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We apply the method of frequency-selective excitation waves in excitable media to characterize synchronization phenomena in
interacting complex dynamical systems by measuring coincidence rates of induced excitations. We relax the frequency-selectivity
of excitable media and demonstrate two applications of the method to signals with broadband spectra. Findings obtained from
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indicate that this method can provide an alternative and complementary way to estimate the degree of phase synchronization in
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1. Introduction

Excitable media (EM) are spatially distributed excitable sys-
tems that can rapidly propagate excitations (suprathreshold
impulses) over long distances without damping. Such trav-
eling waves have been observed in many scientific contexts
and—as it is now widely accepted—play an important role
in information processing in many biological systems. EM
are usually modeled as a collection of locally coupled units
with excitable or threshold dynamics [1]. Neighboring units
of the medium interact with each other via diffusion-like
transport processes which, in many cases, results in a spatially
homogeneous steady state. Recent studies extended the
notion of excitability of EM to spatially distributed systems,
whose unperturbed steady state resembles spatiotemporal
chaos. This results in a steady state that actively destroys
long-range spatiotemporal correlations and thus prevents the
propagation of a single excitation. To generate and then to
facilitate a wave-propagation phenomenon, the EM have to
be driven with perturbations of appropriate amplitudes and

certain (resonant) frequencies. Thus, the phenomenon of
frequency-selective excitation waves in EM [2-5] provides a
possible way to extend the conventional amplitude-selective
notion of excitability in dynamical systems. Applying an
unknown signal as a local perturbation to the first unit of
EM and measuring the number of excitations in the last
unit provide a possibility to detect the presence of rhythmic
components in the applied perturbation. Moreover, by
increasing the spatial size of the medium it is possible to
suppress accidental spikes induced in the first unit and thus
to enhance frequency-selectivity of this approach.

The concept of Cellular Neural Networks (CNNs) pro-
vides a solid framework to model and to study pattern
formation and wave propagation phenomena in many
spatially distributed dynamical systems [6-9]. An important
subclass of CNN allows one to approximate the behavior of
reaction-diffusion partial differential equations (PDEs) and
is thus well suited as a framework to model various EM [10].
Probably the most tractable mathematical model of EM is
the FitzHugh-Nagumo (FHN) PDE. The discretized version



of this equation provides a generic mathematical model of
EM and can in principle be implemented in form of reaction-
diffusion CNN.

Despite the many advantages, applications of the method
of frequency-selective excitation waves in EM are limited.
A permanent propagation of excitations in the media
requires—by definition—the presence of rhythmic com-
ponents in the applied perturbation, which limits the
applicability of the method to either monochromatic signals
or signals with sharp peaks in the power spectrum well above
the noise floor. In many field applications, however, one is
often confronted with noisy broadband signals.

The human brain is a complex and nonstationary
dynamical system. It is capable to generate a vast variety
of spatiotemporal patterns that reflect physiologic as well
as pathophysiologic states. Electroencephalography is an
important tool in neuroscientific research and especially in
clinical practice to measure the aforementioned patterns at
a high temporal resolution. Electroencephalography is used
for diagnostic purposes and in the presurgical evaluation
of epilepsy patients. Epilepsy represents one of the most
common neurological disorders, second only to stroke.
The cardinal symptom of this disease is recurrent seizures
that are usually characterized by an abnormal synchronized
firing of neurons involved in the epileptic process. But
even between seizures, the epileptic brain is different from
normal and accompanying alterations seen on the EEG are
often associated with complex characteristic spectral patterns
and changes in the degree of synchronization between EEG
signals. Since these alterations are usually not rigorously
defined and, moreover, are patient specific it is rather difficult
to detect them automatically in EEG recordings. There is
now growing evidence that an improved understanding of
the epileptic process can be achieved through the anal-
ysis of interactions in epileptic brain networks [11] and
further improvements can be expected from time series
analysis technique that allow one to estimate the degree
of synchronization in the human EEG especially in cases
where a high level of noise contaminations cannot be easily
avoided.

