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The method of Spectral Correlation-Signal Subspace Fitting (SC-SSF) fails to separate wideband cyclostationary signals with
coherent second-order cyclic statistics (SOCS). Averaged Cyclic MUSIC (ACM) method made up for the drawback to some degree
via temporally averaging the cyclic cross-correlation of the array output. This paper interprets ACM from another perspective
and proposes a new DOA estimation method by generalizing ACM for wideband cyclostationary signals. The proposed method
successfully makes up for the aforementioned drawback of SC-SSF and obtains a more satisfying performance than ACM. It is also
demonstrated that ACM is a simplified form of the proposed method when only a single spectral frequency is exploited, and the
integration of the frequencies within the signal bandwidth helps the new method to outperform ACM.
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1. Introduction

Most of the communication and radar signals show a
special kind of periodicity called cyclostationarity because
of artificial coding and modulation [1]. Gardner introduced
cyclostationarity into array signal processing and proposed
the method of Cyclic MUSIC and Cyclic ESPRIT [2].
Charge et al. extended Cyclic MUSIC by exploiting both
the cyclic correlation and conjugate cyclic correlation of
the array output [3]. Those methods combined the spatial
information within the geometrically distributed array and
temporal property of cyclostationarity within the incident
signal waveform and thus become signal-selective to separate
spatially adjacent signals with different cyclostationarity, but
the method is limited only to narrowband signals. When
the bandwidth of the signals increases, the estimates from
Cyclic methods will become biased and modifications of the
methods are required [4, 5].

After that, Xu and kailath concluded that a time delay in
a signal only brings a corresponding phase delay to its cyclic
autocorrelation, which is applicable to both narrowband
and wideband cyclostationary signals [6]. Xu and kailath
then used the cyclic autocorrelation of the array output
to estimate the DOA of wideband signals; the proposed

method is named Spectral Correlation-Signal Subspace
Fitting (SC-SSF) [6]. SC-SSF is still signal-selective as Cyclic
MUSIC and applies to both narrowband and wideband
signals, but as it exploits only the cyclic autocorrelation of
the array output, it fails to separate independent signals
with the same modulation character [7, 8]. Yan and Fan
analyzed why such drawback occurs and introduced the
idea of temporal averaging to make cyclic cross-correlation,
which is previously used only for narrowband signals,
applicable to wideband signals, and proposed the method
of Averaged Cyclic MUSIC (ACM). The exploitation of
the cyclic cross-correlation of the array output also makes
ACM capable in separating signals with coherent SOCS
[7, 8].

This paper interprets the method of ACM as a real-
ization of Cyclic MUSIC for wideband signals at a certain
spectral frequency. Further analysis shows that ACM can
be generalized to an arbitrary spectral frequency within the
signal bandwidth. But as the ACM method works at a single
spectral frequency and exploits only part of the information
contained in the incident signal waveform, its performance
is suboptimal, and integration of the information within
the signal bandwidth is expected to obtain an improved
performance over that of ACM.
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This paper is organized as follows. Previous methods of
SC-SSF and ACM are briefly reviewed in Section 2. Another
interpretation of ACM and the principle of the generalized
wideband Cyclic MUSIC method are detailed in Section 3.
In Section 4 numerical examples are carried out to verify the
effectiveness of the proposed method, and the whole paper is
concluded in Section 5.

2. PreviousWideband Cyclic Methods

Suppose that a sensor array consisting of M identical
omnidirectional antennas is used to estimate the directions
of the incident signals, and among the impinging signals, K
independent ones from the directions of θ1, . . . , θK share the
same cyclic frequency of α, which is of interest, while the
others are deemed as interferential ones that are cyclically
independent to each other and to the signals at the cyclic
frequency of α. The methods discussed below apply to
arbitrary array shapes, but in this paper only the uniform
linear array (ULA) is considered for convenience.

