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Anomaly-based intrusion detection systems have the ability to detect novel attacks, but when applied in real-time detection, they
face the challenges of producing many false alarms and failing to match with the high speed of modern networks due to their
computationally demanding algorithms. In this paper, we present Fates, an anomaly-based NIDS designed to alleviate the two
challenges. Fates views the monitored network as a collection of individual hosts instead of as a single autonomous entity and uses
dynamic, individual threshold for each monitored host, such that it can differentiate between characteristics of individual hosts
and can independently assess their threat to the network. Each packet to and from a monitored host is analyzed with an adaptive
and efficient charging scheme that considers the packet type, number of occurrences, source, and destination. The resulting charge
is applied to the individual hosts threat assessment, providing pinpointed analysis of anomalous activities. We use various datasets
to validate Fates ability to distinguish scanning behavior from benign traffic in real time.
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1. Introduction

Network-based intrusion detection systems (NIDSs) provide
protection to an entire network of computers. These systems
detect misuse by examining the packets coming into and out
of the monitored network, and they are primarily one of
two types: signature-based and anomaly-based. A signature-
based NIDS, such as Bro [1] or Snort [2], examines network
traffic in an effort to match the patterns of the traffic,
or rules, to preestablished patterns of malicious activity.
Such systems provide excellent detection capabilities against
the known attacks, but require constant update to provide
protection from new attack strategies. An anomaly-based
NIDS works on the assumption that malicious network
traffic is distinguishable from normal network traffic, as
discussed in [3]. These systems attempt to quantify the
protected network “normal” network traffic and reports
deviations from this norm.

Anomaly-based detection has attracted major research
interest, since it has the ability to detect novel attack strategies
that are often missed by signature-based methods. By
understanding and defining what is “normal” in a network,
deviations from this norm indicate activities that require
further investigation. This method of detection maintains

the same level of sensitivity in the presence of novel and
classic attack strategies.

Although the capabilities of anomaly-based detection
are consistent, this method presents two unique challenges.
First, since network traffic can vary wildly and certain traffic
patterns are unpredictable, anomaly-based NIDSs run the
risk of producing many false positives and false negatives. A
false positive is when an NIDS flags benign (though possibly
odd) traffic as malicious. Conversely, a false negative is when
an NIDS flags malicious traffic as being benign. Second,
since modeling the behavior of a network is complex,
many proposed systems use computationally demanding
algorithms for analysis. Although such algorithms provide
the most promise for detection of malicious activity, they run
the risk of being too slow to be effective in modern networks,
which already achieve speeds of 1000 Mbps (for a complete
discussion of this, please refer to [4]).

The system presented here is an anomaly-based NIDS,
Fates, which attempts to alleviate the challenges discussed
above while maintaining the advantage of detecting novel
attacks. The proposed method views the network as a
collection of individual hosts as opposed to an autonomous
entity. By making such a fundamental view change, Fates
has the ability to differentiate between characteristics of
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individual hosts and independently assess their threat to
the network. Packets to and from a monitored host are
analyzed with an adaptive and efficient charging scheme
that considers the packet type, number of occurrences,
source, and destination. The resulting charge is applied to
the individual hosts threat assessment, providing pinpointed
analysis of anomalous activities.

2. RelatedWorks

Most current real-time, anomaly-based NIDSs utilize
entropy analysis and signal detection techniques. In [5–8],
two entropy approaches and one signal detection approach
are discussed, respectively. Zachary et al. [5] use an entropy
analysis that is tunable to large-scale networks. In the
presence of robust scanning, this approach proves to be
effective. For instance, in a deployment demonstration this
approach detected the beginning of a Code-Red attack [9].
The early warning of this attack allowed the administrators
to minimize the impact of the attack, but the exact nature
of the attack was unknown until administrators conducted
further investigation of network activities. Similar to this
approach, Feinstein et al. [7] use a chi-squared approach
to distinguish DDoS attacks from other attack strategies,
and properly notifies the administrator of the existence
of the attack. Alternately, Barford et al. [8] and Thareja
[6] propose a distributed signal detection approach to
characterize network anomalies. In this approach, normal
network traffic is viewed as noise. Using wavelet analysis,
the method removes this “noise” in an effort to expose
the underlying anomalous activity that would otherwise
be indistinguishable. Both of the above approaches are
scalable to large-scale networks because they generalize the
monitored network to a single entity with a quantifiable
“health.” It is the aim of these approaches to gain a global
perspective by viewing the network in a broad sense.

However, the effectiveness of the approaches specified
above may be limited by the following two reasons. First,
quantifying a network “health” in a single numerical value
does not provide host level granularity. Practical information
is lost. For example, in the presence of scanning activity, the
scan is detectable, but to find the source of the scanning
within a network of hosts, further analysis is required.
Second, excluding parallel-computing, real-time processing
is not possible in “fast” networks due to the amount of
processing load required. Though it is demonstrated that
certain approaches maintain a constant level of protection,
even under network saturation, it is immature to assume
that this level of protection would be sustainable in faster
networks, as the system begins to drop packets. Combined,
these two reasons suggest that a granular approach with
lightweight computation loads is an appropriate next step in
advancing anomaly-based intrusion detection to a feasible,
economic solution to modern network security.

