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1. Introduction

In cellular systems, service providers are interested in offering
a given quality of service (QoS) to all users regardless of their
locations in the cell. This leads to the challenging problem of
resource allocation under fairness constraints. In this paper,
we focus on the case of an OFDMA downlink. OFDMA is
a promising modulation and multiple-access technique that
has been adopted in key standards like 802.16d/e (WiMax)
[1, 2].

The problem of resource allocation in OFDMA under
fairness constraints continues to be an active research area
[3–7]. Depending on the target application, the proposed
solutions differ in the fairness requirement and in the
adopted objective function. However, the common point is
that some available channel state information (CSI) is used by
the base station in order to maximize the objective function.
The optimization operates on some degrees of freedom like
subcarrier, rate, and power allocation schemes. Obviously,
the ultimate optimal performance is obtained if the base sta-
tion jointly optimizes the available degrees of freedom while
having an instantaneous full CSI knowledge. Full CSI allows
the system to exploit the different forms of diversity like time,

frequency, or multiuser diversity. In practice, this knowledge
is very expensive in terms of the bandwidth required on
feedback channels. Moreover, even with full and perfect
CSI, finding the optimal solution usually involves prohibitive
computational complexity. These drawbacks usually make
the proposed solutions unsuitable for practical use in real
systems. Therefore, the goal of the present work is to propose
a low-complexity resource allocation algorithm assuming
partial and imperfect CSI.

This paper focuses on the downlink of a single-cell
OFDMA system with adaptive modulation and subcarrier
allocation. Fairness constraints correspond to a target QoS
common to all the users in the cell. This target QoS is defined
by a minimum data rate and a target bit-error rate (BER). In
addition to the path-loss, the channel model includes log-
normal shadowing and Rayleigh fading. We suppose that the
only CSI available to the base station is the channel average
power gain of each user. This partial CSI can be estimated by
averaging the received power over the different subcarriers
assuming equal subcarriers’ powers. It can be considered as
a shadowed path-loss that corresponds to modified users’
distances that we call shadowed distances. Resource allocation
is carried out by the base station based on the notion of
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user shadowed-distance that we introduce and characterize
analytically. The reason why the shadowed distance is
considered rather than the channel average power-gain is
that the resource allocation algorithm that we propose is
closely related to user distribution. This simple CSI results in
a feedback overhead reduction factor equal to the number of
subcarriers, that is, between 64 and 1024, compared to full-
CSI required overhead. Different methods for CSI feedback
reduction were proposed in literature [8–17]. Some [10–
12] are based on optimizing CSI quantization. Others [15]
exploit available channel correlation properties coupled with
channel prediction. Our shadowed-distance-based approach
belongs to the family of methods using channel statistics and
system load knowledge [17]. By exploiting the assumption
of uniform user distribution a set of interesting analytic
results as well as a practical resource allocation algorithm are
provided in this work.

Thus, under the target QoS, a total peak power con-
straint, and a given number of users uniformly distributed
over the cell of a given radius, we provide the optimal subcar-
rier and rate allocation that offers the maximum data rate per
user. The presence of unknown fading leads to an outage each
time the BER achieved by a given user exceeds the target BER.
Therefore, a maximum BER-outage probability constraint
is added to the target QoS specification. This BER-outage
constraint requires considering a fading power margin. This
means that a portion of the total power is dedicated to
fading mitigation and that resource allocation is based on the
remaining power. Moreover, due to shadowing, some users
may fall, in terms of shadowed distance, out of the coverage
range. This corresponds to a rate-outage probability that we
characterize as well.

Simulation results allow us to evaluate the achieved
performance for a typical parameter setting. They show
that our algorithm yields a significant spectral efficiency
enhancement compared to a traditional static resource
allocation. Meanwhile, the loss in terms of average spectral
efficiency with respect to a full-CSI-based opportunistic
allocation remains acceptable. This loss is counterweighted
by the complexity and feedback overhead reduction offered
by our approach. Finally, simulations reveal that the overall
outage performance is very robust to CSI estimation errors.

The remaining of this paper is organized as follows.
The next section describes the system model and introduces
the notion of shadowed distance. Section 3 is devoted to
shadowed-distance estimation issue. Then, the considered
optimization problem is stated in Section 4 where a brief
state-of-the-art is provided as well. The main analytic results
on optimal resource allocation are derived in Section 5. Some
additional equations characterizing the average achieved
performance are given in Section 6. Section 7 focuses on
practical aspects of the resource allocation algorithm. Simu-
lation results are presented in Section 8 before the concluding
remarks of Section 9.

2. SystemModel

We consider an uncoded OFDMA downlink from a base
station to U uniformly-distributed users in a single circular

cell of radius R. A total peak power Ptot is available for
transmission over S subcarriers. The transmitted signal
received by user u experiences a frequency-selective slow-
fading channel characterized by S identically distributed
random variables gu,s (s = 1, . . . , S). These gu,s represent the
channel power gains over the different subcarriers. Channel
realizations are independent from a user to another. Each
coefficient gu,s accounts for a deterministic propagation path-
loss G(xu) that depends on the distance xu of user u to the
base station, in addition to a log-normal shadowing 10 0.1 ξu

and to a multipath squared-Rayleigh power fading φ2
u,s with

E[φ2
u,s] = 1. So, if pu,s denotes the transmitted power on

subcarrier s, the received signal-to-noise ratio (SNR) at the
uth user on this subcarrier is given by

γu,s =
pu,sgu,s

BN0
= pu,s

BN0
G
(
xu
)
10

0.1ξuφ2
u,s, (1)

where B is the subcarrier spacing and N0 is the AWGN power
spectral density. The path-loss G(xu) represents the long-
term average, called also the area mean, of the channel power
gain at distance xu. Thus, the quantity

γu,s =
pu,s

BN0
G
(
xu
)

(2)

is the area-mean received SNR at user u on subcarrier s.
The double bar in γu,s corresponds to the expectation of
the instantaneous SNR with respect to both shadowing and
fading (γu,s = Eξ,φ[γu,s]).