In this work we apply the method of frequency-selective
excitation waves in EM to characterize synchronization phe-
nomena in time series from two coupled chaotic oscillators
as well as in multichannel, multiday EEG recordings. For
this purpose we relax the property of frequency-selectivity
of EM by considering media that are composed of only a
few excitable units. With two such media we estimate the
coincidence rate of excitations induced in the last units of
the media due to a local perturbation of the first units with
broadband signals. Our preliminary findings indicate that
this approach provides a reliable estimate of the degree of
phase synchronization between signals.

2. Methods and Data

2.1. Frequency-Selective Induction of Excitation Waves in
Excitable Media. We consider an EM as a diffusively cou-
pled network of resonators, that is, oscillators exhibiting a
transition from their resting states to an oscillatory state via
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a supercritical Hopf-type bifurcation. The FHN oscillator is
a generic example of an excitable oscillator that resides (in its
parameter space) either near a supercritical or a subcritical
Hopf bifurcation [4, 12, 13]. We here model an EM as a chain
of only L = 3 diffusively coupled FHN oscillators with zero-
flux boundary conditions. The equations of motion of the ith
unit read:

1dXi _ Xia—X)(X;—1) - Yi+1
€ dt
+D(Xi + Xi1 —2X;) + @ N
lle = le - in,
€ dt

where € is a time scaling coefficient, J;; is the Kronecker
delta, and 0;(t) denotes an external perturbation. Following
[4] the equations were integrated using a fourth-order
Runge-Kutta algorithm (X;(0) € N (0,0.1)) with step size
dt =0.05, followed by a downsampling to dt=0.5. The
parameters were set in the Canard region near a supercritical
Hopf bifurcation (a=0.1, b=0.015, m =0.015, I = 0.062).
With this choice and without spatial diffusion (D =0) each
unit exhibits low amplitude (subthreshold) oscillations with
a characteristic frequency wiyy =~ 0.2. The time scaling
coefficient € is used to adjust the characteristic frequency of
the model with respect to the external perturbation. A supra-
threshold perturbation leads to an excited state, which is
defined by oscillations (i.e., spikes) that exhibit a significantly
higher amplitude (=~ 0.9) than those of an unperturbed
unit (<0.3), as already shown in [4]. A nonzero diffusive
coupling (D = 0.5) leads to an active desynchronization of all
units [14]. Such a spatiotemporally disordered state of the
EM prevents wave propagation that is induced by a single
short-lasting local supra-threshold perturbation (6;(t) =
Ad(t — ty)) . However, wave propagation is facilitated if the
medium is perturbed locally with a frequency located near
the characteristic frequency of an unperturbed FHN unit
(e.g., 0;(t) = Asin(wt)). The medium thus represents a sort
of narrow band-pass frequency filter exhibiting frequency-
selective firing of the last unit X;. The periodic firing of
the last unit can thus be considered as a detection of
rhythmic components in the perturbation signal applied to
the first unit X;; see (1). To quantify detection of rhythmic
components in the local perturbation of a medium we define
the spike rate C in the dynamics of the last unit X;:

M= > 0X(n)-S),

n=1

where © is the Heaviside step function (@(v) = 0,Vv <
0and ®(v) = 1, Vv > 0), and S denotes a threshold for
the spike amplitude, which we set to $=0.9 in order to
match the spike amplitude of an uncoupled FHN unit. M
counts the number of spikes induced in the last unit of
the medium within a time window that consists of N data



EURASIP Journal on Advances in Signal Processing

0.001

Amplitude (a.u.)

1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

FiGgure 1: Spike rate C in the last unit of a medium composed of
L =3 FHN units. The first unit was perturbed with sine waves of
varying amplitudes and frequencies. The time scaling coefficient €
was set to 10 and time series consisted of N = 5000 data points.

points. The normalization factor M,y defines the maximum
possible number of spikes (i.e., during permanent firing of
the last unit) within the given time window, that is, Mmax =
Nwin/€. Thus, C — 1 indicates detection of rhythmic
components in the local perturbation.

In Figure 1 we show the spike rate C in the last unit of a
medium as a function of amplitude and frequency of a sine
wave that is applied as a local perturbation to the first unit. In
contrast to the results obtained in the original works on this
method [2-5] we observe a rather smooth response over the
frequency range w € (0.5,7) Hz. By increasing the number
of units within the medium and/or decreasing the diffusive
coupling strength D between units it is possible to obtain a
rather sharp resonant peak and thus increase the frequency-
selectivity of the method [4].

