L+l−m+1

(x − L + m− l)cx

)

.

(14)

The average transmit power equals

E
[
Pn
] =

L∑

k=1

2Nb∑

l=2

sk
(
e−βl−1 − e−βl

) eYklR − 1
βl−1

+ sL
(
1− e−β1

) eYL1R − 1

β̂
.

(15)

For given Yij and power constraint P0, β̂ can be computed
by equating the RHS of (15) to P0, which is the long-term
power constraint. Thus,

β̂ = sL
(
1− e−β1

)(
eYL1R − 1)

P0 −
∑L

k=1

∑2Nb
l=2sk

(
e−βl−1 − e−βl

)((
eYklR − 1)/βl−1

) .

(16)

If RHS of (16) is lesser than 0, then that particular choice of
{Yij} cannot be supported with the given buffer constraints.
If RHS of (16) is greater than β1, then it implies that
transmitting YL1 /= 0 packets only results in increasing power
without any decrease in average packet loss Π for that choice
of {Yij ,βi}.

3.4. Problem Formulation and Solution Methodology. The
optimization problem of interest can now be restated as
follows:

min
{Yij}

Π

s.t. E[Pn] ≤ P0.
(17)

Recognize that (17) is a discrete optimization problem, and
hence an optimum solution exists and can be computed. (It
should be mentioned that one could optimize (17) over all
βi using any other appropriate metric. Since the receiver has
no knowledge of buffer, (14)-(15) cannot be used in this
particular instance. In the following section, we will optimize
over βi assuming that the receiver has statistical knowledge
of buffer.) In this paper, we consider small values of Nb, Nf ,
and L to illustrate a new concept. Hence, the complexity of
solving this optimization problem is not huge. Finding good
heuristic solutions to (17) for large system parameters must
be considered in future work. The numerical results of the
optimization are discussed in Section 6.

The main steps involved in finding the optimal solution
may be summarized as follows.

(1) Assume that the number of feedback bits Nb, the
βj coefficients, the power constraint P0, and the
channel fading statistics are given. Create an ordered
(lexicographic) set Y of all feasible combinations of
Yij such that Yij ≤ Yik, j < k, and Yi1 = 0, i =
1, . . . ,L− 1.

(2) Set counter m = 1. Consider the mth element of Y.

(3) For that particular combination of Yij , compute β̂

that satisfies (15); if no such β̂ exists, then set the loss
probability for this combination equal to 1 and go to
step (5).

(4) Compute the total packet loss for the chosen Yij and

the β̂ computed using (15). Recall that (6) is used to
convert between the Yi, j and βk coefficients.

(5) Set m = m+ 1. If m > |Y|, then go to step (6); else go
to step (3).

(6) Find the minimum value of the total packet loss and
the corresponding Yij .

4. Partial CSIT: Statistical TBIR

In this section, we assume that the receiver has statistical
knowledge of the transmit buffer or traffic arrivals. Specifi-
cally, we assume that the receiver has knowledge of the packet
arrival distribution c. Thus, we modify the FB information
that is transmitted to better reflect the available knowledge.
In particular, we design the channel quantizer in such a way
that the overall packet loss is reduced.

It is assumed that the proposed optimization is carried
out at the receiver and then the optimal thresholds {βi},
along with the power and rate adaptive function f (·), are
conveyed to the transmitter. Equivalently, one could consider
a system where the transmitter has statistical knowledge of
the channel statistics. In the latter case, the optimization
is performed at the transmitter, and the results are then
conveyed to the receiver. Yet another approach might be
to have both the transmitter and receiver do the same
optimization if they have access to the relevant statistics.

The qualitative reason for the benefit in optimizing the
channel quantizer is as follows. In optimal quantizer design
with typical metrics like MSE, the objective is to compute
the quantizer boundaries and representations’ points in each
bin to optimize the metric of interest. In the system under
consideration, the representation point within each bin is
not utilized at the transmitter for adaptation. The power is
adapted based on the quantizer boundaries (except at 0).
Thus, regular quantizers are not expected to perform well
in this context, and this intuition is strengthened by the
numerical results in Section 6.

The analysis of average power and average packet loss is
similar to that of the no TBIR case. An noted earlier, the main
difference is that the βj thresholds are chosen to optimize
system performance rather than to minimize the MSE of γn.
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The optimization problem is now stated as

min
{Yij ,βk}

Π

s.t. E[Pn] ≤ P0

(18)

Recognize that (18) is a mixed optimization problem and
solving it has potentially high complexity. However, for small
values of Nb, Nf , and L, the problem is tractable and the
main steps in the process are summarized as follows.