We assume that the logarithmic path-loss GdB(xu) =
−10 log10G(xu) follows the exponent model [18] defined by

GdB
(
xu
) = GdB

(
x0
)

+ 10α log10
xu
x0
. (3)

The term GdB(x0) is the path-loss at a reference distance x0

while α ≥ 2 is the path-loss exponent. The value of α depends
on the terrain nature and on the base station antenna height
[18]. We have

GdB
(
x0
) = 20 log10

4π f x0

c
, (4)

where f is the frequency of the considered subcarrier and c is
the light speed. By taking a unit reference distance (x0 = 1),
the path-loss can be written simply as follows:

G
(
xu
) = G0

xαu
(5)

with G0 = (c/4π f )2. Since the OFDM total bandwidth SB
is typically small compared to the center frequency fc, we
consider that G0 is independent from the subcarrier index.
This parameter is usually calculated using the high end of the
bandwidth, that is, at frequency fc + SB/2 (worst case value).

In (1), the log-normal shadowing 10 0.1 ξu is the mid-term
average gain called the local-mean gain. It is characterized
by the shadowing standard deviation σ which is the standard
deviation of the zero-mean Gaussian random variable ξu.
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Table 1: Main notations.

fc Carrier frequency Hz

S Number of subcarriers —

B Subcarrier spacing (⇒ total OFDM bandwidth = SB) Hz

M Set of available modulation orders (ex. M = {4, 2} ⇔ {QPSK, BPSK}) —

Ptot Maximum total transmit power W

pu,s Power allocated to user u on subcarrier s W

xu Distance between the uth user and the base station m

N0 White noise power spectral density W/Hz

α Path-loss exponent —

σ Log-normal shadowing logarithmic standard deviation dB

Ts OFDM symbol duration sec

Lf Frame length symbols

D0 Target minimum data rate per user bps

b Target bit-error rate —

ε Target maximum BER-outage probability —

U Total number of users users

R Cell radius m

We define the local-mean received SNR (or the shadowed
SNR) by

γu,s =
pu,s

BN0
G
(
xu
)
100.1ξu . (6)

The single bar in γu,s is related to the expectation of the
instantaneous SNR γu,s with respect to the fading process
only (γu,s = Eφ[γu,s]). This shadowed SNR follows a log-
normal distribution LN (μu,s, σ2) where the logarithmic
average is simply the area-mean received SNR (2) in decibels
μu,s = 10 log10γu,s.

Now we define the shadowed path-loss for user u by

Gu = G
(
xu
)

100.1ξu = G0

xαu
100.1ξu . (7)

The reason for calling Gu the shadowed path-loss is that a
user equivalent-distance du can be introduced so that Gu is
obtained by the same path-loss model (5) as follows:

Gu = G0

dαu
. (8)

Thus, from (7) and (8) we get

du = xu10−0.1ξu/α. (9)

In the sequel, we call du the shadowed distance of user
u. Shadowed-distance estimation issue is considered in
Section 3.

So, replacing user actual distance xu by the shadowed
distance du allows us to make abstraction of the shadowing as
if the random component of the channel is reduced to fading.
Obviously, the uniform user distribution is transformed into
a different one (see Figure 2) that we characterize farther in
our analysis. In the following, we consider that the available
CSI about user u is the corresponding shadowed distance du

defined in (9). Based on this CSI, the base station suitably
allocates system resources (subcarriers, powers and rates) in
order to offer the maximum common rate while satisfying
the minimum required QoS. The minimum QoS is defined
by the minimum data rate per user D0, the target BER b
and the maximum BER-outage probability ε. The resource
allocation is done on a frame-basis with a given frame
length L f expressed in OFDM symbols. We consider that the
channel variation rate is small compared to the frame rate so
that the CSI is invariant during the same frame (slow fading
assumption).

Finally, we assume that the users terminals demodulate
each subcarrier using a coherent receiver with a Nyquist-
matched filter. This means that the subcarrier spacing B is
equal to the symbol rate. Consequently, the quantity log2M
represents the spectral efficiency in bps/Hz of the M-QAM
constellation. Throughout this paper, the term M-QAM is
also used for the BPSK case where M = 2. We suppose that
the set M = {M1,M2, . . . ,MQ} of available constellations’
orders is an ordered set, that is, M1 > M2 > · · · > MQ where
Q = card(M). Table 1 summarizes the main notations.

Before formulating the optimization problem in
Section 4, we provide in the following section some details
about the shadowed-distance estimation.