2.1. SC-SSFMethod [6]. Choose the first element of the array
as the reference; the array output at the mth element is

xm(t) =
K∑

k=1

sk(t + (m− 1)Δk) + nm(t), (1)

in which sk(t) is the signal waveform of the kth source
at time t, Δk = D sin θk/C is the time-delay of the kth
signal propagating between adjacent elements, D is the
interelement spacing, C is the propagating velocity of the
electromagnetic wave, and nm(t) is the mixture of the
interferences and additive noise at the mth channel.

The cyclic autocorrelation of the array output at the mth
element is

rαxmxm(τ) =
〈
xm

(
t +

τ

2

)
x∗m

(
t − τ

2

)
e− j2παt

�

t

=
K∑

k=1

rαsksk (τ)e j2πα(m−1)Δk ,

(2)

in which α is the cyclic frequency, τ is the time-delay,
〈•〉t stands for temporal averaging, and rαsksk (τ) is the cyclic
autocorrelation of the kth signal at the cyclic frequency of α
and time-delay of τ, that is,

rαsksk (τ) =
〈
sk

(
t +

τ

2

)
s∗k

(
t − τ

2

)
e− j2παt

�

t
. (3)

It can be concluded from (2) that as the interferences
and noise are cyclically independent to each other and to the
signals at the cyclic frequency α, they cast no influence on the
array output cyclic autocorrelation.

Then the cyclic autocorrelation of the whole array output
at time-delay τ is given by

Rα
XX(τ) =

[
rαx1x1

(τ), rαx2x2
(τ), . . . , rαxMxM (τ)

]T

=
⎡
⎣

K∑

k=1

rαsksk (τ),
K∑

k=1

rαsksk (τ)e j2παΔk , . . . ,

K∑

k=1

rαsksk (τ)e j2πα(M−1)Δk

⎤
⎦
T

= A(α,Θ)rαs (τ),

(4)

in which Θ = [θ1, θ2, . . . , θK ] and

A(α,Θ) = [a(α, θ1), a(α, θ2), . . . , a(α, θK )],

a(α, θk) =
[

1, e j2παΔk , . . . , e j2πα(M−1)Δk

]T
, k = 1, . . . K

(5)

is the array response to the incident signals, and

rαss(τ) =
[
rαs1s1

(τ), rαs2s2
(τ), . . . , rαsK sK (τ)

]T
(6)

is the vector of the cyclic autocorrelations of the incident
signals.

When the autocorrelation of (4) is computed at different
time-delays τ’s, a group of Rα

XX(τ) can be obtained to form a
pseudodata matrix as

YSC-SSF(α) = [Rα
XX(0),Rα

XX(Ts), . . . ,Rα
XX((L− 1)Ts)

]

= A(α,Θ)
[
rαss(0), rαss(Ts), . . . , rαss((L− 1)Ts)

]

� A(α,Θ)Rα
ss(T),

(7)

in which Rα
ss(T) = [rαss(0), rαss(Ts), . . . , rαss((L−1)Ts)] and T =

{lTs}|l=0,...,L−1 is the set of time-delays.
Thus general narrowband subspace methods, such

as MUSIC, can be applied to estimate the directions
of the impinging wideband cyclostationary signal if
YSC-SSF(α)YH

SC-SSF(α) is of full rank.
There is a significant drawback in SC-SSF that if more

than one incident signals share coherent SOCS, that is,
for any time delay τ, the linear dependence holds between
the SOCS of two or more different signals as rαsisi(τ) =
κrαsj s j (τ) (i /= j) with κ begin a constant, the ith and jth rows

of Rα
ss(T) will be completely dependent; thus Rα

ss(T)Rα
ss
H(T)

and YSC-SSF(α)YH
SC-SSF(α) become rank deficient and SC-SSF

fails to resolve such signals.
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The drawback can be made up by substituting the
cyclic cross-correlation for the autocorrelation to make the
pseudodata matrix independent of the signal dependence,
but it is hard to realize because the temporal envelope of the
wideband signals is fast varying; thus the cross-correlation
between different antenna outputs is channel-dependent
and a DOA-dependent pseudodata matrix is no longer
obtainable as the narrowband signals. This dissimilarity
between wideband and narrowband signals can be concluded
from the following inequality:

rαxpxq(τ)