Since we aim at approximating the degree of phase
synchronization between two signals (consisting of N data
points each) we here consider two identical EM, say A and
B, each tuned to the same characteristic frequency wi, =
wB, = win [15]. According to (1) only the first units (i= 1)
of the media are perturbed by the signals. Let us assume that
the signals contain rhythmic components with frequency
W = Win. A perturbation of the media will then lead to
waves propagating throughout the media. The coincidence
between spikes generated by the last units (i = L) of media A
and B per time step can be used to approximate the degree of
phase synchronization between rhythmic components in the
applied signals. We define

2M.(A, B)
Mmax(A) + Minax(B) ’

C(A,B) =

, 3)
M.(A,B) = %Z(S(Xf‘(n) + XE(n) - PS)

n=1

where S again denotes a threshold for the spike amplitude,
§ is the Dirac delta function, and P is a coincidence
threshold with 1<P <2. This definition implies that by

setting the limiting case P = 2 the coincidence rate C(A, B)
will provide an estimate of zero-lag phase synchronization
only. By decreasing the coincidence threshold P it is possible,
however, to cover the regime of lagged phase synchroniza-
tion. In the following we set P=1.3 to allow a certain
temporal mismatch between spikes in the last units of the
media. Preliminary investigations using time series from
different model systems indicate that with this setting it is
indeed possible to detect a lagged phase synchronization
in broad band signals. However, setting P too close to
1 increases the risk of detecting accidental coincidences;
that is, the situation where accidentally induced spikes will
contribute to C(A, B). This results in a certain bias in the
regime of weak synchronization as will be shown later in
Figure 3. The normalization factors Mmax(A) and Mmax(B)
are defined as above. The coincidence rate C(A, B) is
confined to the interval [0, 1] and approaches 1 for identical
spike sequences. For large N, C(A, B) — 0 if the sequences
of spikes are completely uncorrelated or if the perturbations
(even identical perturbations) do not contain rhythmic
components matching the characteristic frequencies.

2.2. Measuring Phase Synchronization. In order to demon-
strate the applicability of our method to characterize the
degree of synchronization between two signals we compare
it with a conventional time series analysis technique. Tradi-
tionally, phase synchronization is defined as the locking of
the phases ¢ of two oscillating systems 1 and 2 [16]:

¢1(t) — ¢2(t) = const. (4)

In order to quantify the degree of phase synchronization
we used the mean phase coherence R [17, 18]

1Ni|'t—2't =
R= NZJM(]A) e8] =1-v, (5)

where 1/At is the sampling rate of the discrete time series
of length N. V denotes the circular variance of an angular
distribution obtained by transforming the differences in
phase onto the unit circle in the complex plane [19].
By definition R is confined to the interval [0,1] where
R =1(V =0) indicates fully synchronized systems. In order
to determine the phases ¢, (t) of two signals s, (¢) and s, (1),
we followed the analytic signal approach [20, 21] which
renders an unambiguous definition of the instantaneous
phase for an arbitrary signal s(t):

¢(t) = arctan i—g, (6)
where
v Lo (s
-2 i 7)

is the Hilbert transform of the signal (%> denoting the Cauchy
principal value). Application of the convolution theorem
turns (7) into

s(t) = —iF [ F[s()] sgn(w)], (8)



where F denotes Fourier transform and F ~! inverse Fourier
transform, respectively.

An important property of the analytic signal approach
is that the instantaneous phase ¢(t) always relates to
the predominant frequency in the Fourier spectrum [22]
of a broadband signal. A frequency-selective analysis of
phase synchronization thus either necessitates prefiltering
of signals before applying the Hilbert transform or an
alternative definition of phases, for example, by the complex
wavelet transform [23]. Both definitions of a phase are
mathematically related to each other [24]. Quantifying the
degree of phase synchronization via the coincidence rate C
is frequency-selective by definition. Note that in contrast to
the coincidence rate C the mean phase coherence R always
approaches 1 for two identical signals.