In an effort to provide both the granularity and the
economy of operations that are required in modern net-
works, Jung et al. [10] propose a threshold random walk
(TRW) scheme which assesses the health of the network
based on a probabilistic analysis of a packet likelihood of

successful delivery. In this approach, a single packet does
not result in the labeling of a host as benign or malicious,
but analyses of subsequent packets originating from the host
add to the assessment to provide an adequate view of the
host current state. The system maintains a likelihood ratio
for each host until the value falls below a lower threshold
(indicating a benign host) or increases above an upper
threshold (indicating scanning behavior). This approach has
the advantage of being lightweight while providing the ability
to distinguish between scanning and benign behavior.

Weaver et al. [4] propose an approximation cache
approach which incorporates a simplified TRW scheme.
In this approach, the system subdivides a network into
autonomous regions. The system examines all hosts within
a region in accordance to the host connection history with
other hosts. The health of a host is represented by a single
integer value, which indicates the number of unacknowl-
edged connection attempts that a host makes. If this value
exceeds a predefined threshold, the system disallows any new
connection attempts.

Although both [4, 10] utilize a granular view of the
network, they both fail to capitalize on its ability to
distinguish between varying traffic needs. For instance, it
is obvious that a web server and a standard workstation
computer would have different network traffic loads and,
therefore, a network administrator should not generalize
them to have similar traffic patterns, as discussed in [11].
However, since the thresholds in both [4, 10] are static and
global, these systems are unable to adequately represent a
network of diverse traffic needs.

This research extends the approaches discussed in [4, 10]
by incorporating dynamic, individual thresholds for each
monitored host. As a result, the simple calculations used
to assess the charge for a host provide a method to assess
individual host health with little regard to other hosts in
the network. In contrast to the static threshold approach,
our adaptive approach results in fewer false positives for a
benign host with a high-traffic profile, and results in fewer
false negatives for a malicious host with a low-traffic profile.
Moreover, with the simple calculations used in our approach,
we are able to keep the processing load economical and thus
meet the high-speed requirements of modern networks.

It is worthwhile to note that there have been many NIDSs
proposed in academia and industry, for example, NID [12],
Cisco security intrusion detection/prevention system [13],
and D-WARD [14]. These systems provide comprehensive
monitoring of network traffic, but they generate results that
either incur too much overhead, or require further analysis,
or need to be matched against some signatures or normal
models, and so are not along the same line of our objective
of designing an economical real-time anomaly detection
system.

3. Overview of Fates System

The Fates of Greek mythology are three goddesses: Clotho
the Weaver, Lachesis the Apportioner, and Atropos the Cutter
of Thread. They determine the life of mortals by examining
the world as a woven tapestry. With each person representing
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a thread used in the tapestry, the three goddesses see the
tapestry as a collection of individual threads. Likewise, Fates
examines the network as a collection of individual entities
and does so using three subsystems: a sniffer (Clotho), a
measuring unit (Lachesis), and an alarm unit (Atropos). The
sniffer, Clotho, is a passive listener that records packets as
they enter and leave the network. In a standard network
topology, the Fates system would reside on a host positioned
between the firewall and the rest of the monitored subnet and
maintains a direct link to the firewall. Since the firewall is the
only means by which the subnet may communicate with the
outside world and the firewall will forward a copy of all traffic
passing through it to the Fates system, the sniffer can monitor
all incoming and outgoing messages. Similar mechanisms are
used in [4, 10, 14–19].

From the perspective of anomaly-based detection, a
granular view is the most appropriate for modeling a
subnet behavior, as discussed by Weaver et al. [4]. An ideal
granular view would be activity analysis of individual host in
the monitored network. Since modern computer networks
support a variety of systems with unique traffic demands,
individual assessments of a host health with regards to
only its normal network activity is of greater importance
than a comparison with other hosts network activity. For
instance, it is obvious that a web server and standard
workstation computer would have different network traffic
loads. Therefore, an NIDS should not generalize them to
have similar traffic patterns, since this would result in an
inaccurate analysis, as discussed in [11]. On the other hand,
a group of workstations in the same lab should have similar
traffic patterns, and therefore, an NIDS can group them
together without loss of generality.

In order to appropriately model traffic and support this
differentiation between hosts, the Fates system utilizes prior
knowledge of the network topology and event management
to initialize the system. This is similar to an approach
discussed by Jung et al. [20] to aid in distinguishing between
flash crowds and DDoS attacks. The Fates system utilizes
rudimentary knowledge of the network topology, that is, the
IP addresses present in the network. Fates regards each IP
address or range of addresses as a separate unit with its own
threshold and scoring. By doing so, Fates provides the ability
to differentiate between various traffic needs for a variety of
hosts that may be present on a subnet.

The Fates system can support any number of protected
hosts and any degree of granularity. However, we observe that
a reduction in granularity results in less pinpoint accuracy
in detection. Thus, there is no claim of perfect scalability
to large networks. For example, if an entire/24 subnet is
represented as a single entity, Fates aggregates all readings
together as one entity. Therefore, Fates reports misbehavior
within the subnet but does not specify the IP address of
the specific culprit. However, if Fates represents each of
the addresses in the subnet with an individual entry, Fates
indicates the exact health of the host on an individual level.

