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Assistive speech-enabled systems are proposed to help both French and English speaking persons with various speech disorders.
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technique to correct the poorly pronounced phonemes. The ASR responses are uttered by the new speech synthesis system in
order to convey an intelligible message to listeners. Experiments involving four American speakers with severe dysarthria and two
Acadian French speakers with sound substitution disorders (SSDs) are carried out to demonstrate the efficiency of the proposed
methods. An improvement of the Perceptual Evaluation of the Speech Quality (PESQ) value of 5% and more than 20% is achieved
by the speech synthesis systems that deal with SSD and dysarthria, respectively.
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1. Introduction

The ability to communicate through speaking is an essential
skill in our society. Several studies revealed that up to
60% of persons with speech impairments have experienced
difficulties in communication abilities, which have severely
disrupted their social life [1]. According to the Canadian
Association of Speech Language Pathologists & Audiologists
(CASLPA), one out of ten Canadians suffers from a speech
or hearing disorder. These people face various emotional
and psychological problems. Despite this negative impact
on these people, on their families, and on the society, very
few alternative communication systems have been developed
to assist them [2]. Speech troubles are typically classified
into four categories: articulation disorders, fluency disorders,
neurologically-based disorders, and organic disorders.

Articulation disorders include substitution or omissions
of sounds and other phonological errors. The articulation
is impaired as a result of delayed development, hearing
impairment, or cleft lip/palate. Fluency disorders also called

stuttering are disruptions in the normal flow of speech that
may yield repetitions of syllables, words or phrases, hes-
itations, interjections, prolongation, and/or prolongations.
It is estimated that stuttering affects about one percent
of the general population in the world, and overall males
are affected two to five times more often than females
[3]. The effects of stuttering on self-concept and social
interactions are often overlooked. The neurologically-based
disorders are a broad area that includes any disruption in the
production of speech and/or the use of language. Common
types of these disorders encompass aphasia, apraxia, and
dysarthria. Aphasia is characterized by difficulty in difficulty
in formulating, expressing, and/or understanding language.
Apraxia makes words, and sentences sound jumbled or
meaningless. Dysarthria results from paralysis, lack of coor-
dination or weakness of the muscles required for speech.
Organic disorders are characterized by loss of voice quality
because of inappropriate pitch or loudness. These problems
may result from hearing impairment damage to the vocal
cords surgery, disease or cleft palate [4, 5].
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In this paper we focus on dysarthria and a Sound Substi-
tution Disorder (SSD) belonging to the articulation disorder
category. We propose to extend our previous work [6] by
integrating in a new pathologic speech synthesis system a
grafting technique that aims at enhancing the intelligibility of
dysarthric and SSD speech uttered by American and Acadian
French speakers, respectively. The purpose of our study is
to investigate to what extent automatic speech recognition
and speech synthesis systems can be used to the benefit of
American dysarthric speakers and Acadian French speakers
with SSD. We intend to answer the following questions.

(i) How well can pathologic speech be recognized by
an ASR system trained with limited amount of
pathologic speech (SSD and dysarthria)?

(ii) Will the recognition results change if we train the
ASR by using variable length of analysis frame,
particularly in the case of dysarthria, where the
utterance duration plays an important role?

(iii) To what extent can a language model help in
correcting SSD errors?

(iv) How well can dysarthric speech and SSD be corrected
in order to be more intelligible by using appropriate
Text-To-Speech (TTS) technology?

(v) Is it possible to objectively evaluate the resynthesized
(corrected) signals using a perceptually-based crite-
rion?

To answer these questions we conducted a set of experiments
using two databases. The first one is the Nemours database
for which we used read speech of four American dysarthric
speakers and one nondysarthric (reference) speaker [7].
All speakers read semantically unpredictable sentences. For
recognition an HMM phone-based ASR was used. Results
of the recognition experiments were presented as word
recognition rate. Performance of the ASR was tested by using
speaker dependent models. The second database used in our
ASR experiments is an Acadian French corpus of pathologic
speech that we have previously elaborated. The two databases
are also used to design a new speech synthesis system
that allows conveying an intelligible message to listeners.
The Mel-Frequency cepstral coefficients (MFCCs) are the
acoustical parameters used by our systems. The MFCCs
are discrete Fourier transform- (DFT-) based parameters
originating from studies of the human auditory system and
have proven very effective in speech recognition [8]. As
reported in [9], the MFCCs have been successfully employed
as input features to classify speech disorders by using HMMs.
Godino-Llorente and Gomez-Vilda [10] use MFCCs and
their derivatives as front-end for a neural network that aims
at discriminating normal/abnormal speakers relatively to
various voice disorders including glottic cancer. The reported
results lead to conclude that short-term MFCC is a good
parameterization approach for the detection of voice diseases
[10].

2. Characteristics of Dysarthric and
Stuttered Speech

2.1. Dysarthria. Dysarthria is a neurologically-based speech
disorder affecting millions of people. A dysarthric speaker
has much difficulty in communicating. This disorder induces
poor or not pronounced phonemes, variable speech ampli-
tude, poor articulation, and so forth. According to Aronson
[11], dysarthria covers various speech troubles resulting
from neurological disorders. These troubles are linked to
the disturbance of brain and nerve stimuli of the muscles
involved in the production of speech. As a result, dysarthric
speakers suffer from weakness, slowness, and impaired
muscle tone during the production of speech. The organs of
speech production may be affected to varying degrees. Thus,
the reduction of intelligibility is a common disruption to the
various forms of dysarthria.

