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The uncertainty principle plays an important role in mathematics, physics, signal processing, and so on. Firstly, based on definition
of the linear canonical transform (LCT) and the traditional Pitt’s inequality, one novel Pitt’s inequality in the LCT domains is
obtained, which is connected with the LCT parameters a and b. Then one novel logarithmic uncertainty principle is derived from
this novel Pitt’s inequality in the LCT domains, which is associated with parameters of the two LCTs. Secondly, from the relation
between the original function and LCT, one entropic uncertainty principle and one Heisenberg’s uncertainty principle in the LCT
domains are derived, which are associated with the LCT parameters a and b. The reason why the three lower bounds are only
associated with LCT parameters a and b and independent of ¢ and d is presented. The results show it is possible that the bounds

tend to zeros.
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1. Introduction

The uncertainty principle is one elementary principle in
signal processing [1-10] and physics [11-13]. For one
given function f(t) € L'Y(R) n L*(R) (without loss of
generalization, assuming || f (¢)|l, = 1 in the following of this
paper) and its Fourier transform (FT) F(u), the product has
the lowest bound

Atz-Auflzj ) | (t — to) f (1) | dt
- (1)
|l ) F P>

where t; = ftitlf(t)lzdt, uo = [T ulF(u)|*du, Af is time
spread, and Au?, is frequency spread. Let ty = 0 (in our paper
for given f(t) we assume fy = 0) and uy = 0, and the essence
of uncertainty principle will not change [1-10] . However (1)
can be written as

AP - Al = [ 1t (1) | de
o (2)

+00
. J IuF(u)Izdu >

=

In this paper we will give three uncertainty principles
in the LCT domains: one logarithmic uncertainty principle
based on Pitt’s inequality [14-16]; one entropic uncertainty
principle; one Heisenberg’s uncertainty principle. Note that
some of our results of this article are the extension and
generality of our recent works [17-19], and it is likely
that there is part of similarity in the process of derivation.
However, the results of this paper and most of the derivation
are different and novel. First, Heisenberg’s uncertainty in the
recent works, such as [18-22], has been involved. However,
the results of [18, 22] only hold true for the real signals (not
for complex signals). In addition, the result of [22] is only the
first one of the three cases in [18]. In [19], Pitt’s inequality
and logarithmic uncertainty principle on LCT have not been
involved. Moreover, the derivations here are different from
that in [19]. On the other hand, the results in [20, 21] are
only some special cases of those in [18, 19, 22] for special
parameters.

The LCT is taken as the generalization of the FRFT
and the Fresnel transform and has been widely studied
and applied [9, 23-27] up till now. As a generalization
of the traditional FT and the FRFT, the LCT has some
properties with its transformed parameter. For more details,



see [9,23-27] and so forth. We now briefly review its
definition and some basic properties.

For given function f(t) € L'(R)nL*(R) and || f(#)[l, = 1
(in this article supposing this always holds), its definition of
the LCT [9] is

Flabea () = Fapea (F0) = [ F(OKapeatus Dt

izirb . eiduz/zb'[i e—iut/beiut2/2bf(t)dt
= b#0,ad —bc=1
\/a . ei‘d“2/2f(du), b =0,

(3)

where a, b, c,d € R.
From the definition, it is easily found that

F(az,bz,Cz,dz){F(al,bl;cl,dl) (f(t))} = F(ﬂ,byﬂ,d) (f(t))’ (4)

ab a by ap by .. .
where = . , and i is complex unit.
cd o d a d

For traditional FT which is a special case of (a,b,¢,d) =
(0,1,—1,0), we have

Fo,1,-10(u) = F(u) = \/gr_cmf(t)eimdt’
f(t) = \/gjio]:(u)ei“‘du'

This paper is organized as follows. Section 2 yields the
novel Pitt’s inequality and the logarithmic uncertainty prin-
ciple in the LCT domains. In Section 3 one novel entropic
uncertainty principle is derived. In Section 4 Heisenberg’s
uncertainty principle is obtained. Finally, Section5 con-
cludes our paper.

(5)

2. New Pitt’s Inequality and Logarithmic
Uncertainty Principle on LCT

Inequalities [3, 14-16, 28, 29] are a basic tool in the study of
Fourier analysis or information theory, and many important
theorems or principles are derived from them. One of them
is the Pitt’s inequality by Beckner [14-16]:

[ e < [ it fo

where My = [T((1 = 1)/4)/T((1 +1)/4)]?