The measuring unit, Lachesis, utilizes the granular view
in one of two types of detection: external-to-internal mon-
itoring and internal-to-external monitoring. Fates accom-
plishes both detection types with a two-tier system that
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Figure 1: Component selection state diagram.

consists of an external scan detection component (ESD)
and an internal hosts monitor (IHM) component. The ESD
monitors the number of failed connection attempts to a
monitored subnet from an outside source. If the number
of failed connection attempts from a given source exceeds
a predefined threshold, Fates blacklists the external host
for a predefined interval of time. The IHM component
uses connection classification in order to assess the overall
“health” and adjust the dynamic, individual threshold of a
specific monitored host. If the dynamic, individual threshold
of a monitored host increases continuously for a period
of time, then the alarm unit, Atropos, will raise an alarm
on that host. Note that there is no given threshold in
the alarm unit for raising an alarm because there are
different communication needs and traffic patterns in every
different network, even the same network at different time;
it is up to the network administrator to apply his/her
knowledge and experience about the specific network to
set an appropriate boundary for raising an alarm. Figure 1
presents the component selection in a state diagram. When
Fates processes a packet, it first determines if the source
and destination are monitored hosts. If Fates is monitoring
either address, the IHM component processes the packet;
otherwise, the ESD component processes the packet. After
the process completes, the system returns to ready state and
awaits the arrival of another packet.

We give an overview of the Fates system temporal view
of the network before discussing each component in more
detail. Similar to other NIDS, Fates views its operational
time as a series of consecutive intervals of time known as
time steps. The time steps used in NIDS are of fixed size
and are either overlapping or discrete, as described in [21].
Overlapping time steps provides easier detection of long
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patterns of intrusive activity, but has the drawback of the
possibility of processing the same packet multiple times. The
Fates system uses discrete time steps in order to avoid the
skew caused by repeated processing of the same packet, but
maintains information about previous readings to analyze
the current activity of a system by aggregating readings from
previous time steps so that the strength of overlapping time
steps is preserved. Fates accomplishes this by associating
time-to-live (TTL) values with all readings that are pertinent
to interpreting the health of a given host. These TTL values
are greater than the size of a time step, but small enough not
to cause a great number of false alarms.

The size of time step affects the response time and
sensitivity of an NIDS, as discussed in [11, 21]. If the
duration of an attack is greater than the size of the time
step, the NIDS is at risk of completely missing the attack.
However, if the size of the window is too large, the NIDS is at
risk of both untimely reporting and greater false alarm rate.
For instance, if an NIDS time step size is ten minutes and a
Slammer-like intrusion occurs [19] (which has the potential
to infect an entire/16 in a matter of seconds), then the worm
could infect the entire subnet several times over before the
first alert is generated. Moreover, too large a window may
aggregate too many readings, resulting in the possibility of
an increase in false positives and false negatives. On one
hand, if no intrusive activity is present in the traffic, the
conglomeration of all readings runs the risk of appearing
similar to the signature of an attack, thus resulting in a false
positive. On the other hand, if an intrusion is present in the
readings for a given time step, the attack may be masked if
it concurs with an overwhelming load of benign traffic, thus
resulting in a false negative.

Fates does not completely solve the problem of choosing
an inappropriate time step size as faced by other such NIDS
systems, but Fates does provide the advantage of remem-
bering previous readings. Therefore, smaller time step sizes
(less than 30 seconds) are less problematic and preferable if
extremely small settings (such as one second) are avoided.
Through experimentation, we observe that a time step size
of ten seconds provides Fates with adequate detection of
rudimentary scanning techniques, such as common scanning
worm activity and network mapping tool sets.

3.1. External Scan Detection (ESD) Component. The ESD
is the simpler of the two components and is the first line
of defense against intrusive activities, and as such, it is
paramount that the component incurs low cost in both
processing time and memory consumption. Therefore, this
component employs a caching system. Furthermore, the ESD
only examines the IP header information in a rudimentary
fashion.

The ESD mechanism attempts to track the misses of
incoming connections. Misses are packets whose source
and destination are unmonitored addresses. Since Fates
maintains a list of internal addresses, a determination of the
existence of a source and destination in the network is simply
a lookup. Furthermore, since Fates monitors traffic between
the firewall and the rest of the subnet, it is easily inferred
that any packet seen by the system should originate from
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Figure 2: Structures used by the ESD Component.. 192.168.1.100
hashes to entry 25 in the approximation cache.. At the time of the
hit, the count at that location was nine. Therefore, the count was
incremented and the TTL is set to MAX COUNT TTL. Since the
count is no longer less than MAX MISS COUNT, 192.168.1.100 is
added to the black list with a TTL set to MAX BLACKLIST TTL.

or be destined to a host within the network. Therefore, the
existence of a packet that is neither from nor directed to a
host in the network is indicative of some kind of miss.

It is important to note that a single miss is not
indicative of scanning. Sometimes hosts misdirect packets to
a nonexistent address with no malicious intent. Such cases
can arise both from misconfigurations of devices and broken
links [22]. Therefore, disregarding the occasional miss is
a reasonable reaction. It is large amounts of misses that
indicate a problem, such as greater than 50% of a host traffic
results in misses, as discussed in [10]. One possible method
of disseminating this information would be to track the
number of misses for all external hosts that have contacted
the monitored subnet. However, keeping track of the number
of misses for all addresses is an ill-posed solution to this
problem. An adversary can easily overwhelm the system by
spoofing a large amount of packets with different source
IP addresses. As a result, the system quickly depletes all
available storage and, thus, fails to log additional connections
or completely fails, as discussed by Weaver et al. [4].

In order to overcome this hurdle, Fates employs the use
of an approximation cache, which is similar to the approach
used in [4]. An approximation cache is a hash table with no
collision avoidance. Simply put, Fates views all entries that
hash to the same location as one entry. This approach has
the advantages of constant size and quick lookup, but does
not provide precision in value of each entry. This tradeoff of
precision for speed and constant space is amiable, since both
are primary concerns in the development of this component.