Several authors have classified the types of dysarthria
taking into consideration the symptoms of neurological
disorders. This classification is based only upon an auditory
perceptual evaluation of disturbed speech. All types of
dysarthria affect the articulation of consonants, causing the
slurring of speech. Vowels may also be distorted in very
severe dysarthria. According to the widely used classification
of Darley [12], seven kinds of dysarthria are considered.

Spastic Dysarthria. The vocal quality is harsh. The voice
of a patient is described as strained or strangled. The
fundamental frequency is low, with breaks occurring in some
cases. Hypernasality may occur but is usually not important
enough to cause nasal emission. Bursts of loudness are
sometimes observed. Besides this, an increase in phoneme-
to-phoneme transitions, in syllable and word duration, and
in voicing of voiceless stops, is noted.

Hyperkinetic Dysarthria. The predominant symptoms are
associated with involuntary movement. Vocal quality is the
same as of spastic dysarthria. Voice pauses associated with
dystonia may occur. Hypernasality is common. This type of
dysarthria could lead to a total lack of intelligibility.

Hypokinetic Dysarthria. This is associated with Parkinson’s
disease. Hoarseness is common in Parkinson’s patients. Also,
low volume frequently reduces intelligibility. Monopitch and
monoloudness often appear. The compulsive repetition of
syllables is sometimes present.

Ataxic Dysarthria. According to Duffy [4], this type of
dysarthria can affect respiration, phonation, resonance, and
articulation. Then, the loudness may vary excessively, and
increased effort is evident. Patients tend to place equal and
excessive stress on all syllables spoken. This is why Ataxic
speech is sometimes described as explosive speech.

Flaccid Dysarthria. This type of dysarthria results from
damage to the lower motor neurons involved in speech.
Commonly, one vocal fold is paralyzed. Depending on the
place of paralysis, the voice will sound harsh and have low
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volume or it is breathy, and an inspirational stridency may
be noted.

Mixed Dysarthria. Characteristics will vary depending on
whether the upper or lower motor neurons remain mostly
intact. If upper motor neurons are deteriorated, the voice will
sound harsh. However, if lower motor neurons are the most
affected, the voice will sound breathy.

Unclassified Dysarthria. Here, we find all types that are not
covered by the six above categories.

Dysarthria is treated differently depending on its level
of severity. Patients with a moderate form of dysarthria can
be taught to use strategies that make their speech more
intelligible. These persons will be able to continue to use
speech as their main mode of communication. Patients
whose dysarthria is more severe may have to learn to use
alternative forms of communication.

There are different systems for evaluating dysarthria.
Darley et al. [12] propose an assessment of dysarthria
through an articulation test uttered by the patients. Listeners
identify unintelligible and/or mispronounced phonemes.
Kent et al. [13] present a method which starts by identifying
the reasons for the lack of intelligibility and then adapts
the rehabilitation strategies. His test comes in the form of a
list of words that the patient pronounces aloud; the auditor
has four choices of words to say what he had heard. The
lists of choices take into account the phonetic contrasts that
can be disrupted. The design of the Nemours dysarthric
speech database, used in this paper, is mainly based on
the Kent method. An automatic recognition of Dutch
dysarthric speech was carried out, and experiments with
speaker independent and speaker dependent models were
compared. The results confirmed that speaker dependent
speech recognition for dysarthric speakers is more suitable
[14]. Another research suggests that the variety of dysarthric
users may require dramatically different speech recognition
systems since the symptoms of dysarthria vary so much from
subject to subject. In [15], three categories of audio-only
and audiovisual speech recognition algorithms for dysarthric
users are developed. These systems include phone-based and
whole-word recognizers using HMMs, phonologic-feature-
based and whole-word recognizers using support vector
machines (SVMs), and hybrid SVM-HMM recognizers.
Results did not show a clear superiority for any given system.
However, authors state that HMMs are effective in dealing
with large-scale word-length variations by some patients, and
the SVMs showed some degree of robustness against the
reduction and deletion of consonants. Our proposed assistive
system is a dysarthric speaker-dependant automatic speech
recognition system using HMMs.

2.2. Sound Substitution Disorders. Sound substitution disor-
ders (SSDs) affect the ability to communicate. SSDs belong
to the area of articulation disorders that difficulties with
the way sounds are formed and strung together. SDDs are
also known as phonemic disorders in which some speech
phonemes are substituted for other phonemes, for example,