2.3. Model Systems. In order to test our approach we
analyzed time series generated by two diffusively coupled
Rossler systems:

dx
dl’z = —w1 yl’z —Z12 + K(XZ,I - xl,z):
t
d
Y12 _ w1 X124+ 0.165 y1 2, ©)
dt
dzi,
= =02+ - 10
o z12 (%12 )

with a small mismatch of the natural frequencies w; = 0.84
and w, = 0.89. The parameter x denotes the coupling
strength. The differential equations were integrated using a
fourth-order Runge-Kutta algorithm with step size dt = 0.05
[25]. We generated twenty realizations (using different initial
conditions, normally distributed with zero mean and unit
variance) of time series consisting of N =10° data points.
In order to eliminate transients we discarded the first 10
points. The data were then normalized to zero mean and
standard deviation ¢ = 0.1 and eventually contaminated
with additive uniform white noise at a signal-to-noise ratio
of SNR = —6dB. The amplitude of the noise is thus twice
as high as the amplitude of the signal. In order to measure
the degree of synchronization when varying the coupling
strength x we analyzed the x-components of the Rossler
systems using the coincidence rate C and the mean phase
coherence R.

2.4. Field Data. In epilepsy monitoring units, EEG is
recorded over an extended period of time for diagnostic
purposes or for the presurgical evaluation of candidates
for resective therapy. Successful surgical treatment of so-
called focal epilepsies requires exact localization of the brain
region that can generate seizures and its delineation from
eloquent cortex that is indispensable for defined cortical
functions (see [26] for a comprehensive overview). This
task mostly relies on the observation of typical seizures
on the video-EEG, which is currently regarded as the gold
standard. Epileptic seizures, however, often represent a rather
infrequent phenomenon, and thus the question arises as to
what extent information obtained from EEG data recorded
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during the seizure-free interval can help to identify and to
delineate the seizure-generating brain region.

We here retrospectively analyzed long-term, multichan-
nel EEG recordings from an epilepsy patient suffering from
temporal lobe epilepsy. For this patient the presurgical
workup indicated an epileptic focus in the left mesial
temporal lobe and after surgical resection of the seizure
generating structure the patient is seizure-free. Intracranial
EEG were recorded continuously over a longer period
from electrodes implanted bilaterally along the longitudinal
axis of the hippocampal formation (cf. Figure2). The
data were sampled at 200Hz using a 16-bit analog-to-
digital (A/D) converter and filtered within a frequency
band of 0.5-85Hz. The recording lasted 104 hours during
which ten seizures occurred. We used a moving-window
approach (nonoverlapping segments of N = 2! data points)
to measure synchronization between all pairs of EEG signals.
Since we were interested in recordings from the seizure-free
interval only, we excluded data recorded 90 minutes prior to
seizures, during actual seizure activities, and from periods of
30 minutes duration immediately following seizures. Prior to
estimating the coincidence rate C signals were normalized to
zero mean and standard deviation ¢ = 0.1.

The intrahippocampal EEG does not have a white
spectrum but instead has a predominant spectral content in
the so-called & (0.5-4Hz) and 9 (4-7 Hz) range [27]. For
a characterization of synchronization phenomena in EEG
recordings we therefore concentrated on these frequency
bands and adjusted the internal frequency win of the FHN-
units (by setting the time scaling coefficient to € = 10 (cf. (1)
and Figure 1)) such as to cover this frequency range.

3. Results

3.1. Model Systems. In Figure 3 we show the dependence of
the coincidence rate C and of the mean phase coherence
R on the coupling strength x for the noise-contaminated
diffusively coupled Rossler systems. In addition, we show the
dependence of R for time series that we low-pass filtered
(3rd-order Butterworth characteristic; cutoff-frequency set
to 2w,) prior to analysis. Despite the strong noise contam-
ination (SNR =—-6dB) C allowed to detect the transition
to the regime of phase synchronization (x > 0.05) between
the Rossler systems. Due to the noise contamination the
resolvability of the different synchronization regimes using
the mean phase coherence R was drastically reduced but
could be recovered with an appropriate filtering of the data.

Note that even in the regime of no or weak coupling
(x € (0.0,0.03)) we observed C ~ 0.45, which resulted from
accidental spikes propagating throughout the media. This
bias can be reduced by increasing the spatial size of the
media, however, at the expense of limiting the applicability
of the method to narrow band signals.