As illustrated in Figure 2, the ESD component con-
sists of an outsider count table and a blacklist. When
the ESD component processes a packet, it hashes the
packets source IP address to a location in the outsider
count table, increments the value by one, and sets the
TTL of the entry to MAX COUNT TTL. If the value
exceeds the MAX MISS COUNT threshold, Fates adds
the offending IP to the blacklist with a TTL value set
to the MAX BLACKLIST TTL. The MAX MISS COUNT,
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MAX COUNT TTL, and MAX BLACKLIST TTL are all
user-defined values. The MAX MISS COUNT should be set
high enough to allow for occasional misses, but low enough
to flag offending hosts in a timely manner. When selecting
this value, the user should take into consideration the size
of the outsider count table. A smaller cache would result
in larger count values, since the smaller cache results in a
greater frequency of hits to individual locations. Both the
MAX COUNT TTL and the MAX BLACKLIST TTL values
should be high enough to dissuade any adversary from
attempting to thwart the system, and as such, the maximum
value of the field, 255, is an appropriate setting. However,
in the case of high-traffic subnets with many constantly
changing links, it may be advantageous to allow for a lower
value for both in order to compensate for the frequency of
misses.

At the expiration of each time step, the TTL values
of both the blacklist and outsider count table entries are
decremented by one. If an element of the outsider count table
TTL reaches zero, Fates resets the count of the element to
zero. If a blacklisted element TTL reaches zero, Fates removes
the element from the blacklist.

3.2. Internal Hosts Monitoring (IHM) Component. The IHM
component is the monitor of all user-specified internal
host of the network. This component utilizes both the a
priori IP address information provided at initialization and
current connection state information to produce an analysis
of individual hosts in the network. Prior to active monitoring
of the network, the measuring unit acquires a list of active IP
addresses (or range of addresses) in the monitored subnet
and the minimum thresholds of the host (or range of hosts).
The minimum threshold is the lowest sustainable threshold
that Fates allows the host to have and uses the minimum
threshold to adjust the current threshold of the host.

The IHM component utilizes two structures to represent
the monitored hosts and monitor the traffic of the network:
the IP List and IP Packet Table. IP List is a binary search
tree in which each element represents a monitored host.
An element of the IP List contains an IP address (or
IP range), the current threat score (initialized to 0), the
average threat score (also initialized to 0), and a hash
table of nodes that is currently in communication with this
monitored host (I/OCache). I/OCache is an approximation
cache of integers with each integer representing the state of
communication between the monitored host and any host
whose IP address hashes to that location. In addition to the
IP List structure, Fates stores information on the IP packets
previously seen in the IP Packet Table. The IP Packet Table
is an approximation cache indexed by a hash of the packet
payload and contains both a time-to-live and occurrence
counter for each entry.

When IHM processes an IP packet, it first determines
if the upper-layer protocol is connection-oriented, such as
TCP/IP, or connectionless, such as UDP. In the case of a
connection-oriented protocol, the state of the connection
is of primary concern. Since scanning behavior tends to
exploit weaknesses in existing protocol structures, there is
very little that can be taken for granted. For example, in

Table 1: Formulas for packet charge.

Packet type Formula

TCP Charge = 2∗(state− 1)

UDP Charge = 2∗(count− 1)

the TCP/IP protocol a packet with an ACK bit set should
only exist in an established connection. However, as is
demonstrated by [23], a malicious user can use these packets
for scanning purposes. In the case of a connectionless
protocol, there is no connection state information to rely
on. Instead, the number of packets with duplicate payloads
is of importance. The main assertion of such a practice is
that scanning behavior will present itself in only a finite
amount of possible packet payloads. Most connectionless
protocols use only a “best effort” approach for packet
delivery, so there should be no duplicate packets of this
type in a short amount of time because the source does not
retransmit a lost packet. In some cases of UDP applications,
retransmission policy is applied and duplicate packets are
retransmitted (e.g., [24]), but this happens only when no
acknowledgment from the destination is received, which can
be distinguished from scanning by checking the destination
status.

In the case of a TCP packet, the IHM component deter-
mines whether the packet is destined to or originated from a
monitored host and the packet type. This information is used
to modify a given host I/OCache entries. If the destination
of the packet is a monitored host, the IHM component
first finds from the IP List the element corresponding to the
destination address, uses the source IP address to index into
the element I/OCache entry, and then subtracts one from the
I/OCache entry current value (conversely, if the source of the
packet is a monitored host, add one to the corresponding
I/OCache entry). The IHM component then assesses a charge
for the packet using the entry resulting value. The formula
for calculating this charge is shown in Table 1. If the value of
the entry is less than or equal to zero, the state is set equal to
zero and the host is not assessed a charge because the host
is receiving more communications than it is transmitting,
that is, not scanning behavior. If the value of entry is greater
than zero, the state is set equal to the entry value. The
reason for the multiplication of the state information by
two is to provide a quick jump in charges in the presence
of persistent unacknowledged outgoing messaging. If the
anomalous scanning behavior is viewed as the signal of
interest, then the multiplication will effectively strengthen
the signal and make it easier to detect. We choose two
as the multiplier because it is the smallest integer larger
than one (involving floating point will make the calculation
less efficient). As will be seen in our experimental results,
this multiplier serves its purpose quite well, so there is
no need to use a larger multiplier. In a standard three-
way handshake and packet transmission (the destination
transmits an ACK for each message received), the monitored
host receives a net charge of zero. We note that some receivers
may implement a delayed acknowledgment mechanism [25,
26], in which the receiver sends an acknowledgment only
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for every second received message for performance reason.
However, our experimental results show that even this
delayed acknowledgment mechanism is still distinguishable
from scanning behavior with our approach and the chosen
multiplier.