“fwee” instead of “free.” SSDs refer to the structure of
forming the individual sounds in speech. They do not relate
to producing or understanding the meaning or content of
speech. The speakers incorrectly make a group of sounds,
usually substituting earlier developing sounds for later-
developing sounds and consistently omitting sounds. The
phonological deficit often substitutes t/k and d/g. They
frequently leave out the letter “s” so “stand” becomes “tand”
and “smoke,” “moke.” In some cases phonemes may be well
articulated but inappropriate for the context as in the cases
presented in this paper. SSDs are various. For instance, in
some cases phonemes /k/ and /t/ cannot be distinguished,
so “call” and “tall” are both pronounced as “tall.” This is
called phoneme collapse [16]. In other cases many sounds may
all be represented by one. For example, /d/ might replace
/t/, /k/, and /g/. Usually persons with SSDs are able to hear
phoneme distinctions in the speech of others, but they are
not able to speak them correctly. This is known as the
“fis phenomenon.” It can be detected at an early age if a
speech pathologist says: “Did you say “fis,” don’t you mean
“fish”?” and the patient answers: “No, I didn’t say “fis,” I said
“fis”.” Other cases can deal with various ways to pronounce
consonants. Some examples are glides and liquids. Glides
occur when the articulatory posture changes gradually from
consonant to vowel. As a result, the number of error sounds
is often greater in the case of SSDs than in other articulation
disorders.

Many approaches have been used by speech-language
pathologists to reduce the impact of phonemic disorders
on the quality of communication [17]. In the minimal
pair approach, commonly used to treat moderate phonemic
disorders and poor speech intelligibility, words that differ by
only one phoneme are chosen for articulation practice using
the listening of correct pronunciations [18]. The second
widely used method is called the Phonological cycle [19].
It includes auditory overload of phonological targets at the
beginning and end of sessions, to teach formation and a
series of the sound targets. Recently, an increasing interest
has been noticed for adaptive systems that aim at helping
persons with articulation disorder by means of computer-
aided systems. However, the problem is still far from being
resolved. To illustrate these research efforts, we can cite the
Ortho-Logo-Paedia (OLP) project, which proposes a method
to supplement speech therapy for specific disorders at the
articulation level based on an integrated computer-based
system together with automatic ASR and distance learning.
The key elements of the projects include a real-time audio-
visual feedback of a patient’s speech according to a therapy
protocol, an automatic speech recognition system used to
evaluate the speech production of the patient and web
services to provide remote experiments and therapy sessions
[20]. The Speech Training, Assessment, and Remediation
(STAR) system was developed to assist speech and language
pathologists in treating children with articulation problems.
Performance of an HMM recognizer was compared to
perceptual ratings of speech recorded from children who
substitute /w/ for /r/. The findings show that the difference
in log likelihood between /r/ and /w/ models correlates well
with perceptual ratings (averaged by listeners) of utterances
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containing substitution errors. The system is embedded in a
video game involving a spaceship, and the goal is to teach the
“aliens” to understand selected words by spoken utterances
[21]. Many other laboratory systems used speech recognition
for speech training purposes in order to help persons with
SSD [22–24].

The adaptive system we propose uses speaker-dependent
automatic speech recognition systems and speech synthesis
systems designed to improve the intelligibility of speech
delivered by dysarthric speakers and those with articulation
disorders.

3. SpeechMaterial

3.1. Acadian French Corpus of Pathologic Speech. To assess
the performance of the system that we propose to reduce
SSD effects, we use an Acadian French corpus of pathologic
speech that we have collected throughout the French regions
of the New Brunswick Canadian province. Approximately
32.4% of New Brunswick’s total population of nearly 730 000
is francophone, and for the most part, these individuals
identify themselves as speakers of a dialect known as
Acadian French [25]. The linguistic structure of Acadian
French differs from other dialects of Canadian French. The
participants in the pathologic corpus were 19 speakers (10
women and 9 men) from the three main francophone regions
of New Brunswick. The age of the speakers ranges from 14 to
78 years. The text material consists of 212 read sentences. Two
“calibration” or “dialect” sentences, which were meant to
elicit specific dialect features, were read by all the 19 speakers.
The two calibration sentences are given in (1).

(1)a Je viens de lire dans “l’Acadie Nouvelle”qu’un pêcheur
de Caraquet va monter une petite agence de voyage.

(1)b C’est le même gars qui, l’année passée, a vendu sa
maison à cinq Français d’Europe.

The remaining 210 sentences were selected from published
lists of French sentences, specifically the lists in Combescure
and Lennig [26, 27]. These sentences are not representative
of particular regional features but rather they correspond to
the type of phonetically balanced materials used in coder
rating tests or speech synthesis applications where it is
important to avoid skew effects due to bad phonetic balance.
Typically, these sentences have between 20 and 26 phonemes
each. The relative frequencies of occurrence of phonemes
across the sentences reflect the distribution of phonemes
found in reference corpora of French spoken in theatre
productions; for example, /a/, /r/, and schwa are among
the most frequent sounds. The words in the corpus are
fairly common and are not part of a specialized lexicon.
Assignment of sentences to speakers was made randomly.
Each speaker read 50 sentences including the two dialect
sentences. Thus, the corpus contains 950 sentences. Eight
speech disorders are covered by our Acadian French corpus:
stuttering, aphasia, dysarthria, sound substitution disorder,
Down syndrome, cleft palate and disorder due to hair
impairment. As specified, only sound substitution disorders
are considered by the present study.