(1) Consider set Y as defined in Section 3. Set counter
m = 1. Consider the mth element of Y.

(2) For that particular combination of Yij , compute

{βi}, β̂ that minimizes (18) (due to the closed-
loop nature of the system, we have been unable to
find analytical solutions to (18)). This conditional
optimization over βi is easily solved using numerical
solvers. Unlike in Section 3, in this case the flexibility

in the choice of {βi} allows us to increase βi and β̂ as
high as necessary to satisfy the power constraint.

(3) Compute the total packet loss for the chosen Yij and

the {βi}, β̂ parameters computed in step (2).

(4) Set m = m+ 1. If m > |Y|, then go to step (5); else go
to step (2).

(5) Find the minimum value of the total packet loss and
the corresponding Yij .

It should be noted that a similar optimization problem is
considered in [25]. The main difference between the analysis
in this section and that in [25] is the choice of the heuristic
functions f and g. The analysis in [25] is restrictive in that
packet losses do not occur in the channel. The results shown
in this section generalize and improve the results in [25].
Numerical results of the total packet loss using such statistical
TBIR are given in Section 6.

5. Partial CSIT: Instantaneous TBIR

In this section, we consider a communication system as
depicted in Figure 1, where the receiver has partial instan-
taneous knowledge of the transmit buffer conditions. We
consider that the receiver has Nf bits of information about
the number of packets in the transmit buffer during each
time slot. These Nf bits are used to adapt the FB information
that is sent to the transmitter in each time slot.

An algorithm depicting the entire process in the system is
given in Figure 4. The actions to be taken at the transmitter
are represented within the square blocks, while the actions
to be taken at the receiver are represented within circles.
As discussed in Section 6, the CSI can be calculated at the
receiver in two different ways, and hence there is a link
indicated in Figure 4 between FF transmission block and CSI
computational block. A temporal representation of the entire
process is also given in Figure 4.

The gains due to this adaptation can be qualitatively
explained as follows. When there are very few packets in
the transmit buffer, the probability of buffer overflow is

small. Thus, one can delay the packets and wait for good
channel conditions to transmit. Consequently, the thresholds
γki for transmitting i packets are set to high values. On the
other hand, when the buffer is nearly full, the probability
of buffer overflowing is high. Hence, the thresholds γmi for
transmitting i packets are set to small values, and one may
not be able to wait for “good” channel conditions to transmit
the packets. In other words, one should take a chance on
the channel only when the buffer conditions are “desperate.”
The numerical values of the optimal thresholds, given in
Section 6, confirm this behavior.

The analysis of average packet loss and average power
proceeds along similar lines to the earlier cases. The main
difference now is that there are multiple sets of βj coefficients;
one set of {βj} coefficients is used for each value of q̂. These
coefficients are represented as βj(i), i = 1, . . . , 2Nf , where
Nf is the number of FF bits. The FF information which is
generated from the buffer length qn using the function q̂n =
e(qn) is assumed to take on values 1, . . . , 2Nf . An example
of the different functions, { f , g,w}, is shown in Figure 3. In
these figures, the value of e(qn) is represented in binary digits.

As in the earlier case, the γi j coefficients can be calculated
from the {βk( j),Yil} parameters as

γi, j = βk
(
e(i)

)
, where k = min

Yil= j
l. (19)

As before, if k = φ for a given (i, j), then γi,m = ∞ for
all m ≥ j. The transition probabilities pji and stationary
probabilities si are computed using (8) and (9) with the new
values of thresholds {βk( j),Yil}. As in the case of statistical
TBIR, it is assumed that packet loss in the channel occurs
only in buffer state L when channel gain γn < β1(e(L)).
Consequently, the total loss is given by

Πinst = YL1sL
(

1− e−β̂(e(L))
)

+
L∑

m=0

2Nb∑

l=1

sm
(
e−βl−1(e(m)) − e−βl(e(m))

)

×
( M∑

x=L+Yml−m+1

(x − L + m− l)cx

)

,

(20)

where β̂(e(L)) is used to select the transmit power when

qn = L and γn < β1(e(L)) as (eYL1R − 1)/β̂(e(L)). The average
transmission power can now be derived as

Pinst = E
[
Pn
]

=
L∑

k=1

2Nb∑

l=2

sk
(
e−βl−1(e(k)) − e−βl(e(k))

) eYklR − 1
βl−1

(
e(k)

)

+ sL
(
1− e−β1

) eYL1R − 1

β̂
(
e(L)

) .