In the case of a UDP packet, the packet payload is
of importance because there is no connection information
associated with the protocol. When the IHM component
processes a UDP packet, it uses the payload of the packet to
index the IP Packet Table, increments the entry count value
by one, and sets the TTL of the entry to 255. If the source
of the packet is a monitored host, the IHM component
then assesses the host a charge. As Table 1 shows, the
charge is simply two times the count value minus one. Note
that an arbitrary nonduplicate packet would result in no
charge.

In the case of any other protocol, Fates skips the packet.
Though this may be inappropriate in certain settings, the
design of Fates is for standard practice. It is arguable
that ICMP [27] should be processed. However, since this
packet type is connectionless and is used for control and
testing purposes, there is a risk of skew in processing. For
instance, ping, a widely used mechanism for determining
connectivity of a host, sends echo request messages to a
user-specified destination. In many cases, these packets are
identical with regard to payload, and therefore, result in
the IHM component immediately flagging any host issuing
a ping request as malicious. Therefore, the ambiguity of
circumstance necessitates the absence of this protocol from
analysis.

At the expiration of the current time step, the IHM
component assesses the health of all monitored hosts and
prepares for the next time step. First, the IHM component
calculates the cumulative charge for all packets for each host
seen during the current time step, resulting in a threat score
for the host. The IHM component compares the threat score
to the current threshold of the host. If the threat score exceeds
the current threshold, the IHM sets the threshold equal to
the threat score and makes a note of the change in a log file.
If the threat is less than the threshold, the IHM component
compares the threshold with the minimum threshold. If the
values are equal, the IHM component takes no action. In all
other cases, the IHM component uses a threshold adjustment
scheme. Note that a threshold is easily increased but further
analysis is required to determine if the threshold should be
lowered. The principle idea is that the component attempts
to ascertain an appropriate upper bound of a host activity.
A well-behaved host threshold will plateau, but a scanning
host activity constantly causes the host threshold to increase.
After the IHM component adjusts the thresholds of each
host, it then prepares for the next time step by resetting the
threat score to zero, decreasing the TTL of each entry in the
I/OCache by one, and decreasing the TTL of all elements in
the IP Packet Table by one. If the TTL of an entry in the
IP Packet Table is equal to zero, the IHM component sets the
count of the entry to zero.

3.3. Aggregation of Readings. In order to address the issue of
decreasing threshold, the IHM component uses the weighted

average of previous readings to understand the current state
of the host. The averaging method used is as follows:

S = (1− α)Scurrent + αSnew, (1)

where S is the weighted average score, α is a preset value for
the decay of old readings, Scurrent is the previous weighted
average score, and Snew is the threat of the host in the
current time step. This is similar to TCP roundtrip time
(RTT) estimation as discussed in [28], which provides an
efficient way to calculate a weighted average of readings.
The IHM component gives older readings less weight than
new value, and thus, while past readings still affect the
result, their impact lessens over time. Therefore, the formula
encompasses both an implied time-to-live for charges against
a host and a contextual analysis of a network host status at
present. In practice, the value of α should range between
0.5 and 0.75 because any value less than 0.5 places too
much emphasis on previous readings and rarely allows the
threshold to be redeemed, and any value greater than 0.75
places too much emphasis on the current readings and runs
the risk of prematurely lowering a threshold.

With this averaging, the IHM component can compare
a host current threat level to its previous activity, assess
the duration of anomalous activity, and scale changes to
thresholds. With simple comparisons, the weighted average
provides an analytical tool for assessing the speed at which
a host activity is changing. This is useful in assessing cases
of flash crowd and DoS attack, where network activity from
one or many hosts increases rapidly, as discussed in [16]. The
duration of the activity is a key component in determining
the “X factor” that initiates the malicious activity. As time
progresses, sustained rates of activity cause the weighted
average to approach the current score, at first very quickly,
then slowly until the values are equal. Analysis of the
resulting curve allows for accurate interpretation of the time
interval in which the malicious activity in question really
began, which greatly aids in forensic analysis. However, such
an analysis is beyond the scope of this paper, and the IHM
component is focused on providing a method to interpret
network information for tuning a threshold, as discussed
next.

3.4. Threshold Adjustment. As previously stated, the IHM
component is quick to raise a host threshold but lowering
the threshold requires further analysis of both current state
of the host activities and its previous activity. IHM attempts
to find equilibrium for each host activity. Quickly redeeming
charges possesses two important risks. First, it provides no
stable ground on which to base assessments about the health
of a host. If the threshold is not allowed to plateau, the system
provides no solid ground upon which an administrator
can make decisions. Second, allowing the threshold to drop
quickly could cause the masking of malicious activity. As will
be seen in Section 4, certain normal network activities cause
dramatic changes in the threshold, but the system quickly
returns to normal, while scanning activities cause lasting
and continual changes to the thresholds, resulting in obvious
distinctions from normal host behavior.
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In the IHM component threshold adjustment, the
threshold will remain the same until being exceeded by a host
score. Once a host score exceeds the host threshold, the value
of the host threshold will increase to the score that exceeded
it. For every time step afterward, if the weighted average score
of the host is lower than the minimum threshold, then the
threshold value decreases by half of the difference between
the minimum threshold and the weighted average score until
it reaches the minimum threshold value. The formula for this
threshold adjustment is as follows:

T = Tcurrent −
(
Tmin − S

)

2
, (2)

where Tcurrent is the current threshold value, Tmin is the initial
threshold value of the host, and S is the current score of the
host. After experimentation with the values of S, it was found
that this formula has a redemptive quality for a previously ill-
behaved host but requires an adequate number of time steps
before the threshold returns to its minimum value.