V127 [T, f (e dt.
First we assume a, by,
Set

,0<A<1,F(u) =

cydieRand b;#0 (1 =1,2,3).

G(u) = F(al,b1,c1,d1)(u) exp<_ldz3;>

= Fla,by,c1,d)) (f(t))’ (7)

gt =, /%meG(u)ei“tdu.

F(alyhl;cl;dl)(u)
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Noting the fact that |Fia,p,c.4,) (1) exp(—idsu?/2b3)| =
[Fay,b1,c1,dy) (1) | holds, we easily obtain

| G0 P = [ 1l R (0 s )

From (6) and (8), we have
| a0 P < 2 [ 1 g(o) . 9

Noting g(t), we have
00 *© A
21 2 _ i i)
J_w‘” lg(®)] dt—J_m b3‘ ‘g<b3

) e ()

Here from the definition of FT we have

l | znf G(u)ezut/b3 du

Substituting Fi, p,.c,.d,) (#)e”@%/25 for G(u) in (11) and
using definition (3), we get

()
g b,
2
[1 (= . .
_ ' EJ F(ul,bl,cl,dl)(u)e_ld3u2/2b3€1u[/b3du

B —1/2ib37ffi°mF(a1,bl,cl,d1)(u) e*id3u2/2b3 el‘ut/b3e*l'113[2/2h3 du 2
exp(—iast2/2bs)\/—1/ibs

2
-1 0 id.2 ; ia 12
/ i Flaib e d u)e*ld3u /2bs ezut/b3efta3t /2bs3 du
21b37’[ . (a,b1,c1, 1)(

= |bs] |F(d3,—ba,—63,aa) (F(al,bl,cl,dl))(t) |2'

2t

bs

2

dt.

(11)

‘g by

2

=|bs|

(12)
Thus we obtain

| it igw

1
bl

(13)

2
J 11| Fdy s, -cra0) (Flan o endn)) (8) | .
Set t = v, namely,

<o 2
J |M| A|F(a1,bl,51,d1)(u)| du

M,

= |b| J |V| |Fd3 —bs, C3ﬂ3)(F(u1,bl,Cl,d1))(V)|2dv'
3

(14)
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Let [“2 bz] = [ 4 7b3] . [“1 bl]have

o d> —C3 as ¢ dr

Flay,—by,~cy,a3) (F(tlhbl,cl,dl)(v)) = F(uz,bz,cz,dz)(v)

(15)
by = —a1b, + axb.
Comparing (14) with (15), we have
|1 Foana )] du
(16)

M)y,

< 71[ |V| |F(a2,h2)cz>dz)(v) | dV'
laiby — axby|”J -~

We can draw the conclusion that (16) is one extended
Pitt’s inequality in the LCT domains. It is easily found that
this inequality is associated with LCT parameter a,b. Why
do not the parameters ¢, d have relation with the extended
Pitt’s inequality in the LCT domains? From definition (3)
of the LCT, we find that the parameters ¢,d only play the
role of scaling and modulation. That the modulation has no
effect on our (16) has been found from (8) and (12) directly.
From the property Fia,p,c.a)(/pf (t/p)) = Flapvip.cprp)(f (£))s
we can easily find that scaling also has no effect on (16).

From definition (1) when (ai, b1,¢1,d;) = (0,1,—1,0)
and (ay, by, 00, d>) = (1,0,0,1), (16) reduces to (6). When
((11, b],Cl,dl) = (1, 0,0, 1) and (Cl2, bz, C2, dz) = (0, 1, —1,0),
(16) reads

[t s rd = [ wtiFra a7)

Clearly, (17) is the other version of traditional Pitt’s
inequality. This is easily explained from the fact that f(¢) is
also the FT of F(u).

Particularly, if A = 0, from (16) we can get Parseval’s
equality [9] associated with the LCT:

* 2 * 2
| P Pdu= | Fantay @] e (19)

In the following, we will achieve one logarithmic uncertainty
principle in the LCT domains.