(21)

The optimization problem is now posed in a manner similar
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Example of function g(γn, q̂n)

Channel gain
with quantization
thresholds shown

γ̂ = 00 γ̂ = 01 γ̂ = 10 γ̂ = 11

β1(2) β2(2) . . . β3(2)

γ̂ = 00 γ̂ = 01 γ̂ = 10 γ̂ = 11

β1(1) β2(1) β3(1)

Y10 = 0 Y11 = 1 Y12 = 1 Y13 = 1

Y20 = 0 Y21 = 1 Y22 = 1 Y23 = 2

Y30 = 0 Y31 = 1 Y32 = 2 Y33 = 2

0 β1(1) β2(1) β3(1) ∞

Y40 = 0 Y41 = 1 Y42 = 2 Y43 = 3

Y50 = 1 Y51 = 2 Y52 = 3 Y53 = 4

0 β1(2) β2(2) β3(2) ∞

Example of function f (qn, γ̂n)

q̂n = 2

q̂n = 1

qn = 1

qn = 2

qn = 3

q̂n = 1

qn = 4

qn = 5
q̂n = 2

Example of
function e(qn)

Figure 3: Examples of functions e(qn), g(γn, q̂n), and f (qn, γ̂n) used when Nf = 1 bit of instantaneous TBIR is available. Number of feedback
bits is Nb = 2 and buffer length is L = 5.

Actions at transmitter
Actions at receiver

Determine
buffer state and

transmit FF
information

Receive FB
information

Transmit data using
rate and power

determined
from buffer state and

FB information

Determine
CSI

Receive FF
information

Determine FB
information using CSI

and FF information

Transmit FB
information

FF

FB

Data transfer FF

FB

Data transfer

Time-slot n− 1 Time-slot nCompute
CSIR

· · ·

Figure 4: Summary of the main steps involved at the transmitter and receiver in implementing the proposed joint FF-FB architecture.

to the earlier cases as

min
{Yij ,βk(l)}

Πinst

s.t. Pinst ≤ P0.
(22)

Recognize that (22) is a mixed optimization problem and
solving it has potentially high complexity, like in the case of
statistical TBIR. The procedure used to solve (22) is similar
to that of the statistical TBIR case and is not repeated here.

Numerical values of the optimal thresholds along with the
average packet loss are studied in the following section.

6. Numerical Results and Discussions

In this section, we numerically study the performance of
the proposed adaptation strategies with no TBIR, statistical
TBIR, and instantaneous TBIR. We also briefly discuss
implementation issues and extensions of proposed concepts.
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Figure 5: Variation of average packet loss with SNR for buffer
length L = 2. The performance of the scheme with no TBIR (dashed
lines), statistical TBIR (dotted lines), and one bit of instantaneous
TBIR (solid lines) is shown.

6.1. Numerical Results

Optimal Thresholds: Statistical and Instantaneous TBIR. The
result of solving (18) and (22) for the same arrival traffic
(cl = 0.5, l = 0, 1), buffer length L = 2, and one bit feedback
is given below. In both cases, the optimal thresholds Y10 = 0
and Yij = 1 for all (i, j) /= (1, 0). In the statistical TBIR case,

β1 = 0.104 and β̂ = 2.9 × 10−3. In the case of instantaneous
TBIR with Nf = 1 bit, the optimal functions e(qn) =
0, qn = 0, 1, and e(qn) = 1, qn = 2. The corresponding

thresholds β1(1) = 0.12, β1(2) = 0.04, and β̂ = 1.5 × 10−3.
These optimal thresholds confirm the qualitative behavior
explained in Section 5.

Packet Loss Versus SNR. The plot of the average packet loss
versus SNR is given in Figure 5 for the three cases of no
TBIR, statistical TBIR, and one bit of instantaneous TBIR.
Results for three different feedback channel capacities of
Nb = 1, 2, and 3 bits are shown. In Figure 5, a buffer of L = 2
length packets is used to store packets generated by an on-off
source with arrival distribution of cl = 0.5, l = 0, 1. The
performance gains of using statistical TBIR over no TBIR are
huge; for example, the power saving is about 9 dB to achieve
packet error rate of 1% using Nb = 3 bits. Thus, showing the
importance of adapting the channel quantizer at the receiver
is based on statistical buffer conditions.