4. Experimentation

We have implemented a version of the Fates system in C++
programming language. It utilizes both the libpcap and the
pthread libraries. Libpcap is a library that facilitates quick
and easy setup of network sockets for packet capture and
provides several functions for analysis of TCPdump files. The
pthread library provides functions for parallel processing
using forks.

We test the Fates system on several different datasets
in order to understand how the system functions under
environments with different characteristics. The datasets
presented here are the Slammer simulation package, the
University of South Carolina (USC), Department of Com-
puter Science and Engineering subnet traffic, a World of
Warcraft (WOW) traffic set, and a dataset consisting of file
sharing traffic. Some of the experiments have been briefly
discussed in our previous paper [29]. Each of these datasets
has unique characteristics and provides an adequate cross-
section of network activity to test Fates various components.
The Slammer simulation tests the UDP charging scheme.
The USC subnet traffic tests the TCP/IP charging scheme.
The WOW traffic set tests the false positive rate of the
system when presented with traffic that exhibits packet loss
due to congestion at an endpoint. The file sharing dataset
presents benign traffic closely resembling malicious scanning
behavior and is used to determine the Fates capabilities of
distinguishing between the two.

Before we get into the details and results of each
experiment, we discuss the proper selection of the user-
defined values of Fates. These values are all dependent on
the size of the network and the services the hosts use.
For example, in a network consisting of only one hundred
workstation computers with static IP addresses, there is little
need for a large IP Packet Table size, outsider count table
size, or I/O approximation cache size. However, if the subnet
consists of several web servers, each of these items would

require larger values, since the traffic load for the network
is large.

We discuss the configuration of Fates suitable for a subnet
consisting of less than 100 workstation computers and no
web, SMTP, or DHCP servers. Through experimentation, we
observe that a time step size of ten seconds provides adequate
detection of rudimentary scanning techniques, such as
common scanning worm activity and network mapping tool
sets. For the ESD component, this time step size necessitates
a larger outsider count table size, since ten seconds worth of
network traffic represents a large number of packets, each of
which has the possibility of affecting the outsider count table.
An outsider count table size of 255 is appropriate; it provides
enough entries to represent the outside world, but not
enough to hide scanning behavior. For the IHM component,
the I/OCache for each element does not need to be very
large, say 64 entries, because the threshold adjustment will
allow for a slight forgiveness of the small size, since Fates
attempts to establish equilibrium with the thresholds. The
size of the IP Packet Table and the TTL associated with its
entries directly correlate to the bandwidth consumption of
the network. In the case of a network that maintains constant
low rates of bandwidth consumption (less than or equal to
10 Mbps), a size of 255 entries with a TTL of three time steps
is enough to give an adequate representation of the network
activity. However, if the network bandwidth consumption is
greater than 10 Mbps, the size of the table should be doubled.
The value of α used in the weighted averaging of a host
cumulative charge is set to 0.5, and the initial threshold value
of a host, Tmin, is set to 1000.

4.1. Slammer. The Slammer worm [19] was one of the most
infectious worms to plague computer networks. Though per
capita, it was far less nefarious than the Morris worm [30],
its rate of infection and simplicity of design is something
to be both admired and feared. Within three hours of its
introduction, the worm had infected almost all susceptible
computers running an unpatched version of Microsoft SQL
Server (see [19]).

In an effort to test Fates, we developed a simulation
package that provides a variety of configuration options and
allows for fast generation of a multitude of datasets. This
simulation package attempts to simulate the slammer worm
infectious nature and provides a good alternative to real-
world data by both being completely modifiable and lacking
the legal entanglements normally associated with the capture
of real-world data.

The simulation package functions as a packet generator
and TCPdump merger. It takes for input a TCPdump of
background, or presumed benign, traffic for input, and
merges the data contained within with simulated results from
a slammer infection. Therefore, the resulting file contains
malicious traffic hidden within the benign. The file maintains
all of the advantages of TCPdump files and is otherwise
indistinguishable from an actual capture log. We ran this
simulation against the Fates system in an effort to test
the UDP charging scheme. The simulated data consisted
of two IP addresses 192.168.1.101 and 192.168.1.103 that
were monitored for 10 minutes (this time is a bit excessive
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Figure 3: Slammer simulation (with a propagation delay of 1 second).
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Figure 4: Slammer simulation (with a propagation delay of 3 seconds).

since the worm was actually detected in only 30 seconds).
192.168.1.103 is an infected host that is attempting to
propagate the slammer infection, and 192.168.1.101 is a host
that is running 20 minutes worth of web traffic, a video
stream, and an SSH connection. For the purposes of this
simulation, the rate at which the worm propagates is one
second. This rate is far slower than the actual Slammer
worm, which only aids in hiding the signature of the worm.
However, as can easily be seen in the graph provided below,
not only Slammer is easily detected, but the well-behaved
node threshold remains static throughout the monitoring
time.

In Figure 3, the first graph plots charges assessed for
each host by the Fates system, and the second graph is the
plot of the threshold at every time step. As can be seen, the

additive nature of the algorithm does not result in any form
of reduction in charges or the threshold for the infected host.
However, this additive charging also results in no increase in
the charges and threshold of the well-behaved host that is
running web traffic. Because of the infected host charges, the
threshold constantly increases in a linear fashion throughout
the duration of the experiment.