Set SV) = larby — @by M= [ul ™| Fay .oy (W) *du —
My S |V Fayborconds) (V) 12 dv.
Then we have

S'(\) = larby — ayby |* In(larby — azby|)
X J_ |u|_A|F(a1,b1,c1,d1)(u)|2du
— larby — ayby|*

. (19
[ 1 ) | Fo .00 0

- M;\J WM n(v]) | Fiaybycrdn (v) | 2dv

- (MA),J_ |V|A |F(ﬂ2,bz,62,d2)(v) |2dV>

where (M))" = (—(1/2)T((1-A)/4)T" ((1-1)/4)T?((1+A)/4)—
(1/2)T((1+A)/4)T" (1 + A)/4)T2((1 — A)/4))/TH(1 + 1)/4).
Since S(A) < 0 when 0 < A < 1 and the fact S(0) = 0
and [% [Fiayprenan) @) Pdu = [% | Faypyonan (V) Pdv = 1,
we obtain the following inequality in mathematics [11, 30].

S'(0+) < 0. (20)
Namely,

o 2
I Inful | Faypre,d0) (1) | “du

+ J 10 [v] | Fiaypycr (v) | 2dv 21)

I'(1/4)
T(1/4)

> ln\albz - a2h1| +
From (21), we have

* 2
J ln|u|2|F(ﬂ1,b1,Cl,d1)(u)| du

+ J In [vI? | Fayrc) (V) | *dv (22)

2I7(1/4)
I(1/4) -

Clearly, the bound of the inequality (21) (or (22)) is con-
nected with the LCT parameters a and b and independent of

¢ and d.
If

[az bz] [9 9- 1]

= (23)
(%] dz 1 1
_ 217 (1/4)
9_\/_ r(1/4) ° (24)
a) b1 0 -1 5

C1 d1 a 1 1 ’ ( 5)

In(laiby — axb1 I°) + (217 (1/4))/(T(1/4)) = 0. (26)

> ln(‘a]bz — a2b1 |2) +

where

It means that the bound of this inequality may be zero.
When (ay, bi,c1,d;) = (cos a,sin a, —sin a, cos «) and
(az, b2, ¢2,dy) = (cos B,sin B, —sin S, cos f3), (22) reads

| wiliEGPdus [ nivE|Ew)|av

(27)
217 (1/4)
r(1/4) -
In comparison with Heisenberg’s uncertainty principle
(28) in two fractional Fourier transform domains [1, 5, 7]:

Zln(|sin(0c—/5)|2) +

[ el R Pau| v B v
(28)
- |sin (a« — )|

4



we find that there is one common term | sin (& — f3) 1% in (27)
and (28). This tells us that in new transformed domains
the new uncertainty principles have relations with the
transform parameters. When (ay, by, ¢1,d;) = (1,0,0,1) and
(az, by, c2,dy) = (0,1,—1,0), (22) reads fo,ow In |t] If(t)\zdt +
[Z In|ul|[E(u)|*du = T'(1/4)/T(1/4), which is the tradi-
tional logarithmic uncertainty principle by Beckner [16].

3. Entropy and Entropic Uncertainty
Principle on LCT

The entropy is introduced by Shannon [31], and it has
become one of the most important measures in information
theory. The entropy has been widely used in many fields such
as physics, communication, mathematics, signal analysis,
and so forth.

The entropy is defined [31, 32] by

E(p(x)) = J p(x) In p(x)dx, (29)

where p(x) is the probability density function of the
variablex.

The entropic uncertainty principle plays one important
role in signal processing and information theory. They are
the extensions of traditional Heisenberg’s uncertainty prin-
ciple from time-frequency analysis to information theory
and physical quantum. The traditional entropic uncertainty
principle have been discussed in many papers such as [6,
10-13]. However, up till now there is no published paper
covering the entropic uncertainty principle connected with
the LCT. The traditional entropic uncertainty principle is
described [6, 11-13] as

- Jio | f()*In |f(t)|2dt—j°° |F(u)|* In |F(u) *du

> In(rre).
(30)

In the following, based on (30), the entropic uncertainty
principle in two LCT domains is derived.

First, similarly we assume aj, b, c;,d; € Rand b;# 0 (I =
1,2,3).

Set

dsu?
G(u) = Fa, b, 1, (1) eXP(—lzb>

= F(al)thl)dl)(f(t))) (31)

g(t) =, /i f : Glu) e du,

Noting the fact that the equation

F(ﬂl)bhﬁ)dl)(u)

dsu?
F(ﬂl,bl,cl,dl)(u) exp <_123b3) ‘ = |F(fl1,b|,fhd1)(u) | (32)

EURASIP Journal on Advances in Signal Processing

holds, we easily get

f 1G(w) P In | G(u) *du
o (33)
= J_ | Ftavtn.cnt ()| 10 | Foay o () | *d.