=
〈
xp

(
t +

τ

2

)
x∗q

(
t − τ

2

)
e− j2παt

�

t

=
K∑

k=1

〈
ak

(
t +

τ

2
+
(
p − 1

)
Δk

)
a∗k

(
t − τ

2
+
(
q − 1

)
Δk

)

×e j2π f0(τ+(p−q)Δk)e− j2παt
�

t

=
K∑

k=1

e j2π( f0+α/2)(p−1)Δk rαakak
(
τ +

(
p − q

)
Δk
)

× e− j2π( f0−α/2)(q−1)Δk e j2π f0τ (wideband)

/=
K∑

k=1

e j2π( f0+α/2)(p−1)Δk rαakak (τ)

× e− j2π( f0−α/2)(q−1)Δk e j2π f0τ (narrowband),
(8)

in which f0 is the carrier frequency and ak(t)(k = 1, . . . ,K)
are the amplitude envelope of the signals independent to each
other, that is,

sk(t) = ak(t)e j2π f0t , (9)

and ak(t) are cyclically independent to each other as sk(t) for
k = 1, . . . ,K .

In the case of wideband signals, the cyclic correlation
rαakak (τ + (p − q)Δk) for different row index p and column
index q is distinct because of the fast varying signal envelope,
and thus each element in the cyclic cross-correlation matrix
of the array output is dependent on the corresponding row
and column indices:

Rα
XX(τ) =

{
rαxpxq(τ)

}
p,q=1,...,M

=
⎧
⎨
⎩

K∑

k=1

e j2π( f0+α/2)(p−1)Δk rαakak
(
τ +

(
p − q

)
Δk
)

×e− j2π( f0−α/2)(q−1)Δk e j2π f0τ

⎫
⎬
⎭

p,q=1,...,M

(10)

and no determinate relation in phase exists in the different
rows of the matrix as that for narrowband signals shown in
(11):

Rα
XX(τ) =

⎧
⎨
⎩

K∑

k=1

e j2π( f0+α/2)(p−1)Δk rαakak (τ)

×e− j2π( f0−α/2)(q−1)Δk e j2π f0τ

⎫
⎬
⎭

p,q=1,2,...,M

= A
(
f0 +

α

2
,Θ
)

diag
{
rαakak (τ)e j2π f0τ

}
k=1,...K

× A
(
f0 − α

2
,Θ
)
.

(11)

Thus the information about the DOA cannot be
extracted directly from the cross-correlation matrix of the
wideband signals in (10).

2.2. ACMMethod [7]. In order to make up for the drawback
in SC-SSF of failing to resolve signals with coherent SOCS,
Yan introduced the idea of temporal averaging into the
acquirement process of the cyclic cross-correlation of the
array output for wideband signals and proposed the method
of ACM. Such averaging works as follows:

rxpxq
(
α, f0

)

�
〈
rαxpxq(τ)e− j2π f0τ

〉
τ

=
K∑

k=1

e j2π( f0+α/2)(p−1)Δk

×
〈
rαakak

(
τ +

(
p − q

)
Δk
)
e j2π f0τe− j2π f0τ

〉
τ

× e− j2π( f0−α/2)(q−1)Δk

=
K∑

k=1

e j2π( f0+α/2)(p−1)Δk r̂akak
(
α, f0

)
e− j2π( f0−α/2)(q−1)Δk

=
[
e j2π( f0+α/2)(p−1)Δ1 , . . . , e j2π( f0+α/2)(p−1)ΔK

]

×

⎡
⎢⎢⎢⎢⎣

r̂a1a1

(
α, f0

)

. . .

r̂aK aK
(
α, f0

)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

e− j2π( f0−α/2)(q−1)Δ1

...