3.2. Nemours Database of American Dysarthric Speakers. The
Nemours dysarthric speech database is recorded in Microsoft
RIFF format and is composed of wave files sampled with
16-bit resolution at a 16 kHz sampling rate after low-pass
filtering at a nominal 7500 Hz cutoff frequency with a
90 dB/Octave filter. Nemours is a collection of 814 short
nonsense sentences pronounced by eleven young adult males
with dysarthria resulting from either Cerebral Palsy or head
trauma. Speakers record 74 sentences with the first 37
sentences randomly generated from the stimulus word list,
and the second 37 sentences constructed by swapping the
first and second nouns in each of the first 37 sentences. This
protocol is used in order to counter-balance the effect of
position within the sentence for the nouns.

The database was designed to test the intelligibility of
English dysarthric speech according to the same method
depicted by Kent et al. in [13]. To investigate this intelli-
gibility, the list of selected words and associated foils was
constructed in such a way that each word in the list (e.g.,
boat) was associated with a number of minimally different
foils (e.g., moat, goat). The test words were embedded
in short semantically anomalous sentences, with three test
words per sentence (e.g., the boat is reaping the time). The
structure of sentences is as follows: “THE noun1 IS verb-ing
THE noun2.”

Note that, unlike Kent et al. [13] who used exclusively
monosyllabic words, Menendez-Padial et al. [7] in the
Nemours test materials included infinitive verbs in which the
final consonant of the first syllable of the infinitive could
be the phoneme of interest. That is, the /p/ of reaping
could be tested with foils such as reading and reeking.
Additionally, the database contains two connected-speech
paragraphs produced by each of the eleven speakers.

4. Speech-Enabled Systems to Correct
Dysarthria and SSD

4.1. Overall System. Figure 1 shows the system we propose
to recognize and resynthesize both dysarthric speech and
speech affected by SSD. This system is speaker-dependent
due to the nature of the speech and the limited amount of
data available for training and test. At the recognition level
(ASR), the system uses in the case of dysarthric speech a
variable Hamming window size for each speaker. The size
giving the best recognition rate will be used in the final
system. Our interest to frame length is justified by the fact
that duration length plays a crucial role in characterizing
dysarthria and is specific for each speaker. For speaker with
SSD, a regular frame length of 30 milliseconds is used
advanced by 10 milliseconds. At the synthesis level (Text-
To-Speech), the system introduces a new technique to define
variable units, a new concatenating algorithm and a new
grafting technique to correct the speaker voice and make
it more intelligible for dysarthric speech and SSD. The
role of concatenating algorithm consists of joining basic
units and producing the desired intelligible speech. The bad
units pronounced by the dysarthric speakers are indirectly
identified by the ASR system and then need to be corrected.
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Source speech

Target speech

Text (utterance)

TTS (speech synthesizer)

Grafted units

Grafting
technique

- Good units
- Bad units

Normal speaker:
- All units

New concatenating algorithm

ASR (phone, word recognition)

Figure 1: Overall system designed to help both dysarthric speakers
and those with SSD.

(a) At the beginning: DH AH

AE_SH_IH

(b) In the middle: AH B AE

(c) At the end: AE TH

Figure 2: The three different segmented units of the dysarthric
speaker BB.

Therefore, to improve them we use a grafting technique that
uses the same units from a reference (normal) speaker to
correct poorly pronounced units.

4.2. Unit Selection for Speech Synthesis. The communication
system is tailored to each speaker and to the particularities of
his speech disorder. An efficient alternative communication
system must take into account the specificities of each
patient. From our point of view it is not realistic to target
a speaker independent system that can efficiently tackle the

different varieties of speech disorders. Therefore, there is no
rule to select the synthesis units. The synthesis units are based
on two phonemes or more. Each unit must start and/or finish
by a vowel (/a/, /e/ . . . or /i/). They are taken from the speech
at the vowel position. We build three different kinds of units
according to their position in the utterance.

(i) At the beginning, unit must finish by a vowel
preceded by any phoneme.

(ii) In the middle, unit must start and finish by a vowel.
Any phoneme can be put between them.

(iii) At the end, unit must start by a vowel followed by any
phoneme.

Figure 2 shows examples of these three units. This technique
of building units is justified by our objective which consists
of facilitating the grafting of poorly pronounced phonemes
uttered by dysarthric speakers. This technique is also used to
correct the poorly pronounced phonemes of speakers with
SSD.

4.3. New Concatenating Algorithm. The units replacing the
poorly pronounced units due to SSD or dysarthria are
concatenated at the edge starting or ending of vowels
(quasiperiodic). Our algorithm always concatenates two
periods of the same vowel with different shapes in the time
domain. It concatenates /a/ and /a/, /e/ and /e/, and so
forth. For ear perception two similar vowels, following each
other, sound the same as one vowel, even their shapes are
different [28] (e.g., /a/ followed by /a/ sounds as /a/). Then,
the concatenating algorithm is as follow.

(i) Take one period from the left unit (LP).

(ii) Take one period from the right unit (RP).

(iii) Use a warping function [29] to convert LP to RP in
the frequency domain, for instance, a simple one is
Y = aX+b. We consider in this conversion the energy
and fundamental frequency on both periods. The
conversion adds necessary periods between two units
to maintain a homogenous energy. Figure 3 shows
such a general warping function in the frequency
domain.

(iv) Each converted period is followed by an interpolation
in the time domain.