The performance of instantaneous TBIR shows power
saving of about 1 dB over statistical TBIR for Nb = 2, 3.
For Nb = 1, the instantaneous TBIR only shows marginal
reduction in packet loss rate. The results thus suggest that
even 1 bit of FF can be extremely useful in improving overall
system performance. Alternately, at a given power constraint,
the packet error rate reduces substantially with just 1 bit of
FF; for example, at an SNR of 15 dB, the packet error rate
is reduced by nearly an order of magnitude for Nb = 3 bits.

43.83.63.43.232.82.62.42.22
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Figure 6: Variation of average packet loss with buffer length for
statistical TBIR (dotted lines) and one bit of instantaneous TBIR
(solid lines) is shown.

Further, the packet loss versus SNR curve for (Nb = 3, Nf =
0) intersects the curve for (Nb = 2,Nf = 1) at multiple
points; this indicates that sometimes increasing Nf by one
bit reduces packet loss rates more than increasing Nb by one
bit. However, it should be mentioned that the goal here is
to improve the system performance using the given FB bits,
by adding FF bits. Moreover, we conjecture that for highly
bursty sources (source having large variations in packets’
arrivals), the gain of 1 bit of FF would be higher than using an
additional bit of FB. The question of whether adding an extra
bit of FB is better than adding a bit of FF is challenging; the
answer depends critically on the traffic arrivals and channel
statistics and should be investigated carefully in future work.

Packet Loss Versus Buffer Length L. The variation of the
total average packet loss with buffer length L is given in
Figure 6. It is clear that using 1 bit of FF can significantly
reduce the average packet loss for the same number of FB
bits. Note that for a delay of 1 time slot, the use of FF
information does not reduce packet losses since packets
cannot be delayed and the transmission rate cannot be
adapted to channel conditions. This case is loosely analogous
to the use of CSIT in discrete memoryless channels, in which
CSIT does not increase capacity but could provide simpler
methods to achieve capacity. However, for delays greater than
1 time slot, even though the source is a discrete memoryless
source, the use of a buffer and greater flexibility in allowed
delay introduces “memory” into the buffer state; thus, FF
information provides performance gains (lower packet loss).

Packet Loss Versus Number of Feedback BitsNb. The variation
of average packet loss with the number of feedback bits Nb is
given in Figure 7 for both the statistical and instantaneous
TBIR cases. In this case, the same on-off traffic as in the
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Table 1: The power required to achieve a desired average packet error using a convolutional code with variable QAM.

No. of packets/time slot No. of bits/modulation symbol Average power (dB)

1 2 5.5

2 4 12

3 6 22.5
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Figure 7: Variation of average packet loss with number of feedback
bits is shown for statistical TBIR (dotted lines) and one bit of
instantaneous TBIR (solid lines).

earlier case, with one packet arrival on average, in every other
time slot is considered. The loss rate with zero bits of CSIT
is computed as follows. With no CSIT, power is transmitted
at a constant rate (only depending on source arrivals). For
this particular traffic, the transmission power is given by
Pno CSIT = (eR − 1)/γno CSIT. From the given power constraint
of P0, we can compute γno CSIT as γno CSIT = (eR − 1)/2P0,
where the factor of 2 comes from the fact that a packet is
transmitted in only 50% of the time slots. The packet loss
rate then equals

∫ γno CSIT

0 e−x dx = 1 − e−γno CSIT . It can be seen
from Figure 7 that even a few bits of FB and one bit of FF can
provide significant gains in performance.

6.2. Implementation Strategies. In this paper, we have
assumed that the transfer of FB and FF information takes
place at the beginning of a time slot before data communi-
cation in that time slot. It is also assumed that channel state
information is available right at the beginning of the time
slot. There are potentially many ways to implement these
strategies; a couple of strategies are illustrated below.

(i) It is conceivable that CSI is computed at the receiver
based on the reception of the FF information. Given
that the FF information is likely to be only a few bits,
accurate CSIR may be difficult to obtain. However, if
pilot or synchronization bits are sent along with the

FF information, accurate CSI can be obtained from
these bits.

(ii) In this paper, we assumed that the fading states in
two different time slots are independent of each other.
However, many practical communication systems
exhibit considerable correlation in the fading process.
This correlation can be used to obtain estimates of the
CSI from prior time slots.

These strategies are pictorially depicted in Figure 4.