3. Shadowed-Distance Estimation

The shadowed distance defined in (9) can be estimated as
follows. Assume that a dedicated OFDM symbol with known
and equal subcarriers’ powers pu,s = p0 is received by user u
so that the later is able to measure the instantaneous received
SNR γu,s on each subcarrier. Remember that the shadowed
SNR γu,s defined in (6) is the expectation of γu,s with respect
to the power fading φ2

u,s, that is,

γu,s = γu,sφ
2
u,s. (10)
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With equal subcarriers’ powers p0, using (8) and (9), the
shadowed SNR becomes

γu,s =
p0 G0

BN0 dαu
. (11)

From (10) and (11) we get

γu,s =
p0 G0

BN0dαu
φ2
u,s. (12)

By averaging γu,s in (12) over the S subcarriers we obtain

1
S

S∑

s=1

γu,s =
p0G0

BN0dαu

1
S

S∑

s=1

φ2
u,s. (13)

By considering that the sequence φ2
u,1, . . . ,φ2

u,S forms a real-
ization of the ergodic random process φ2

u,s, we can approx-

imate (1/S)
∑S

s=1φ
2
u,s in (13) by the expectation E[φ2

u,s] = 1
(this is a good approximation since S � 1). Thus, given
an estimator N̂0 of the noise spectral density and knowing
the values of constants α and G0, we obtain from (13) the
following estimator of the shadowed distance:

d̂u =
(

p0G0 S

BN̂0
∑S

s=1γu,s

)1/α

. (14)

From (13) and (14) we can derive the following relationship
between the actual shadowed distance and its estimator:

d̂u =
(

N0S

N̂0
∑S

s=1φ2
u,s

)1/α

du. (15)

With perfect noise power estimation (N̂0 = N0) and suffi-
ciently large number of subcarriers so that (1/S)

∑S
s=1φ

2
u,s =

1, we get d̂u = du. In the following we suppose that the
shadowed distances are perfectly estimated by users and
relayed to the BS over an error-free feedback channel.

In Section 4 we formulate the considered optimization
problem with arbitrary CSI in order to compare our
approach based on partial CSI to other existing full-CSI-
based approaches.

4. Problem Formulation and RelatedWork

Assume that the base station allocates subcarrier s to user u
with power pu,s, so that this user achieves a data rate ru,s on
that subcarrier. This rate depends on the target BER b, on
the maximum outage probability ε, on the allocated power
pu,s, and on the available CSI denoted as hu,s. This hu,s may
represent the actual channel gain gu,s, in the case of full CSI,
or any other information derived from gu,s in the case of
partial or imperfect CSI. Let us describe the rate adaptation
by a function Φ as follows:

ru,s = Φ
(
b, ε, pu,s,hu,s

)
. (16)

The subcarrier allocation can be described by the matrix A =
[au,s] where au,s = 1 if subcarrier s is allocated to user u and
au,s = 0 otherwise. Hence, user u achieves a total data rate

ru =
S∑

s=1

au,sΦ
(
b, ε, pu,s,hu,s

)
. (17)

Let P = [pu,s] be the power allocation matrix. Maximizing
the common data rate for a given number of users U can
be written as a problem of sum-rate maximization under
fairness constraints as follows:

max
A,P

U∑

u=1

S∑

s=1

au,sΦ
(
b, ε, pu,s,hu,s

)

subject to [c1] : au,s ∈ {0, 1} ∀u, s,

[c2] : au,sau′,s = 0 ∀s, ∀u /= u′,

[c3] :
U∑

u=1

S∑

s=1

au,s pu,s ≤ Ptot,

[c4] : r1 = r2 = · · · = rU ,

[c5] : ru ≥ D0 ∀u.

(18)

In this formulation, [c3] represents the total power con-
straint. Fairness is defined by [c4] while [c5] corresponds
to a minimum rate requirement. Finally, constraints [c1]
and [c2] mean that during each OFDM symbol, a given
subcarrier can be allocated to at most one user. This
condition is very stringent and may render the problem
unfeasible because of the discrete nature of variables au,s. If
this condition is relaxed, we obtain the following problem
where all the variables are continuous:

max
A,P

U∑

u=1

S∑

s=1

au,sΦ
(
b, ε, pu,s,hu,s

)

subject to [c1] : au,s ∈ [0, 1] ∀u, s,

[c2] :
U∑

u=1

au,s ≤ 1 ∀s,

[c3] :
U∑

u=1

S∑

s=1

au,s pu,s ≤ Ptot,

[c4] : r1 = r2 = · · · = rU ,

[c5] : ru ≥ D0 ∀u.

(19)

Allowing variables au,s to take real values in the range [0, 1]
does not necessarily means that the exclusive subcarrier
assignment is violated. In fact, sharing the same subcarrier
can be carried out by time-division over several OFDM
symbols assuming that the channel state remains invariant
meanwhile. For example, if the optimal solution of (19) gives
a1,s = a2,s = 0.5, then subcarrier s has to be shared by both
user 1 and user 2 during 50% of the time each.

Let us go back to (16) that describes the rate adaptation.
Without any CSI, one must allocate subcarriers and powers
in a static way based on a worst-case design (adaptation to
edge-user condition). With full CSI, where hu,s represents
the actual channel power-gain gu,s in (1), a zero-outage
(ε = 0) can be achieved since the allocated powers can
compensate for the actual channel attenuation. This allows
the system to get benefit of the frequency diversity and to
achieve higher data rates. In literature, authors often consider
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the case of full CSI with continuous modulation and zero-
outage [3–7]. Some authors [3, 6, 7] consider the error-
free Shannon capacity so that ru,s = B log2(1 + γu,s). Such
information-theoretical approaches provide upper bounds
on the achievable performance but are not directly connected
to real implementations. Other authors [4, 5] consider the
case of a positive bit error rate (b > 0) with M-QAM
constellations. In this case, a BER approximation for M-
QAM performance is used. The SNR gap [19], used in [4], is
an example of a BER approximation in the uncoded M-QAM
case. Another example for encoded M-QAM can be found in
[20].