e− j2π( f0−α/2)(q−1)ΔK

⎤
⎥⎥⎥⎥⎥⎦

,

(12)

in which the averaging window is set to contain most of
the energy within the cyclic correlation and the denotation
r̂aiai(α, f0) is used to indicate that the variable is dependent
only on α and f0 and does not change with τ.
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The averaged cyclic cross correlation of the array output
is then given by

YACM
(
α, f0

)

�
〈
Rα
XX(τ)e− j2π f0τ

〉
τ

=
{
rxpxq

(
α, f0

)}∣∣∣
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〉
τ
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p,q=1,...,M

=

⎡
⎢⎢⎢⎢⎢⎣

1 . . . 1

...
. . .

...

e j2π( f0+α/2)(M−1)Δ1 · · · e j2π( f0+α/2)(M−1)ΔK

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣
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(
α, f0

)

. . .

r̂aK aK
(
α, f0

)

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

1 . . . 1

...
. . .

...

e j2π( f0−α/2)(M−1)Δ1 · · · e j2π( f0−α/2)(M−1)ΔK

⎤
⎥⎥⎥⎥⎥⎦

H

,

(13)

in which {•}|p,q=1,...,M is the reshape operator to form an
M × M matrix with p, the index of row, and q, the index
of column.

It should be noted that Yan and Fan missed e j2π f0τ in
rαxpxq(τ) and obtained the same conclusion as (12) and (13)
via direct temporal averaging [7] instead of appending a

weight of e− j2π f0τ .

The cyclic cross-correlation of the array output using
temporal averaging can then be written in the form as

YACM
(
α, f0

) = A
(
f0 +

α

2
,Θ
)
Λ̂aa(α)AH

(
f0 − α

2
,Θ
)

,

(14)

in which A( f0 + α/2,Θ) and A( f0 − α/2,Θ) are defined
similar to A(α,Θ) in (4) and the referential frequency is set
accordingly, and Λ̂aa(α) = diag{r̂a1a1 (α), . . . , r̂aKaK (α)} is a
diagonal matrix that depends on each signal envelope.

As the sampling is limited in practical applications,
the averaging process is somewhat inaccurate, but the
numerical examples showed that ACM proves outstanding
in performance when appropriate time delays are taken for
averaging [7].

3. GeneralizedWideband Cyclic MUSIC

3.1. Another Interpretation of ACM. In ACM, temporal
averaging operates on the cyclic cross-correlation of the array
output with a weight of e− j2π f0τ , which equals (15) from the
perspective of time-frequency transformation:

rxpxq
(
α, f0

) =
〈
rαxpxq(τ)e− j2π f0τ

〉
τ
= Sαxpxq

(
f0
)
, (15)

in which Sαxpxq( f0) is the cyclic spectral correlation of xp and
xq at cyclic frequency α and spectral frequency f0.

And the averaged pseudodata matrix can be interpreted
as in (16) accordingly:

YACM
(
α, f0

)
�
〈
Rα
XX(τ)e− j2π f0τ

〉
τ
= SαXX

(
f0
)
. (16)

Equation (16) indicates that ACM can be deemed as a
direction finding method exploiting the signal information
at cyclic frequency α and spectral frequency f0.

3.2. Generalized Wideband Cyclic MUSIC. In (15) rxpxq(α, f0)
is interpreted as the Fourier transformation of the temporal
sequence rαxpxq(τ) at a certain spectral frequency of f0. In
fact, this time-frequency can be generalized to an arbitrary
frequency of f within the signal bandwidth:

rxpxq
(
α, f

)

= Sαxpxq
(
f
) =

〈
rαxpxq(τ)e− j2π f τ

〉
τ

=
K∑

k=1

e j2π( f0+α/2)(p−1)Δk

×
〈
rαakak

(
τ +

(
p − q

)
Δk
)
e j2π f0τe− j2π f τ

〉
τ

× e− j2π( f0−α/2)(q−1)Δk

=
K∑

k=1

e j2π( f0+α/2)(p−1)Δk

[
sαakak

(
f − f0

)
e j2π( f− f0)(p−q)Δk

]