6.3. Practical Multirate System. Thus, the analysis so far in
the paper is based on the information-theoretic concept of
outage and transmission at rates close to Shannon capacity
using finite block-length codes. We now demonstrate the
application of FF information using a practical coding
and modulation scheme. A similar coding and modulation
scheme is used in [18] for multirate transmission over an
AWGN channel.

We assume the size of each packet to be 25 bits, and
the channel bandwidth and transmit pulse shape are such
that 25 symbols can be transmitted in each time slot. The
transmitter can choose to transmit 0, 1, 2, or 3 packets in
each time slot. The data bits of all the packets in a time slot
are jointly encoded, using a convolutional encoder of rate 1/2
with constraint length of 3 and generator matrix

[
4 7

]
[28].

The output of the convolutional encoder is modulated using
a variable rate QAM depending on un according to Table 1.
For example, to transmit 2 packets per time slot, the scheme
needs to transmit 100 coded bits (2 packets ×25 bits/packet
×2 coded bits/information bit) using 25 symbols, which
implies 4 bits/symbol; hence we choose a simple rectangular
16-QAM constellation in this case. The power required to
achieve a packet error rate of 0.02 is given in Table 1 assuming
instantaneous γn = 1 (an alternative is to change the coding
rate assuming that the modulation (number of constellation
points) is fixed, say, 4-QAM; to transmit 1, 2, or 3 packets per
time slot, coding rates of 1/6, 1/3, or 1/2 could be used, resp.)
For other values of γn, the power in Table 1 should be scaled
by γn.

The main difference from the earlier theoretical for-
mulation is that in this case the total packet loss rate is
calculated by setting Γ(m,βi) to a desired nonzero frame
error rate. In Table 1, the packet error rate Πm,βi is set at
2% for all m,βi. The performance of the proposed scheme
with (Nb = 2,Nf = 0), (Nb = 2, Nf = 1), and (Nb =
3, Nf = 0) is shown in Figure 8. It can be seen that just
1 bit of FF results in approximately 1 dB saving in power, just
like in the analysis based on information-theoretic outage
probabilities. Further, at high SNR, the addition of 1 bit of
FF to a scheme with Nb = 2 bits performs nearly as well as
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Figure 8: Variation of average packet loss with SNR for statistical
TBIR and instantaneous TBIR with buffer length L = 3.

the scheme with one additional bit of FB, that is, Nb = 3 bits.
Recognize that the packet loss hits an asymptote around 4%
due to the design choice. Smaller values of the asymptote
may be achieved by appropriately choosing a scheme with
lower transmission packet error rate, that is, Πm,βi ≤ 0.02.
However, such schemes require a higher transmit power and
could result in performance degradation at small to medium
SNRs. The optimal choice of operational frame error rate
should be computed based on the SNR of interest. The results
in this section are presented to merely indicate the feasibility
of using the proposed scheme in a practical multirate system.

6.4. MIMO Systems. The proposed formulation directly
extends to systems with MIMO architecture. For instance, in
the special case of an MISO or SIMO system, the capacity
[3] is given by 0.5 log(1 + (P/Nt)HtH/σ2), where Nt, Nr are
the numbers of transmit and receive antennas and H is an
Nr×Nt matrix of channel gains. The effective channel gain is
thus a scalar given by HtH in the SIMO case (or HHt in the
MISO case). The proposed formulation can be applied to this
effective channel gain which has a Chi-squared distribution
if the channels between the transmit and receive antennas
are modeled as independent Gaussian. In the general MIMO
case, the effective channel gain would not be a scalar and one
needs to optimize the feedback and feed-forward coefficients
using a vector quantizer.

7. Conclusions

In this paper, we proposed a new communication system
architecture in which information about transmit buffer
is sent as feed-forward information to the receiver. This
FF information is used in conjunction with the FB of
channel state information to reduce average packet loss in

fading channels. Moreover, the proposed design framework
provides a mechanism to provide delay guarantees to the
arrival traffic.

We are currently working on studying the effects of FF
for more realistic traffic arrival models. One limitation of
the proposed scheme is the computational complexity of
solving the optimization problems. It is likely that in practical
systems the number of feedback bits will be limited to a
small number (1–4 bits per coherence interval), and thus
complexity is determined mainly by buffer length L. Con-
ceptual extensions to frequency-selective fading channel are
relatively straightforward using an orthogonal transmission
scheme like OFDM; however, the complexity of the vector
quantizer optimization that results needs to be investigated
in future work. The impact of causal CSI knowledge along
with errors in the FB and FF channels should also be
considered carefully in future studies.
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