(v) The added periods are called step conversion number
control. This number is necessary to fix how many
conversions and interpolations are necessary between
two units.

Figure 4 illustrates our concatenation technique in an exam-
ple using two units: /ah//b//ae/ and /ae//t//ih/.

4.4. Grafting Technique to Correct SSD and Dysarthric Speech.
In order to make dysarthric speech and speech affected by
SSD more intelligible, a correction of all units containing
those phonemes is necessary. Thus, a grafting technique is
used for this purpose. The grafting technique we propose
removes all poorly or not pronounced phonemes (silence)
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Target spectrum
(target period. e.g. AH)

Source spectrum
(source period. e.g. AH)

Wraping function

π0.5π0
0

0.5π

π

Figure 3: The warping function used in the frequency domain.

AE_SH_IH
right unit

AE_SH_IH
right unit

AH_B_AE
left unit

AH_B_AE
left unit

One right
period

102 points 91 points

One left
period

Before concatenation

After concatenation

After interpolations and conversions
8 period added

1 3, 4, 5 2

 |  |  |  |  |  |  |102 100 99 97 96 94 93 91

Figure 4: The proposed concatenating algorithm used to link two
units: /AH B AE/ and /AE SH IH/.

following or preceding the vowel from the bad unit, and
replaces them with those from the reference speaker. This
method has the advantage to provide a synthetic voice that
is very close to the one of the speaker. Corrected units are
stored in order to be used by the alternative communication
system (ASR+TTS). A smoothing at the edges is necessary
in order to normalize the energy [29]. Besides this, and
in order to dominate the grafted phonemes and hear the
speaker with SSD or dysarthria instead of normal speaker, we
must lower the amplitude of those phonemes. By iterating
this mechanism, we make the energy of unit vowels rising
and the grafted phonemes falling. Therefore, the vowel
energy on both sides dominates and makes the original
voice dominating too. The grafting technique is performed
according the following steps.

(a) The bad unit and spectrogram before grafting: IH Z W IH

Left phonemes 
(IH_Z)

Grafted phonemes 
(Z_W)

Original from
normal speaker

Amplitude lowered by 34%

Right phonemes 
(W_IH)

Periods added by
concatenating algorithm

(b) Grafting technique steps

(c) The corrected unit after grafting and spectrogram: IH Z W IH

Figure 5: Grafting technique example correcting the unit
/IH/Z/W/IH/.

1st step. Extract the left phonemes of the bad unit (vowel +
phoneme) from the speaker with SSD or dysarthria.

2nd step. Extract the grafted phonemes of the good unit from
the normal speaker.

3rd step. Cut the right phonemes of the bad unit (vowel +
phoneme) from the speaker with SSD or dysarthria.

4th step. Concatenate and smooth the parts above obtained in
the three first steps.

5th step. Lower the amplitude of signal obtained in step 2, and
repeat step 4 till we have a good listening.

Figure 5 illustrates the proposed grafting on an example
using the unit /IH/Z/W/IH/ where the /W/ is not pro-
nounced correctly.

4.5. Impact of the Language Model on ASR of Utterances with
SSD. The performance of any recognition system depends
on many factors, but the size and the perplexity of the
vocabulary are among the most critical ones. In our systems,
the size of vocabulary is relatively small since it is very
difficult to collect huge amounts of pathologic speech.
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A language model (LM) is essential for effective speech
recognition. In a previous work [30], we have tested the
effect of the LM on the automatic recognition of accented
speech. The results we obtained showed that the introduction
of LM masks numerous pronunciation errors due to foreign
accents. This leads us to investigate the impact of LM on
errors caused by SSD.

Typically, the LM will restrict the allowed sequences of
words in an utterance. It can be expressed by the formula
giving the a priori probability, P(W):

P(W) = p(w1, . . . ,wm)

= p(w1)
m∏

i=2

p

⎛
⎜⎝wi | wi−n+1, . . . ,wi−1︸ ︷︷ ︸

n−1

⎞
⎟⎠,

(1)

where W = w1, . . . ,wm is the sequence of words. In the n-
gram approach described by (1), n is typically restricted to
n = 2 (bigram) or n = 3 (trigram).

The language model used in our experiments is a
bigram, which mainly depends on the statistical numbers
that were generated from the phonetic transcription. All
input transcriptions (labels) are fed to a set of unique integers
in the range 1 to L, where L is the number of distinct labels.
For each adjacent pair of labels i and j, the total number of
occurrences O(i, j) is counted. For a given label i, the total
number of occurrences is given by

O(i) =
L∑

j=1

O
(
i, j
)
. (2)

For both word and phonetic matrix bigrams, the bigram
probability p(i, j) is given by

p
(
i, j
) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α
O
(
i, j
)

O(i)
, if O(i) > 0,

1
L

, if O(i) = 0,

β, otherwise,

(3)

where β is a floor probability, and α is chosen to ensure that

L∑

j=1

p
(
i, j
) = 1. (4)

For back-off bigrams, the unigram probablities p(i) are given
by

p(i) =

⎧
⎪⎪⎨
⎪⎪⎩

O(i)
O

, if O(i) > γ,

γ

O
, otherwise,

(5)

where γ is unigram floor count, and O is determined as
follows:

O =
L∑

j=1

max
[
O(i), γ

]
. (6)

The backed-off bigram probabilities are given by

p
(
i, j
) =

⎧
⎪⎨
⎪⎩

(
O
(
i, j
)−D

)

O(i)
, if O

(
i, j
)
> θ,

b(i)p
(
j
)
, otherwise,

(7)

where D is a discount, and θ is a bigram count threshold.
The discount D is fixed at 0.5. The back-off weight b(i) is
calculated to ensure that

L∑

j=1

p
(
i, j
) = 1. (8)

These statistics are generated by using the HLStats function,
which is a tool of the HTK toolkit [31]. This function
computes the occurrences of all labels in the system and
then generates the back-off bigram probabilities based on
the phoneme-based dictionary of the corpus. This file counts
the probability of the occurrences of every consecutive
pairs of labels in all labelled words of our dictionary. A
second function of HTK toolkit, HBuild, uses the back-
off probabilities file as an input and generates the bigram
language model. We expect that the language model through
both unigram will correct the nonword utterances. For
instance, if at the phonetic level HMMs identify the word
“fwee” (instead of “free”), the unigram will exclude this word
because it does not exist in the lexicon. When SSD involve
realistic words as in the French words “crée” (create) and
“clé” (key), errors may occur, but the bigram is expected to
reduce them. Another aspect that must be taken into account
is the fact that the system is trained only by the speaker
with SSD. This yields to the adaptation of the system to the
“particularities” of the speaker.

5. Experiments and Results

5.1. Speech Recognition Platform. In order to evaluate the
proposed approach, the HTK-based speech recognition
system described in [31] has been used throughout all exper-
iments. HTK is an HMM-based speech recognition system.
The toolkit was designed to support continuous-density
HMMs with any numbers of state and mixture components.
It also implements a general parameter-tying mechanism
which allows the creation of complex model topologies
to suit a variety of speech recognition applications. Each
phoneme is represented by a 5-state HMM model with
two nonemitting states (1st and 5th state). Mel-Frequency
cepstral coefficients (MFCCs) and cepstral pseudoenergy
are calculated for all utterances and used as parameters
to train and test the system [8]. In our experiments, 12
MFCCs were calculated on a Hamming window advanced
by 10 milliseconds each frame. Then, an FFT is performed
to calculate a magnitude spectrum for the frame, which
is averaged into 20 triangular bins arranged at equal Mel-
frequency intervals. Finally, a cosine transform is applied
to such data to calculate the 12 MFCCs. Moreover, the
normalized log energy is also found, which is added to the
12 MFCCs to form a 13-dimensional (static) vector. This
static vector is then expanded to produce a 39-dimensional
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Figure 6: Block diagram of the PESQ measure computation [32].

vector by adding first and second derivatives of the static
parameters.

5.2. Perceptual Evaluation of the Speech Quality (PESQ)
Measure. To measure the speech quality, one of the reliable
methods is the Perceptual Evaluation of Speech Quality
(PESQ). This method is standardized in ITU-T recommen-
dation P.862 [33]. PESQ measurement provides an objective
and automated method for speech quality assessment. As
illustrated in Figure 6, the measure is performed by using an
algorithm comparing a reference speech sample to the speech
sample processed by a system. Theoretically, the results can
be mapped to relevant mean opinion scores (MOSs) based
on the degradation of the sample [34]. The PESQ algorithm
is designed to predict subjective opinion scores of a degraded
speech sample. PESQ returns a score from 0.5 to 4.5, with
higher scores indicating better quality. For our experiments
we used the code provided by Loizou in [32]. This technique
is generally used to evaluate speech enhancement systems.
Usually, the reference signal refers to an original (clean)
signal, and the degraded signal refers to the same utterance
pronounced by the same speaker as in the original signal
but submitted to diverse adverse conditions. The idea comes
to use the PESQ algorithm since for the two databases a
reference voice is available. In fact, the Nemours waveform
directories contain parallel productions from a normal adult
male talker who pronounced exactly the same sentences
as those uttered by the dysarthric speakers. Reference
speakers and sentences are also available for the Acadian
French corpus of pathologic speech. These references and
sentences are extracted from the RACAD corpus we have
built to develop automatic speech recognition systems for
the regional varieties of French spoken in the province of
New Brunswick, Canada [35]. The sentences of RACAD are
the same as those used for recording pathologic speech.
These sentences are phonetically balanced, which justifies
their use in the Acadian French corpora we have built for
both normal speakers and speakers with speech disorders.
The PESQ method is used to perceptually compare the
original pathologic speech with the speech corrected by our
systems. The reference speech is taken from the normal
speaker utterances. In the PESQ algorithm, the reference and
degraded signals are level-equalized to a standard listening
level thanks to the preprocessing stage. The gain of the two
signals is not known a priori and may vary considerably.

In our case, the reference signal differs from the degraded
signal since it is not the same speaker who utters the
sentence, and the acoustic conditions also differ. In the
original PESQ algorithm, the gains of the reference, degraded
and corrected signals are computed based on the root mean
square values of band-passed-filtered (350–3250 Hz) speech.
The full frequency band is kept in our scaled version of
normalized signals. The filter with a response similar to
that of a telephone handset, existing in the original PESQ
algorithm, is also removed. The PESQ method is used
throughout all our experiments to evaluate synthetic speech
generated to replace both English dysarthric speech and
Acadian French speech affected by SSD. The PESQ has the
advantage to be independent of listeners and number of
listeners.