× e− j2π( f0−α/2)(q−1)Δk

=
K∑

k=1

e j2π( f +α/2)(p−1)Δk sαakak
(
f − f0

)
e− j2π( f−α/2)(q−1)Δk

=
[
e j2π( f +α/2)(p−1)Δ1 , . . . , e j2π( f +α/2)(p−1)ΔK

]

×

⎡
⎢⎢⎢⎢⎣

sαa1a1

(
f − f0

)

. . .

sαaKaK
(
f − f0

)

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

e− j2π( f−α/2)(q−1)Δ1

...

e− j2π( f−α/2)(q−1)ΔK

⎤
⎥⎥⎥⎥⎥⎦
.

(17)
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And the averaged pseudodata matrix weighted by e− j2π f τ is

YACM
(
α, f

)

= SαXX
(
f
) =

〈
Rα
XX(τ)e− j2π f τ

〉
τ

=
{
rxpxq

(
α, f

)}∣∣∣
p,q=1,...,M

=
{〈

rαxpxq(τ)e− j2π f τ
〉
τ

}∣∣∣
p,q=1,...,M

=

⎡
⎢⎢⎢⎢⎣

1 . . . 1

...
. . .

...

e j2π( f +α/2)(M−1)Δ1 · · · e j2π( f +α/2)(M−1)ΔK

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

sαa1a1

(
f − f0

)

. . .

sαaKaK
(
f − f0

)

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

1 . . . 1

...
. . .

...

e j2π( f−α/2)(M−1)Δ1 · · · e j2π( f−α/2)(M−1)ΔK

⎤
⎥⎥⎥⎥⎦

H

= A
(
f +

α

2
,Θ
)
Saa
(
α, f − f0

)
AH
(
f − α

2
,Θ
)

,

(18)

in which Saa(α, f − f0) = diag{sαa1a1
( f − f0), . . . , sαaKaK ( f − f0)}.

It is obvious that the method of ACM is a special form
of the model given above at the spectral frequency of f =
f0. As the spectrum of most wideband signals, such as the
phase-shift-keying (PSK) ones, owns the most significant
energy density at the center of their baseband spectrum
or the carrier frequency of their modulated spectrum (i.e.,
|sαakak ( f − f0)|(k = 1, . . . ,K) take their maximums at the
cyclic frequency of the baud rate and spectral frequency of
f = f0), ACM obtains a satisfying performance even though
only a single spectral frequency is exploited.

But as the wideband signals occupy a considerable
spectral bandwidth, and different frequencies contain com-
plementary information about the signal, there is inevitably
a loss of information in the method of ACM which
exploits only a certain spectral frequency, and an integrated
consideration of the signal bandwidth is expected to gain
improved performance.

Assume that I discrete spectral frequencies f1, f2, . . . , fI
within the signal bandwidth are exploited to obtain indepen-
dent pseudodata matrices, that is,

YACM
(
α, fi

) = A
(
fi +

α

2
,Θ
)
Saa
(
α, fi − f0

)
AH
(
fi − α

2
,Θ
)

,

i = 1, 2, . . . , I.
(19)

Then by eigen-decomposing YACM(α, fi)YH
ACM(α, fi) for i =

1, 2, . . . , I separately, we can obtain K eigen-vectors corre-
sponding to the K largest eigen-values that span a subspace

identical to the column subspace of A( fi + α/2,Θ) at each
frequency:

YACM
(
α, fi

)
YH

ACM

(
α, fi

) =
[
Ui

s Ui
n

]

⎡
⎢⎢⎢⎢⎢⎣

i∑

s
i∑

n

⎤
⎥⎥⎥⎥⎥⎦

[
Ui

s Ui
n

]H
,

i = 1, 2, . . . , I ,
(20)

in which Ui
s is the M×K signal subspace spanning a subspace

identical to the column space of the array responding matrix
A( fi + α/2,Θ), Ûi

n is the M × (M − K) noise subspace
orthogonal to the signal subspace, and the eigen-vectors are

arranged in the diagonal matrix of
[∑

s ∑
n

]
in the descending

order.
Then the directions of the incident signals can be

estimated by evaluating the orthogonality between the noise
subspace and the direction to be checked at each spectral
frequency separately:

Θ̂i = arg min
Θ

∣∣∣∣Ûi
n
Ha
(
fi +

α

2
, θ
)∣∣∣∣

2

2
. (21)

As a set of DOA estimates can be obtained separately at each
spectral frequency, further integration of them is required to
gain improved performance.

For conventional wideband signals, the methods such as
ISSM [9] were used to integrate the information contained
in signal components of different frequencies to improve the
accuracy of the DOA estimates. Similarly, when the cyclic
frequency is fixed, the cyclostationary signals occupy a wide
bandwidth alike to that of conventional wideband signals;
thus the frequencies fusing idea of ISSM can be extended to
wideband cyclostationary signals, and the estimates are given
by

Θ̂ = arg min
Θ

I∑

i=1

aH
(
fi +

α

2
, θ
)
Ûi

N Û
i
N

Ha
(
fi +

α

2
, θ
)
. (22)

Thus the direction finding for wideband cyclostationary
signals is realized. As this method can be deemed as an
extension of that proposed by Yan and Fan with the name
of wideband Cyclic MUSIC [7, 8], the proposed method is
named generalized wideband Cyclic MUSIC hereafter.

It can be easily concluded from (22) that an improved
performance of direction finding can be expected from
the generalized wideband cyclic MUSIC method as more
than one discrete frequencies are exploited, and the more
effective frequencies exploited, the more the performance
is improved. But during the realization of the proposed
method, we have to recompute the temporally averaged
cyclic cross-correlation of the array output given by (18)
I times to obtain the pseudodata matrix YACM(α, fi) at
the I spectral frequencies fi for i = 1, 2, . . . , I , and then
eigen-decompose its covariance to get the Ûi

ns; so the more
frequencies we use in the proposed method, the more
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Figure 1: Spatial spectrums of the new method and SC-SSF for two
impinging signals with coherent SOCS: -·- for SC-SSF; – for the
proposed method.

expensive the computational burden will be. Therefore,
when using the proposed method, there is a trade-off
between the computational burden and the performance,
and the specific frequencies to be chosen depend on both
the computing speed of the practical system and the DOA
estimating precision required. In the numerical experiments
that follow, we choose several typical frequencies to verify the
predominance of the proposed method over ACM.

4. Numerical Examples

In this section, three groups of numerical examples are car-
ried out to show the satisfying performance of the proposed
method, and much attention is paid to the dominance of the
proposed method over SC-SSF and ACM when more than
one incident signal that shares coherent SOCS impinges onto
the array instantaneously. In the experiments, an 8-element
ULA with an inter-element spacing of half the central
wavelength is used; the impinging signals are independent
BPSK ones with carrier frequency of 20 MHz and their SOCS
are coherent; the rates of sampling and width of sampling
window are 80 MHz and 0.1 milliseconds, respectively, that
is, 8000 samples are used; autocorrelation of the array output
with time-delays within ±30 sampling periods is considered
in SC-SSF and taken for averaging in ACM and the proposed
method, and in all of the three methods the cyclostationarity
of the signals at the cyclic frequency of the baud rate is
exploited.

4.1. Capability of Separating Signals with Coherent SOCS.
In this experiment, two signals with the same SNR of 0 dB
impinge onto the array from the directions of 20◦ and 40◦,
respectively, the baud rate of them are both 10 MHz. For
the proposed method, only the spectral frequency of f =
f0 is used. Figure 1 shows the spatial spectrums within the
azimuth scope from 0◦ to 60◦ in 10 independent trials of both
the proposed method and SC-SSF.
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Figure 2: RMSE of the proposed method exploiting different single
spectral frequencies.
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Figure 3: RMSE of the proposed method and ACM when one signal
impinges onto the array.