In all cases, finding the optimal solution to (19)
involves excessive computational complexity [7]. Hence,
several suboptimal solutions have been proposed. Some are
based on separating the subcarrier allocation step from
the power allocation step as in [5]. Others assume equal
powers to simplify the subcarrier assignment step as in [7].
Nevertheless, the assumption of full CSI remains unrealistic
in practical systems especially for a large number of users.
This is due to the prohibitive overhead required for CSI
feedback. Moreover, in real systems, whatever the CSI
estimation method is, the obtained CSI is imperfect due
to estimation errors, feedback errors, feedback delay, and
quantization noise. Thus, the aim of this work is to propose
a low-complexity suboptimal solution based on partial
and imperfect CSI so that the resulting algorithm can be
implemented in real systems with acceptable performance.

In OFDMA-based systems like WiMax, only a reduced
number of bits per frame is dedicated to CSI feedback [9]
on the uplink. Thus, the CSI must be efficiently quantized
and the fedback amount of the resulting quantized CSI must
be as small as possible in order to limit the feedback rate
and capture the channel variations. In literature, several
feedback reduction techniques are proposed (e.g., [8–17] and
references therein). CSI quantization on a reduced number
of bits is shown [10] to have a marginal effect on the
achieved capacity compared to full-CSI case even under
some fairness constraints. It was reported [11] that a single-
bit feedback per user per subcarrier is able to capture the
double-logarithmic capacity growth with the number of
users. This assumes an optimized SNR-thresholding [12] on
each subcarrier. Further feedback reduction can be achieved
by grouping adjacent subcarriers into clusters [13] and
reporting one value per cluster (the average or the worst-
case SNR). Another partial CSI approach [14] consists in
reporting only the k-best subcarriers CSI (k = 1, 2, . . .). This
technique becomes particularly interesting when it is coupled
with opportunistic user scheduling [15]. In [16] the authors
introduce the notion of selective mulituser diversity based on
eliminating from the feedback pool those users who have no
chance to be scheduled. In time and/or frequency correlated
channels the available CSI at the receiver (user-side) can
be undersampled to reduce the feedback rate and then the
transmitter (base-station-side) uses interpolation to retrieve
the missing values [15]. Finally, the CSI quantization size and
thresholds can also be optimized based on known channel
statistics and system load (active number of users) instead of
instantaneous SNRs [17].

In this paper, we suppose that the only available CSI is
the users shadowed distances defined in (9). Furthermore, we
show later that even a coarse CSI estimation can be sufficient
as the obtained performance is shown to be very robust
against CSI estimation errors. The reason why the shadowed
distance du is considered rather than the shadowed path-loss
(7) is that the resource allocation algorithm that we propose
is based on user distribution.

To reduce the complexity of the proposed solution, we
adopt the equal-power scheme, that is

pu,s = Ptot

S
∀u, s. (20)

With equal powers, (19) is reduced to a subcarrier and rate
allocation problem. Moreover, since the shadowed distance
du is not a frequency-selective information, the subcarrier
allocation is transformed into a bandwidth allocation. Thus,
resolving (19) consists in deciding how many subcarriers
each user does need and which M-QAM constellation has to
be used on these subcarriers. Let us replace the subcarrier
assignment matrix A by the vector W = [W(1), . . . ,W(U)]
where W(u) represents the number of subcarriers allocated
to user u, that is,

W(u) =
S∑

s=1

au,s. (21)

With the equal power scheme (20), we obtain from ((19).c3)
and (21) the following condition:

U∑

u=1

W(u) ≤ S. (22)

We assume also that the same constellation of order M(u) is
used on the W(u) subcarriers of user u. With uncoded M-
QAM, the rate adaptation function (16) becomes

Φ
(
b, ε,

Ptot

S
,du

)
= B log2M(u). (23)

Notice that Φ(b, ε,Ptot/S,du) is now independent from the
subcarrier index s so that, from (17) and (21), the data rate
achieved by user u is

ru =W(u)Φ
(
b, ε,

Ptot

S
,du

)

=W(u)B log2M(u).

(24)

So, under these assumptions, the optimization problem (19)
becomes

max
W

U∑

u=1

W(u)Φ
(
b, ε,

Ptot

S
,du

)

subject to [c1] : W(u) ∈]0, S[ ∀u,

[c2] :
U∑

u=1

W(u) ≤ S,

[c3] : r1 = r2 = · · · = rU ,

[c4] : ru ≥ D0 ∀u.

(25)
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Note that W(u) in (25) is allowed to take real values. This
can be achieved in practice by time-multiplexing as explained
later in Section 7. If we denote by D the common data
rate, then (25) can be transformed into a common rate
maximization problem as follows:

max
W

D

subject to [c1] : W(u) ∈]0, S[ ∀u,

[c2] :
U∑

u=1

W(u) ≤ S,

[c3] : W(u)Φ
(
b, ε,

Ptot

S
,du

)
= D ∀u,

[c4] : D ≥ D0.
(26)

The rate adaptation, defined by the function Φ(b, ε,Ptot/S,
du) or equivalently by M(u), must ensure the target BER
b for all users with probability 1 − ε at least. The function
M(u) is derived in Section 5 as well as the optimal subcarrier
allocation that corresponds to the maximum common rate
Dmax.