The trend of the worm to increase a host threshold at a
steady rate is a factor of its propagation method as opposed
to the time associated with the propagation. As Figure 4
demonstrates, if the delay between propagation attempts
is limited to three seconds (a value far lower than even
TCP/IP worm propagations), the same trend in behavior
is still exhibited. Although the increase is not linear as
in the previous example, we observe a steady increase in
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Figure 5: USC traffic threshold analysis (clean).
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Figure 6: USC traffic threshold analysis (half-open scan).

the threshold. Another feature which is apparent in this
experiment is a series of peaks in the cumulative charges
of the infected host. This is a direct result of the duration
between successive attempts at propagation. The lulls result
in a steady decrease in current charge for a malicious packet,
but this decrease is soon reversed by the continued effort of
the host to propagate duplicate malicious packets.

4.2. USC Traffic. Next, we test the Fates system capabilities
with regard to TCP/IP scanning methods in a real network
environment. The University of South Carolina Department
of Computer Science and Engineering is gracious enough
to allow for managed data collection from their subnet.
This network consists of eight/24 subnets divided over
administrative offices (containing an SMTP server), research
labs, and open public labs. There are approximately one
thousand hosts on the network which is divided into 37
monitored ranges. The subnets are at most half populated,
and the variety of the traffic present on the systems gives a
diverse sensing environment.

In order to test the ability of the system to detect scanning
behavior in the presence of real-world network traffic, we
employed standard scanning techniques supplied in Nmap
[31] network mapping software that probes for available
ports on a host (or range of hosts). In standard operation,
Nmap first attempts to ping all hosts in the subnet. If a host
in the subnet responds, Nmap runs a user-specified scanning

0
1
2
3
4
5
6
7
8
9

10
×104

T
h

re
sh

ol
d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time step

Scanning host

Figure 7: USC traffic threshold analysis (ACK scan).

technique on all active ports for a host. If there is no response
from the ping, Nmap attempts to locate hosts by scanning
port 80 for all possible hosts in the target range. If the scan of
port 80 locates hosts, Nmap runs the user-specified scanning
technique on all ports of the active hosts. This method of host
discovery provides the advantage of time because it limits the
number of hosts that it scans to only those that truly exist.

In order to examine the detection capabilities of the Fates
system, we validate results against Snort [2], a widely utilized
and respected NIDS system. The Snort system utilizes a
rule-based analysis of network traffic and is completely
configurable. Snort has a default setting, for which it flags
a source IP address that has sent connection requests to 5
different IP addresses within 60 seconds or has sent to 20
different ports of the same IP address within 60 seconds.
Our aim is to detect everything that this default Snort setting
detects for comparison purpose.

Prior to testing scanning behavior, we establish a baseline
of normal network activity as shown in Figure 5. This
baseline reflects the normal activity of the network in absence
of scanning. There are 37 entries in Figure 5, representing
the 37-monitored ranges. As is seen in this figure, all entries
reach equilibrium and plateau very quickly. Also, note that
the modifications in the threshold of benign activity result
in sharp jumps as opposed to the steady increases in the
Slammer simulation. The presence of these sharp jumps and
plateaus indicates that the system is adjusting to a current
and steady bandwidth demand, and not to consistent missing
behavior. Therefore, these sharp jumps indicate normal
operation, and thus are distinguishable from native scanning
behaviors.

After a satisfactory establishment of normal network traf-
fic modeling, we introduced several scans into the network.
Figures 6, 7, 8, and 9 describe the resulting thresholds present
in the network. The first of these scans is the half-open scan.
As is seen in Figure 6, a steady increase in the threshold is
present. At time step 16, the threshold plateaus. This is a
result of steady connections to active ports, as opposed to
connection attempts to closed ports. However, the scanning
activity presents itself very clearly as compared to the benign
traffic that surrounds it. Next, we ran an ACK scan. As is
seen in Figure 7, this behavior presented itself very clearly
also with a steady increase in the threshold. Even though the
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Figure 8: USC traffic threshold analysis (FIN scan).

increase is not as much as is seen in the half-open scan, the
increase is observable and distinct from the benign traffic.
Then, we ran a FIN scan, which is demonstrated in Figure 8.
Once again, the scanning entity presented itself in a steady
increase. However, the most interesting part of this graph is
not the sharply increasing threshold of the host conducting
an FIN scan but the second lowest host that is presumably
benign. After further analysis, we determined the behavior to
be an RST scan of port 22, SSH, which was an actual attack
underway in the network. Figure 9 is a representation of the
behavior.

In all of the above examples, the magnitude of benign
traffic does not obscure the scanning behavior. Instead, it
provides comparative information that makes the steady
increase in the threshold obvious to the user. From these
examples, we can derive the conclusion that for Fates,
standard scanning behavior is distinguishable from benign
activity.

4.3. World of Warcraft Traffic. World of Warcraft (WOW)
[32] is a massively multiplayer online role playing game
(MMORPG) that utilizes several servers to provide a large
world feel to the game. In the online world, each server
represents a localized area, which can be as large as a
continent or as small as a city. When a user enters an area, the
client registers with the server that handles the specific area.
All users in the area utilize the same server, thus allowing for
ease of communication with one another and collaboration
in game play. With a total number of approximately 1.5
million users, there is a large probability of packet loss due to
congestion, since simultaneous use can cause a great amount
of congestion on the servers. According to the investigation
results in [33], the packet loss rate at the server could be as
high as 27%, and 3% of the sessions had a loss rate 5%. Such
packet loss rate is enough to induce noticeable latency [34].