3.2. Field Data. In Figure4 we show, as an example,
for all intra- and interhemispheric channel combinations
(cf. Figure 2) the averaged coincidence rate (C), obtained
from averaging C-values from the seizure-free periods only.
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FIGURE 2: Schematic of intracranially implanted depth electrodes. (a) Axial view; (b) sagittal view. Each catheter-like, 1-mm-thick silastic
electrode contains 10 cylindrical contacts of a nickel-chromium-alloy (2.5 mm) every 4 mm.
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FIGURE 3: Means and standard deviations of the mean phase coher-
ence R (circles and triangles) and the coincidence rate C (squares)
estimated from the noisy (SNR = —6 dB) x-components of coupled
Rossler systems for varying coupling strength «. Triangles indicate
values of R from low-pass filtered data. To calculate the coincidence
rate C the internal frequency wi,, of FHN units in both media was
chosen to match the natural frequencies of the Rossler oscillators
(wi, = wB_ ~ 1 by setting € = 5).

We performed the same analysis with the mean phase
coherence R and findings are presented in Figure 5. Despite
apparent limitations of our method in the regime of
weak phase synchronization already observed with model
systems, the coincidence rate C captures spatial patterns of
synchronization similar to those observed with the mean
phase coherence R. With both approaches we observe that
the average degree of synchronization from intrahemispheric
channel combinations exceeds the one from interhemi-
spheric channel combinations. Interestingly, even a crude
temporal averaging (i.e., from data covering more than four
days of recording) and spatial averaging (i.e., from data from
intrahemispheric channel combinations only) the degree of
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FIGURE 4: Averaged coincidence rates (C) estimated for all chan-
nel combinations of EEG data recorded during the seizure-free
intervals. Note the difference in the degree of intrahemispheric
synchronization between the focal (left) hemisphere and the
nonfocal (right) hemisphere.
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FIGURE 5: Same as Figure4 but for the averaged mean phase
coherence (R). EEG data were low-pass filtered with a 3rd-order
Butterworth filter and the cutoff-frequency set to 7 Hz.



synchronization within the left brain hemisphere containing
the epileptic focus (ipsilateral hemisphere; (C); = 0.25 +
0.04) was slightly higher than in the right (contralateral)
brain hemisphere ({(C). = 0.22 + 0.05). Analyses using the
mean phase coherence revealed qualitatively similar results
(cf. Figure 5) with (R); = 0.53 + 0.10 and (R), = 0.49 +
0.12.

4. Conclusion

We presented a biologically inspired approach to estimate
the degree of phase synchronization in noisy signals. It
is based on the method of frequency-selective excitation
waves in excitable media whose coincident outputs are used
as an estimate for the degree of phase synchronization in
locally applied perturbations. By considering EM that are
composed of only a few excitable units and thus by relaxing
the frequency-selectivity of EM it was indeed possible to
apply the method to signals with broadband spectra. From
our preliminary investigations using model systems with
well-known properties we could show that the method
appears sensitive to intermediate and strong couplings even
in cases where other approaches (e.g., the mean phase
coherence R) require prefiltering of signals. However, our
investigations also indicate that the method appears to be
insensitive to detect weak couplings due to the propagation
of accidental spikes. Moreover, a careful selection of several
important parameters—such as the number L of excitable
units constituting the medium, the diffusive coupling D or
the coincidence threshold P—is required when analyzing
broadband signals from dynamical systems with only poorly
understood properties.

Despite these limitations, preliminary analyses of syn-
chronization phenomena in multichannel, multiday elec-
troencephalographic recordings from an epilepsy patient
indicate that our method provides results that are qual-
itatively similar to those obtained with the mean phase
coherence R. In line with findings reported in [17, 27-31]
we here observed a higher degree of phase synchronization
in brain electrical activity recorded from the hemisphere
containing the epileptic focus as compared to the nonaffected
hemisphere. Although promising, these findings need to be
validated on the data from a larger group of patients. A more
detailed study including other frequency bands (>7 Hz) on a
larger data base is currently underway and will be presented
elsewhere.

Extending our previous findings [14, 15] and alternative
approaches [32-35] we consider a future implementation of
excitable media as analog or digital electrical circuits (e.g., as
a FitzHugh-Nagumo cellular neural network) as an attractive
perspective for the development of miniaturized detectors of
synchronous activities in noisy field data.
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