5. Optimal Resource Allocation

In this section, we resolve the optimization problem (26)
formulated in Section 4.

5.1. Rate Allocation. Since the partial CSI du does not depend
on the subcarrier index, subcarrier allocation consists of
deciding how many subcarriers each user does need in
order to achieve the common data rate D that we want
to maximize. Obviously, this depends on which M-QAM
constellation is used on the subcarriers allocated to the user
of interest. Maximizing the common data rate corresponds
to the case where the constellation of the highest possible
order is chosen on each subcarrier. Unfortunately, the choice
of constellation is subject to the BER-outage constraint. Let
us find the expression of the outage probability pout(u) for
user u as a function of the target BER b, the distance du, and
the chosen constellation order M(u). We have

pout(u) = Proba
[
βM(u)

(
γu,s
)
> b
]
, (27)

where βM(u)(γ) is the function describing the achieved BER
versus the SNR γ and the modulation order M(u). Since this
BER function is decreasing with respect to the SNR argument
γ, we have

pout(u) = Proba
[
γu,s < β−1

M(u)(b)
]

(28)

with β−1
M(u)(·) being the inverse function of βM(u)(·) that

provides the minimum SNR required by an M-QAM con-
stellation to achieve a given BER. This outage probability
can be expressed using the cumulative distribution function
Fγu,s(·) of the instantaneous SNR γu,s which, conditionally

to the shadowed SNR (6), follows a chi-square law so that
Fγu,s(γ) = 1− exp(γ/γu,s). Thus we get

pout(u) = Fγu,s

(
β−1
M(u)(b)

)

= 1− exp

(−β−1
M(u)(b)

γu,s

)

.
(29)

Using the equal-power scheme (20) along with (8) and (7),
the shadowed SNR (6) becomes

γu,s =
PtotG0

SBN0dαu
. (30)

Replacing (30) into (29) provides

pout(u) = 1− exp

(

−
β−1
M(u)(b)SBN0dαu

PtotG0

)

. (31)

For a given value of M(u), this outage probability increases
with distance du. Therefore, the maximum outage probabil-
ity constraint

pout(u) ≤ ε (32)

means that each constellation Mq-QAM (q = 1, . . . ,Q) can
be used up to a maximum distance Rq which is the solution
of

1− exp

(

−
β−1
Mq

(b)SBN0Rα
q

PtotG0

)

= ε. (33)

We obtain

Rq =
[ (

Ptot/F
)
G0

SBN0β
−1
Mq

(b)

]1/α

(34)

with the parameter F given by

F = −1
log(1− ε)

. (35)

This parameter F represents the fading power margin that
guarantees a BER-outage probability bounded by ε.

In (34), the SNR-threshold function β−1
Mq

(b) is increasing
with Mq (a higher-order modulation requires higher SNR to
achieve the same BER). So, for the complete set of available
constellations we have R1 < R2 < · · · < RQ. Remember that
maximizing the common rate requires using for each user
the constellation of the highest possible order. Consequently,
the Mq-QAM constellation must be allocated to users whose
shadowed distances du are in ]Rq−1,Rq] with R0 = 0. This
defines the optimal rate allocation as follows:

M(u) = max
q

{

Mq ∈M : du ≤ Rq =
[ (

Ptot/F
)
G0

SBN0β
−1
Mq

(b)

]1/α}

.

(36)

Thus, each constellation Mq-QAM covers an annular zone
of internal (resp., external) radius Rq−1 (resp., Rq). This is
depicted in Figure 1 in the case of three modulations (Q = 3).
In the following, the qth annular zone is referred to as zone q.
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Figure 1: Modulation zones and SNR thresholds (Q = 3 modulations).
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Figure 2: Initial uniform and shadowed user distribution.

5.2. Rate-Outage Probability. The coverage range corre-
sponds to RQ, the range of the lowest-order modulation.
Although users are actually located inside the circle of radius
R, their shadowed distances may be greater than R or even
than the maximum range RQ (see Figure 2). As long as
the user shadowed distance is smaller than RQ, this user
can be served with the required QoS. In the opposite case,
this user is said to be in rate-outage. This corresponds to
the situation where the base station decides to use all the
available constellations and to serve all the users whose
shadowed distances are smaller than RQ. But, in order to
improve the overall QoS of the provisioned users, the base
station may decide not to serve those whose shadowed
distances are greater than a given cutoff distance Rcut ∈
[R,RQ]. Introducing the rate-outage corresponds to a kind
of relaxation of the rate-fairness constraint ((26).c3) and the
minimum-rate constraint ((26).c4). This relaxation prevents
users in bad channel conditions (large shadowed distances)
to penalize the achieved rate of the remaining users by
requiring excessive bandwidth. Thus, tolerating some rate-
outage, with bounded outage probability, is a pragmatic

approach that allows us to improve the system-wide spectral
efficiency.