5.3. Experiments on Dysarthric Speech. Four dysarthric
speakers of the Nemours database are used for the evaluation
of ASR. The ASR uses vectors contained in varying Hamming
Windows. The training is performed on a limited amount
of speaker specific material. A previous study showed that
ASR of dysarthric speech is more suitable for low-perplexity
tasks [14]. A speaker-dependent ASR is generally more
efficient and can reasonably be used in a practical and useful
application. For each speaker, the training set is composed
of 50 sentences (300 words), and the test is composed of 24
sentences (144 words). The recognition task is carried out
within the sentence structure of the Nemours corpus. The
models for each speaker are triphone left-right HMMs with
Gaussian mixture output densities decoded with the Viterbi
algorithm on a lexical-tree structure. Due to the limited
amount of training data, for each speaker, we initialize
the HMM acoustic parameters of the dependent model
randomly with the reference utterances as baseline training.

Figure 7 shows the sentence “The bin is pairing the tin”
pronounced by the dysarthric speaker referred by his initials,
BK, and the nondysarthric (normal) speaker. Note that the
signal of the dysarthric speaker is relatively long. This is
due to his slow articulation. As for standard speech, to
perform the estimation of dysarthric speech parameters,
the analysis should be done frame-by-frame and with
overlapping. Therefore, we carried out many experiments
in order to find the optimal frame size of the acoustical
analysis window. The tested lengths of these windows are
15, 20, 25, and 30 milliseconds. The determination of the
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frame size is not controlled only by the stationarity and
ergodicity condition, but also by the information contained
in each frame. The choice of analysis frame length is a
trade-off between having long enough frames to get reliable
estimates (of acoustical parameters), but not too long so
that rapid events are averaged out [8]. In our application
we propose to update the frame length in order to control
the smoothness of the parameter trajectories over time.
Table 1 shows the recognition accuracy for different lengths
of Hamming window and the best result (in bold) obtained
for BB, BK, FB, and MH speakers. These results show that the
recognition accuracy can increase by 6% when the window
length is doubled (15 milliseconds to 30 milliseconds). This
leads us to conclude that, in the context of dysarthric speech
recognition, the frame length plays a crucial role. The average
recognition rate for the four dysarthric speakers is about
70%, which is a very satisfactory result. In order to give
an idea about the suitability of ASR for dysarthric speaker
assistance, 10 human listeners who have never heard the
recordings before are asked to recognize the same dysarthric
utterances as those presented to the ASR system. Less than
20% of correct recognition rate has been obtained. Note that
in a perspective of a complete communication system, the
ASR is coupled with speech synthesis that uses a voice that
is very close to the one of the patient thanks to the grafting
technique.

The PESQ-based objective test is used to evaluate
the Text-To-Speech system that aimed at correcting the
dysarthric speech. Thirteen sentences generated by the TTS,
for each dysarthric speaker, are evaluated. These sentences
have the same structure as those of the Nemours database
(THE noun1 IS verb-ing THE noun2). We used the combi-
nation of 74 words and 34 verbs in “ing” form to generate
utterances as pronounced by each dysarthric speaker in
Nemours database. We also generate random utterances
that have never been pronounced. The advantage of using
PESQ for evaluation is that it generates an output Mean
Opinion Score (MOS) that is a prediction of the perceived
quality that would be assigned to the test signal by auditors
in a subjective listening test [33, 34]. PESQ determines
the audible difference between the reference and dysarthric
signals. The PESQ value of the original dysarthric signal is
computed and compared to the PESQ of the signal corrected
by the grafting technique. The cognitive model used by
PESQ computes an objective listening quality MOS ranging
between 0.5 and 4.5. In our experiments, the reference signal
is the normal utterance which has the code JP prefixed to the
filename of dysarthric speaker (e.g., JPBB1.wav), the original
test utterance is the dysarthric utterance without correction
(e.g., BB1.wav), while the corrected utterance is generated
after application of the grafting technique. Note that the
designed TTS system can generate sentences that are never
pronounced before by the dysarthric speaker thanks to the
recorded dictionary of corrected units and the concatenating
algorithm. For instance, this TTS system can easily be
incorporated in a voicemail system to allow the dysarthric
speaker to record messages with its own voice.

The BB and BK dysarthric speakers who are the most
severe cases were selected for the test. The speech from
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(a) “The bin is pairing the tin” uttered by the dysarthric speaker BK
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(b) “The bin is pairing the tin” uttered by the normal speaker

Figure 7: Example of utterance extracted from the Nemours
database.

the BK speaker who had head Trauma and is quadriplegic
was extremely unintelligible. Results of the PESQ evaluation
confirm the severity of BK dysarthria when compared with
the BB case. Figure 8 shows variations of PESQ for 13
sentences of the two speakers. The BB speaker achieves 2.68
and 3.18 PESQ average for original (without correction) and
corrected signals, respectively. The BK speaker affected by the
most severe dysarthria achieves 1.66 and 2.2 PESQ average
for the 13 original and corrected utterances, respectively. This
represents an improvement of, respectively, 20% and 30% of
the PESQ of BB and BK speakers. These results confirm the
efficacy of the proposed method to improve the intelligibility
of dysarthric speech.