This traffic is a perfect example of abnormal but benign
traffic, since such activity has high rates of TCP/IP traffic,
where packets are lost due to congestion. Since the Fates
system utilizes the two-way communication between hosts
to assess a host state, this could result in false positives.
However, since TCP/IP ensures the delivery of data, the loss
of a packet does not hinder communication. Our conjecture
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Figure 9: USC traffic threshold analysis (RST scan).

is that with a low number of lost packets in a connection, the
thresholds will not demonstrate the same behavior as is seen
in scanning. We will demonstrate this by examining WOW
traffic.

The data used for the test is represented in a TCPdump
file containing approximately 20 minutes of various web
traffics, including video streaming, HTTP traffic, and WOW
traffic. The host at address 192.168.2.19 is running the
WOW traffic that is of concern. Each of the other hosts
is producing low levels of HTTP traffic, which cause no
false alarms. As Figure 10 indicates, there are no spikes that
result in premature adjustment of the threshold. Even more
interesting, in time step 120 the user experienced a massive
lag. This is because of the user transferring to an already
taxed WOW server. Even this did not cause a jump in the
threshold because the host still maintained a connection
in which two-way communication (though bottlenecked)
persisted.

According to the above analysis, it is clear that the loss
of a moderate number of packets in a connection does
not result in an unwarranted increase in a host threshold.
In addition, the spikes in network traffic resulting from
transition to new WOW servers fail to exceed even the initial
threshold. Though it is arguable that a connection to several
servers, each of which resulting in unacknowledged messages
and packet retransmissions, would result in a problematic
circumstance in which a host would have a threshold
increase, the readings obtained indicate that this loss of
packets occurs in a bursty fashion. Therefore, the threshold
increase would not present itself as a steady increase in the
threshold. Instead, a series of sharp jumps in the threshold
(similar to those found in the clean USC data) result. Thus,
we can conclude that for Fates, this type of abnormal but
benign traffic is distinguishable from scanning behavior.

4.4. File Sharing Traffic. The last type of traffic we examine
is traffic that closely resembles scanning behavior and thus
is problematic. A classic example of this is peer-to-peer
networks. Peer-to-peer programs present a unique set of
challenges in NIDS research. The programs used to establish
such networks often use scanning to locate peers, and most
detection systems fail to distinguish between this form of
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Figure 10: WOW traffic analysis.
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Figure 11: Emule traffic analysis.

benign scanning and malicious scanning. Note that in this
context, “benign” is limited to meaning that the user is not
attempting to compromise hosts, though many peer-to-peer
networks allow file transfer of copyrighted material, which is
illegal.

To compare Fates with this form of traffic, we used a
TCPdump of a host running an Emule [35] client. Emule
is a widely used program that provides a variety of services
and connection capabilities ranging from IRC chat to file
transfer. The program primarily functions as a client, which
will connect to a preestablished list of servers. The servers
function as a centralized service coordinator for all peers in
the network. However, these servers are not static and the list
constantly changes. Thus, clients often attempt connections
to servers that have since moved or are completely shutdown.
Because of this, the client behavior often resembles scanning

in refined address space (i.e., the scanning is limited to the list
of servers that it currently possesses). To further compound
the problematic nature of the traffic produced by the client,
the users have the ability to interrupt transfer attempts, often
resulting in an abnormally large volume of reset connections
and failed connection attempts compared to normal TCP/IP
traffic.

As illustrated in Figure 11, the traffic recorded is quite
similar to the scanning behavior exhibited in the USC
dataset. This is a result of the client attempts to connect
to several unavailable servers and several failed connection
attempts to peers. These failed connection attempts are a
direct result of a user denial of a file transfer. The momentary
dips in the host score are the result of connections that were
established and productive in transferring data (actual file
transfers). However, the existence of such connections does
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not prevent the failed connection attempts and interrupted
transfers from increasing the threshold.

Since Fates only considers the success of connections,
the benign file transfer and scanning produced by Emule
results in an incorrect labeling of the host. However, the
only way to distinguish between this behavior and truly
malicious scanning behavior would be the analysis of the
context intended by the user. Such an analysis falls outside
the scope of this work, and therefore, this distinction remains
an open question.

5. Concluding Remarks

The Fates system exploits the advantages of a granular view
by allowing for precision detection of network activity while
also maintaining an economy similar to [4]. The system
allows for dynamic, self-healing thresholds that allow for
both forgiveness of misconfiguration and scaling to current
network conditions. However, this scaling does not hinder
the system in detecting rudimentary scanning behavior
in monitored hosts. Furthermore, the Fates system uses
simple calculations, unlike the entropy-based systems, such
as [5–7]. As a result, the functionality of the Fates system is
appropriate for real-time detection.

As is seen in Section 4, Fates provides easy analysis of
the current state of a network with regard to scanning
behavior. Furthermore, Fates does not falter in the presence
of lost acknowledgments. Instead, it tolerates occasional
packet losses without instantaneous flagging of the host as
malicious.

There are still open issues under investigation. First,
the issue of scalability is unresolved. Fates is not intended
for deployment across a diverse/8 network. As such, it is
intended to be a lightweight approach that better serves a
small- to medium-sized business environment. Second, the
output of the Fates system is comma-delineated text files,
which both require postprocessing and are resource con-
suming. One possible solution would be to incorporate this
system into an already existing system such as Snort, which
has its own established reporting mechanisms. However,
in order to do this, a rate of change analysis is necessary
to automate flagging. Although these issues provide for
further avenues of investigation, the fact remains that the
Fates system both adequately interprets current network
conditions and distinguishes between benign traffic and
basic scanning behavior in a user notable manner.
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