We define the rate-outage probability for a user u by
ρu(Rcut) = Proba[du > Rcut]. This probability can be
derived given the statistics of the random variable du
defined in (9). It is easier to consider the random variable
10 log10du = 10 log10xu − ξu/α which follows a Gaussian
law N (10 log10xu, σ2/α2). The corresponding cumulative
distribution function is

F10 log10du(y) = 0.5 + 0.5 erf
(
y − 10 log10xu

σ
√

2/α

)
, (37)

where erf(·) is the error function defined by

erf(x) = 2√
π

∫ x

0
e−t

2
dt. (38)

So, the rate-outage probability of user u becomes

ρu
(
Rcut

) = 1− F10 log10du

(
10log10Rcut

)

= 0.5− 0.5 erf

(
10log10

(
Rcut/xu

)

σ
√

2/α

)

.
(39)

For a given Rcut, the rate-outage probability reaches its
maximum for edge users xu = R,

ρmax
(
Rcut

) = 0.5− 0.5 erf

(
10log10

(
Rcut/R

)

σ
√

2/α

)

. (40)

This worst-case rate-outage probability is minimized if the
base station decides to serve the maximum number of users
by setting Rcut to the lowest-order modulation range RQ.
From (34), we have

RQ =
[ (

Ptot/F
)
G0

SBN0β
−1
Mq

(b)

]1/α

. (41)

We suppose that this maximum range is greater than the cell
radius R. So, from (40) and (41), the minimum value of the
worst-case (edge-user) rate-outage probability is given by

min ρmax = 0.5− 0.5 erf

(
10
σ
√

2
log10

(
SBN0β

−1
MQ

(b)Rα
cut

(Ptot/F)G0

))

.

(42)
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Adjusting the maximum rate-outage probability (40)
through the parameter Rcut allows the base station to find
a satisfying tradeoff between the average number of served
users and the QoS that can be offered to them. In fact,
extending the service range by increasing Rcut means that
the spectral resource (subcarriers) has to be shared among
a greater number of users.

5.3. Subcarrier Allocation. Let Uq be the number of users
who, due to the shadowing, seem to fall inside the qth
modulation zone of internal (resp., external) radius Rq−1

(resp. Rq), that is,

Uq = card
{
u = 1, . . . ,U : Rq−1 < xu10−0.1ξu/α ≤ Rq

}
.

(43)

Zones’ radii are given in (34). The quantity Uq is a
random variable. This means that the user partition over the
modulation zones varies each time a new shadowing real-
ization occurs. We saw earlier that the subcarrier allocation
under our assumptions is reduced to a user-wise bandwidth
allocation defined by the vector W = [W(1), . . . ,W(U)].
Suppose that users achieve an unknown data rate Dmax each
(ru = Dmax, ∀u). From (24) we get

W(u) = Dmax(
B log2M(u)

) . (44)

According to (36), the optimal constellation order M(u) is
equal to Mq for all users in zone q. Consequently, each user
in zone q needs Dmax/(B log2Mq) subcarriers. The number
of users contained in zone q is Uq defined in (43). Thus, the
number of subcarriers required by zone q in order to satisfy
its Uq users is

Sq =
Dmax Uq

B log2Mq
. (45)

The issue now is to determine the required number of
modulation zones, denoted by Z ≤ Q, as a function of the
cutoff distance Rcut ∈ [R,RQ]. We have

Z = min
{
q ∈ {1, . . . ,Q} : Rcut ≤ Rq

}
. (46)

So, from the constraint of the total number of subcarriers

Z∑

q=1

Sq = S (47)

and from (45), it follows that

Dmax = BS
∑Z

q=1Uq/log2Mq

(48)

which is the maximum common rate. By substituting Dmax

from (48) back into (45) we get the following expression of
the optimal zone-wise subcarrier allocation:

Sq =
Uq/log2Mq

∑Z
k=1Uk/log2Mk

S. (49)

A(r)

R

BS

r

dr

dθ

θ

u(r, θ)
users

U/(πR2)
users/m2

Figure 3: Differential annular zone A(r).

Note that Sq is a random variable because Uq is. This means
that the zone-wise bandwidth reservation depends on the
shadowing realization. In other words, the base station must
update the variables Sq’s each time it gets a new feedback
about the users shadowed distances. The maximum user rate
Dmax does change accordingly as well.

Now, the aim of what follows is to evaluate the achieved
average performance in terms of rate-outage, user rate,
spectral efficiency, and bearable number of users.

6. Average Achieved Performance

In order to evaluate the average performance of our method,
we need to evaluate the expectation of the shadowed zone-
wise number of users Uq defined in (43).

6.1. Average Shadowed User Distribution. Starting from the
assumption of a deterministic uniform user distribution
(actual users’ positions), we want to derive the average
user distribution when user distance xu is replaced by the
shadowed distance du defined in (9). Averaging is relative to
the log-normal shadowing process.

Consider a differential annular zone centered at the base
station (Figure 3) with an internal (resp., external) radius
of r (resp., r + dr). We denote this annular zone by A(r).
The area of A(r) is π(r + dr)2 − πr2 � 2πrdr. When
U users are uniformly distributed over the cell of radius
R, we have a constant user density of U/(πR2). Thus, the
annular zone A(r) contains 2Ur dr/R2 users. These users
are uniformly distributed over 2π radians around the base
station. This means that the number of users contained
within the differential angular sector [θ, θ + dθ] radians at
distances in ]r, r + dr] (see Figure 3) is equal to

u(r, θ) =
(
2Ur/R2

)
dr dθ

2π
= U

πR2
r dr dθ. (50)

Since the shadowing is closely related to the surrounding
environment topology, we assume that these u(r, θ) users
are subject to the same shadowing realization. In other
words, they have the same shadowed distance d(r, θ) =
r 10−0.1 ξ(r,θ)/α where ξ(r, θ) follows a normal distribution