In Figure 1 the spatial spectrum graphs in dot-dashed
line correspond to SC-SSF and the ones in real line
correspond to the proposed method. In the figure the
proposed method separated the signals with coherent SOCS
successfully while the method of SC-SSF fails to do so, which
demonstrates that the proposed method is more robust than
SC-SSF in such demanding signal circumstances.

4.2. Performance of the New Method Based on More Than
One Spectral Frequency. We explained in Section 3 that
the method of ACM outperforms other single spectral
frequency-based methods because ACM exploits the signal
component at the spectral frequency with the greatest energy
density; this conclusion can be verified by the following
experiment.
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Figure 4: RMSE of the proposed method and ACM when two BPSK
signals with baud rate of 10 MHz impinge onto the array.

In this experiment, a BPSK signal with baud rate of
10 MHz impinges from the direction of 0◦ onto the array;
the spectral frequencies for the weighted averaging ofRα

XX(τ),
that is, f in (18), center at the carrier frequency and deviate
from it by multiples of the baud rate from 0 to 0.4 with an
interval of 0.05. The performance of the method exploiting
different single spectral frequencies is indicated by their root-
mean-square-error (RMSE) obtained from 100 independent
trials shown in Figure 2.

It is obvious in Figure 2 that the performance of the
proposed method exploiting single spectral frequency dete-
riorates as the frequency deviates from the energy center of
the signal bandwidth.

4.3. Dominance over ACM in Performance. The following
three experiments verify the dominance of the proposed
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Figure 5: RMSE of the proposed method and ACM when two BPSK
signals with SNR of 0 dB impinge onto the array.

method over ACM in performance when more than one
spectral frequency is exploited. For both two methods
the cross-correlation with time-delay within ±30 sampling
periods is taken for averaging, and for the new method the
spectral frequency of f = f0 and four others centered at that
point with deviations of±0.1 and±0.2 multiples of the baud
rate is taken into account. The dash-dotted lines correspond
to the performance of the new method while the real lines
to ACM; the statistical performances are obtained from 100
independent trials.

Figure 3 gives the statistical result of the RMSE of one
BPSK signal with baud rate of 10 MHz impinging onto the
array from the direction of 0◦ and the SNR varies from
−10 dB to 5 dB.

When two BPSK signals with the same baud rate of
10 MHz impinge onto the array from −3◦ and 3◦, respec-
tively, and the SNR varies from −5 dB to 10 dB, Figure 4
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gives the RMSE of both signals obtained from the proposed
method and ACM.

If the SNR is fixed at 0 dB, the baud rates of the two
signals vary from 2 MHz to 10 MHz and the cyclic frequency
chosen varies accordingly; Figure 5 shows the performances
of both the proposed method and ACM.

It can be concluded from Figures 3–5 that the proposed
method proves predominance over ACM in most cases as
more than one spectral frequency is exploited because of
effective exploitation of the information within the signal
bandwidth. But if the bandwidth of the signals is not wide
enough, the integration of different spectral frequencies will
not achieve improvement in performance over ACM as is
shown in Figure 5 when the relative signal bandwidth is
small. The reason of this drawback is that the spectral energy
density of those signals falls sharply as the frequency deviates
from the center, and thus the information contained in
the other signal spectral components may not complement
much to the central frequency.

5. Conclusions

In this paper, the method of ACM is interpreted from
another perspective and the reason why it works well is
given, then it is extended to a general form that works on
an arbitrary spectral frequency within the signal bandwidth
at a certain cyclic frequency, and a way of integrating the
information contained at different spectral frequencies is
given to obtain a new method named generalized wide-
band Cyclic MUSIC with an improved performance over
ACM. Simulation results show that the proposed method
successfully makes up for the drawback of SC-SSF in failing
to resolve signals with coherent SOCS, and integration of
different spectral frequencies helps the proposed method to
surpass ACM in performance.
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