From (30) and (33), we have

,J:|g(t)|21n|g(t);2dt

® 34
- J’7 |F(a1,bl,61»d1)(u)|21n |F(a1»h1)61>d1)(u)|2du ( )

> In(me).

Note the property of scaling:

[ Istw 1m0 ar

-l LG [ e(5)
~ |bs] foogbs ngb3

Thinking about the definition of FT.

iut/bs
', / 271,[ G(u)e du

Similarly with (12), substituting Fa, p,.c,.d,) (1)e 4472 for
G(u) in (36) and using definition (3), we get

2
? 1 (” ds12/2bs iut/b
—1i 2 iut,
= J F(“l»bl)cbdl)(u)e s Selu/ Sdu
21 ) —w

2
= |b3| |F(d3ﬁb3ﬁc3,ﬂ3) (F(ﬂl,bl,cl,dl))(t) | .

, 69

dt.

(36)

‘g b3

(37)

Thus we obtain
[ 1s@IP g

1 o0
- |TS|J_ (|b3| |F(d3’—h3:—ﬁ3,ﬂ3) (F(uhb],cl ,dl))(t) | 2) (38)
2
X ln(|b3| |F(d3>*b3f63,ﬂ3) (F(ﬂl,hl,ﬂl,dl))(t) | )dt
Set t = v, then
1 (° 2
- m—[* (|b3| |F(d3,*b3r63>a3) (F(llhbl)Cl)dl))(V) | )
2
X 0 (1631 | Fidy,bs,-cya) (Flar buera) (v) | *) dv

- J |F(a|,hl,61,d|)(u) |2 In |F(al>blsclsdl)(u) | zdu = 11‘1(71’6).
(39)
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Set [“2 bz] = [ ds 71’3] . [”1 Zi],thenwehave

o d> —C3 as (o]

F(dsﬁbsffs)ﬂs) (F(alybl)cl)dl)(v)) = F(uZbeJCLdZ)(V)’

(40)
b3 = —albz + azbl.
Comparing (39) with (40), we have
- J_ |F(az,bz,fz»dz)(v) |2 ll‘l( |F(ﬂz,bz,fz,dz)(v) {2)611/
(41)

h 2 2
- J |F(ﬂ11h1161,d1)(u) | In |F(ﬂ1,b1>fl»d1)(u) | du
>1In (7T€|(11b2 - a2b1|).

Namely, E(|Fa, b)) + E(|Fa,bpca)()?) =
ln(ne\albz - a2b1 |)

Clearly, the entropic uncertainty principle in the LCT
domains (see (41)) is connected with the LCT parameters
a and b and independent of ¢ and d. Why do not the
parameters ¢, d have relation with the entropic uncertainty
principle in the LCT domains? From definition (3) of the
LCT, we find that the parameters ¢,d only play the role
of scaling and modulation. That the modulation has no
effect on our inequality (41) has been found from (33)
and (37) directly. From the property Fiup.ca)(,/pf(t/p)) =
Flap,v/p.cp.dsp) (f (1)), we can easily find that scaling also has no

1 bl
effect on (41) as well as above shown. Similarly, if [a . ] =
1 ax

[0—1] and [ﬂz bz:l _ [l/ne 1/me 71]’ In(relaiby — ashy|) =

11 o d 11
0. It means that the bound of this entropic uncertainty
principle may be zero.

When (ay, by, c1,dy) = (cos a,sin &, — sin @, cos «) and
(a2, b3, ¢2,d2) = (cos B,sin B, —sin f3, cos f), (41) reads

0

- [ B (IR0 F)dy

- J: | Eo(w) ]2 In \Fﬁ(u)fdu (42)

> In(me|sin(a —B)|).

Clearly, (42) is the entropic uncertainty principle in the
fractional Fourier transform domains.

When (ai, by,c1,di) = (1,0,0,1) and (ay, by, c,dy) =
(0,1,-1,0), (41) reduces to the traditional case (30).