EURASIP Journal on Advances in Signal Processing 9

N (0, σ2). The cumulative distribution function of d(r, θ) is
given by

Fd(r,θ)(y) = Proba
[
d(r, θ) ≤ y

]

= 0.5 + 0.5 erf

(
10 log10(y/r)

σ
√

2/α

)

.
(51)

Thus, the average ratio of users whose shadowed distances
are in ]0,Rq] is

u
(
Rq
) = 1

U

∫ R

0

∫ 2π

0
Proba

[
d(r, θ) ≤ Rq

]
u(r, θ). (52)

Using (50) and (51) we prove in the appendix that

u
(
Rq
) = 1

2

[

1 + erf
(
C log

Rq

R

)

+
R2
q

R2
e1/C2

(
1− erf

(
C log

Rq

R
+

1
C

))]

,

(53)

where C = 10α/(σ
√

2 log 10). The product u(·)U represents
the average cumulative distribution function of the number
of users when actual distances are replaced by the shadowed
distances. It is the expectation, with respect to the shadowing
random process, of Uq defined in (43). This important
theoretical result is confirmed by simulation in Section 8.

6.2. Rate-Outage Average Performance. Thanks to (53), we
can now evaluate Uout, the average number of users that can
never be served (users in rate outage) because their shadowed
distances exceed the range RQ, given in (41), of the lowest-
order modulation. We have

Uout
(
RQ
) = (1− u

(
RQ
))
U. (54)

Moreover, the average number of users in rate outage versus
an arbitrary cutoff distance Rcut ∈ [R,RQ] is given by

Uout
(
Rcut

) = (1− u
(
Rcut

))
U. (55)

As mentioned earlier, the cutoff distance Rcut provides a way
to tradeoff the maximum rate-outage probability (40) and
the average number of users in rate-outage (55) against the
data rate (48) offered to each served user. The effect of Rcut is
investigated by simulation in Section 8.

6.3. Average User-Rate and Spectral Efficiency. In order to
derive an approximate bound for the average maximum rate
Dmax, we replace in (48) each variable Uq by its expectation
as follows:

Dmax = BS
∑Z

q=1Uq/log2Mq

. (56)

From (53) we get

Uq =
(
u
(
Rq
)− u

(
Rq−1

))
U. (57)

What about the average spectral efficiency achieved by our
allocation method? Note that the average number of served
users is

U srv =
Z∑

q=1

Uq. (58)

These U srv users achieve an aggregate data rate of U srvDmax

on average using a total bandwidth of BS. So, from (56) we
find that the average spectral efficiency is given by

η =
∑Z

q=1Uq
∑Z

q=1Uq/log2Mq

. (59)

Notice that the constraint of the minimum data rate per user
D0 has not been considered yet. Considering this additional
constraint provides a criterion for admission control as
discussed in Section 6.2.

6.4. System Capacity and Admission Control. Having Dmax ≥
D0 along with (48) and (57) gives the following upper-bound
on the bearable number of users

Umax = BS

D0
∑Z

q=1

(
u
(
Rq
)− u

(
Rq−1

))
/log2Mq

. (60)

This Umax corresponds to a kind of maximum system load in
terms of number of users given the minimum required QoS.
When the system is fully loaded, that is, U = Umax, it cannot
offer to each user better than the minimum required data rate
D0. In this case, any additional user that requests an access to
the service is rejected by the base station. So, the ratio U/Umax

can be considered as a metric for the system load. In brief, for
U ≤ Umax we have

Dmax = Umax

U
D0. (61)

Section 7 describes the proposed resource allocation algo-
rithm from a practical point of view.

7. Resource Allocation Algorithm in Practice

In the following we assume that U ≤ Umax. We saw that
the optimal user-wise subcarrier allocation is defined by
(49). However, one must take into account the fact that,
in practice, only an integer number of subcarriers can be
assigned to a given modulation zone. Thus, the Sq’s have to
be rounded to integer numbers. Let

S̃q = I
(
Sq
) = I

(
Uq/log2Mq

∑Z
k=1Uk/log2Mk

S

)

, (62)

where I(x) is the nearest integer to x. These S̃q’s define Z
zones inside the frame where the first zone, for example, is
constituted of slots modulated by the M1-QAM constella-
tion.

From (44), the number of subcarriers that a user u in
zone q needs to achieve the common rate is equal to W(u) =
Dmax/(B log2Mq). So, another concern is that W(u) is not



10 EURASIP Journal on Advances in Signal Processing
Su

bc
ar

ri
er

in
de

x

f

1
2

...

s

...

S

Su
bc

ar
ri

er
sp

ac
in

g
B

1 frame

OFDM symbol time Ts Resource slot (s, t)

Time slot (OFDM-symbol index)

1 2 · · · t · · · L f
t

Figure 4: Frame structure and elementary resource slot.

necessarily an integer. In practice, users are mapped to a
frame of length L f OFDM symbols (see Figure 4). With S
subcarriers, a frame is composed of SL f slots. Let Nq be
the integer number of slots allocated to each user in zone
q. Hence, each user obtains on average Nq/L f subcarriers
per frame. So, to cope with a noninteger W(u), the value of
Nq must be chosen so that the difference |Nq/L f −W(u)| is
minimized. This gives

Nq = I
(
L fW(u)

) = I

(
L f Dmax

(
B log2Mq

)

)

. (63)

The difference between Nq/L f and W(u) makes the obtained
average data rate per user NqB log2Mq/L f slightly different
from the theoretical value Dmax. This difference decreases
with the frame length L f . Moreover, the actual number of

users that can be mapped to the S̃qL f slots of the Mq-QAM
zone in the frame is equal to

Ũq = S̃1 ÷Nq, (64)

where ÷ is the integer division operator.
Now we describe the proposed resource allocation algo-

rithm. We assume that the shadowed distances of users are
known to the base station. So, the base station can sort the
users in a vector U according to their increasing shadowed
distances. Under these assumptions, the proposed resource
allocation algorithm consists of two steps. The first step can
be done once of-line while the second needs to be carried
out dynamically according to the system load and to the CSI
update rate.