5.4. Experiments on Acadian French Pathologic Utterances.
We carried out two experiments to test our assistive speech-
enabled systems. The first experiment assessed the ASR
general performance. The second investigated the impact of
a language model on the reduction of errors due to SSD.
The ASR was evaluated using data of three speakers, two
females and one male, who substitute /k/ by /a/, /s/ by /th/
and /r/ by /a/ and referred to F1, F2, and M1, respectively.
Experiments involve a total of 150 sentences (1368 words)
among which 60 (547 words) were used for testing. Table 2
presents the overall system accuracies of the two experiments
in both word level (using LM) and phoneme level (without
using any LM) by considering the same probability of any
two sequences of phonemes. Experiments are carried out
by using a triphone left-right HMM with Gaussian mixture
output densities decoded with the Viterbi algorithm on
a lexical-tree structure. The HMMs are initialized with
the reference speakers’ models. For the considered word
units, the overall performance of the system is increased
by around 38%, as shown in Table 2. Obviously when the
LM is introduced, better accuracy is obtained. When the
recognition performance is analyzed at the phonetic level, we
were not able to distinguish which errors are corrected by the
language model from those that are adapted in the training
process. In fact, the use of the speaker-dependent system with
LM masks numerous pronunciation errors due to SSD.
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Table 1: The ASR accuracy using 13 MFCCs and their first and second derivatives and variable Hamming window size.

Dysarthric Recognition accuracy (%) for different Hamming window size

Speaker 15 milliseconds 20 milliseconds 25 milliseconds 30 milliseconds

BB 62.50 63.89 65.28 68.66

BK 52.08 55.56 56.86 54.17

FB 74.31 76.39 76.39 80.65

MH 74.31 71.53 70.14 72.92
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Figure 8: PESQ scores of original (degraded) and corrected utterances pronounced by BK and BB dysarthric speakers.
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Figure 9: PESQ scores of original (degraded) and corrected utterances pronounced by F1 and M1 Acadian French speakers affected by SSD.

Table 2: Speaker dependent ASR system performance with and without language model and using the Acadian French pathologic corpus.

Speaker F1
(423/161)

F2
(517/192)

M1
(428/194)

F1
(423/161)

F2
(517/192)

M1
(428/194)

Corr (%) 43.09% 40.87% 46.45% 81.58% 78.44% 83.48%

Del (%) 4.38% 4.96% 4.02% 3.13% 3.26% 2.88%

Sub (%) 52.22% 54.58% 48.47% 15.04% 16.57% 14.55%

Without bigram-based language model With bigram-based language model
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The PESQ algorithm is used to objectively evaluate the
quality of utterances after correcting the phonemes. The
results for F1 who substitutes /k/ by /a/ and M1 who
substitutes /r/ by /a/, for thirteen sentences, are given in
Figure 9. Even if it is clear that the correction of this sub-
stitution disorder is done effectively and is very impressive
for listeners, the PESQ criterion does not clearly show this
drastic improvement of pronunciation. For speaker F1, 3.76
and 3.98 of PESQ average have been achieved for the thirteen
original (degraded) and corrected utterances, respectively.
The male speaker M1 achieves 3.47 and 3.64 of PESQ average
for the original and corrected utterances, respectively. An
improvement of 5% in the PESQ is achieved for each of the
two speakers.

6. Conclusion

Millions of people in the world have some type of com-
munication disorder associated with speech, voice, and/or
language trouble. The personal and societal costs of these
disorders are high. On a personal level, such disorders affect
every aspect of daily life. This motivates us to propose a
system which combines robust speech recognition and a
new speech synthesis technique to assist speakers with severe
speech disorders in their verbal communications. In this
paper, we report results of experiments on speech disorders.
We must underline the fact that very few studies have been
carried out in the field of speech-based assistive technologies.
We have also noticed the quasiabsence of speech corpora of
pathologic speech. Due to the fact that speech pathologies
are specific to each speaker, the designed system is speaker-
dependant. The results showed that the frame length played
a crucial role in the dysarthric speech recognition. The best
recognition rate is generally obtained when the Hamming
window size is greater than 25 milliseconds. The synthesis
system, built for two selected speakers characterized by a
severe dysarthria, improved the PESQ by more than 20%.
This demonstrates that the grafting technique we proposed
considerably improved the intelligibility of these speakers.
We have collected data of Acadian French pathologic speech.
These data permit us to assess an automatic speech recog-
nition system in the case of SSD. The combination of using
both of the language model and the proposed grafting
technique has been proven effective to completely remove the
SSD errors. We train the systems using MFCCs, but currently
we are investigating the impact of using other parameters
based on ear modeling, particularly in the case of SSD.

Acknowledgments

This research was supported by grants from the Natural
Sciences and Engineering Research Council of Canada
(NSERC), the Canadian Foundation for Innovation (CFI),
and the New Brunswick Innovation Foundation (NBIF) to
Sid-Ahmed Selouani (Université de Moncton). The authors
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