4. Heisenberg’s Uncertainty Principle on LCT

As (1), (2) showing, Heisenberg’s uncertainty principle
mainly discusses the product of time spread and frequency
spread. In the same manner as Section 3, in this section,
Heisenberg’s uncertainty principle in the LCT domains is
derived. Without loss of generality, assuming the mean values
of the variables are zeros, namely,

[INGRICIR S ORI

(43)

= |

First, similarly we assume a;, b, ¢c;,d; € R and b;#0 (I =
1,2,3).
Set

2
G(U) = F(ul,bl,cl;dl)(u) eXP<_isz;;) ’

F(“l»blycl)dl)(u) = F(ﬂlublyfl)dl) (f(t))’ (44)

(1) =, /imeG(u)ei“tdu.

Noting the fact that the equation

d
F(ﬂl,bl,cl,dl)(u) exp(_12b3>‘ = |F(ﬂ1,bl,61,d1)(u)| (45)

holds, we easily obtain

+

+o0 ©
j |u|2|G(u>|2du:j 14l | Fia oy () | e, (46)

From (43) and (46), we have

1

+0o0 +0o
J |t|2|g(t)|2dt-J |u|2|F(m,bl,q,d])(u)|2duzZ.

(47)

Through variable’s scaling, we have

+00 ) 2 +00
[ ieplge = |

—0o0

t 2

5| 15(5)
by | 18\ b,

I
s
16517 ) -
Meanwhile noting

‘ (i) T ,/iro G(u)e™/b dy
g b3 a 27'[ — 00

Similarly with (12), substituting F(s, p, ., (#)e @472 for
G(u) in (49) and using definition (3), we get

YR L~ —ids/2bs iut/b

2
= |b3| |F(d3,—b3,—53,a3) (F(a],bl;cbd]))(t) | .

)
(5)

2
dt.

2
(49)

2

(50)

Thus we obtain
+oo 5
[IERECIR

1 +o0 )
|b |2 J |t|2( |F(d3»*b3,*63,ﬂ3) (F(ﬂl,bl,flydl))(t) | )dt
3 — 00
(51)



Set t = v, then get

1 +o0 5
TG |2J 11 (1 Fser-evian) (Fia b)) ()| *) dv
3 — 00

(52)
+0o0 ) 2 1
J Lt * | Flay i) () | “du = T
From (15) and (40), compared (51) with (52), we have
+00 ) )
I [* | Fayby,crnan) () | “du
R 2
J vl (F(az,bz,cz,dz)(v) )dV (53)

> laiby — a2b1|2.
4

Clearly, Heisenberg’s uncertainty principle in the LCT
domains (see (53)) is only connected with the LCT param-
eters a and b and independent of ¢ and d. Why do not the
parameters ¢, d have relation with the entropic uncertainty
principle in the LCT domains? The reasons are the same as
those in Sections 2 and 3. When a, b, — a,b; — 0, the bound
of (53) tends to be zero.

When (ay, by, c1,dy) = (cos a,sin &, — sin &, cos «) and
(a2, b3, ¢2,d2) = (cos B,sin B, —sin f3, cos fB), (53) reads

[ Bt P |

. |sin(oc—ﬁ)|2‘

B 4

—+00

vI? (Fp(v)?)dv

(54)

However (54) is the Heisenberg’s uncertainty principle in
the fractional Fourier transform domains [1, 5, 7, 17]. When
(611, bl,Cl,dl) = (1, 0,0, 1) and (az, bz, C, dz) = (0, 1, —1,0),
(53) reduces to the traditional case (43).

5. Conclusions

Three uncertainty principles associated with the LCT are
presented in this paper. Firstly, from definition of LCT and
the traditional Pitt’s inequality, one novel Pitt’s inequality
in the LCT domains is obtained, which is connected with
the LCT parameters a and b and independent of the LCT
parameters ¢ and d. Then one novel logarithmic uncertainty
principle is derived from this novel Pitt’s inequality in two
LCT domains. Secondly, based on the relation between one
original function and LCT, the entropic uncertainty principle
in two LCT domains is proposed. Thirdly, from the relation
between one original function and its LCT, Heisenberg’s
uncertainty principle in two LCT domains is obtained. Note
that the three lower bounds are only associated with LCT
parameters a and b and independent of ¢ and d. In addition,
the reasons are given. Moreover, one clear observation is
that our three uncertainty principles hold for both real
and complex signals. Our future work includes finding
out how these cases can be generalized to discrete and
multidimensional signals.
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