Step 1 (offline resource reservation).

(1) Find the required power margin F using (35).

(2) Use (34) to find the maximum range Rq for each M-
QAM constellation.

(3) Calculate from (40) the cutoff distance Rcut that yields
an acceptable maximum rate-outage probability.

(4) Deduce the required number of zones Z from (46)
and the corresponding set of constellations (i.e., the
Z first high-order constellations in M).

Step 2 (online resource allocation).

(1) Using the vector U of users sorted according to their
shadowed distances, find Uq, the number of users
belonging to each modulation zone.

(2) Deduce the zone-wise number of subcarriers S̃q for
q = 1, . . . ,Z using (62).

(3) Compute the maximum common rate Dmax from
(48).

(4) Use (63) and (64) to calculate Nq, the required
number of slots per user as well as the number of
bearable users Ũq, respectively.

(5) Map users to the frame slots are as follows: the first
Ũ1 users in U are mapped to the first S̃1 subcarriers
corresponding to the highest-order modulation zone.
The first user is granted the first N1 time slots on
the first subcarrier. If N1 > Lf , additional time
slots on the second subcarrier is granted to this user
until N1 is reached. Then, the next user is allocated
the next time slots and so on. These operations are
repeated for the next Ũ2 users in U, that belong to
the second modulation zone, and so on until all slots
are occupied.

Figure 5 illustrates the online step of the allocation
process.

The available CSI, limited to the users shadowed dis-
tances, is implicitly used by the base station during the slot
allocation stage in Step 2. One should wonder how precise
does this CSI need to be? In other words, how the achieved
performance can be affected by errors on the CSI? Errors
may come from imperfect CSI estimation as well as from
quantization noise on the feedback channel. Ideally, users are
sorted in vector U according to their shadowed distances.
Suppose that we modify the order in U of a subset of
users belonging to the same modulation zone. This kind
of perturbation has no effect on the expected performance
since these users continue to get the same resources. On the
contrary, some performance degradation may appear when
the CSI errors shift some users from a modulation zone
to another. The effect of imperfect CSI is evaluated in the
numerical results presented in Section 8.

8. Numerical Results

In Table 2, an example of a typical parameter setting is
provided. We assume that the available constellations are
64-QAM, 16-QAM, QPSK, and BPSK. Concerning the SNR
thresholds γq = β−1

Mq
(b) that correspond to the target BER b

for these constellations, we know that for the BPSK, the error
probability can be expressed using the error function (38) by
b = 0.5 erf(√γBPSK). Thus, we have

γBPSK =
[
erf−1(2 b)

]2
. (65)
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q ≤ Z?
Yes No

Yes

No

Yes

No

No

Yes

Figure 5: Flow chart of the resource allocation online step.

For higher-order modulations (Mq > 2), a good approxima-
tion of the SNR threshold for an Mq-QAM modulation with
b ≤ 10−3 is given in [19] by

γq =
(
Mq − 1

)
Γ(b), (66)

where Γ(b) = − log(5 b)/1.6. Table 3 gives for each constella-
tion the SNR-threshold γq corresponding to a BER of 10−3.

In the following, the performance of our allocation
method is characterized versus the worst-case average SNR
(WASNR) defined by

γwa = PtotG0

SBN0Rα
. (67)

This WASNR corresponds to the area-mean SNR on the cell
edge. Given the parameter setting in Table 2, we find using
(35) that the required power margin in logarithmic units
is FdB = 10 log10F � 12.9 dB. In Figure 6 the maximum
attainable range (BPSK coverage) for γwa ∈ [5, 25] dB is
plotted using (34) and (67). Taking into account the target
cell radius R = 100 m, we see that the minimum acceptable
WASNR value is γwa � 19.64 dB (Ptot � 2.73 W). Moreover,
if we assume that the maximum possible value for the total
power is Ptot = 10 W, we find from (67) that γwa must be
limited to about 25.6 dB. Hence, in the following, we let the
WASNR varies in the range [20, 25] dB.
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Figure 6: Maximum attainable range (BPSK coverage) versus
worst-case (edge-user) average SNR (WASNR).
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Figure 7: Average histogram of user shadowed distance.

Let us start by checking the validity of the average
shadowed user distribution defined in (53). Remember that
the product u(x)U represents the average cumulative dis-
tribution function of the number of users whose shadowed
distances are within [0, x]. In other words, the average
histogram of the shadowed distances must coincide with
(u(x + Δx) − u(x))U for Δx � 1. This is validated by
simulation results depicted in Figure 7 where the curves are
normalized to the total number of users and averaged on
1000 shadowing realizations.

Now we compare the average maximum achieved user
rate for 100 users to the analytic expression (56). This is
shown in Figure 8 for two different cutoff distances. When
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Table 2: Simulation parameters’ values.

Center frequency fc 3.5 GHz

Total transmit power Ptot 10 W

Number of subcarriers S 256 subcarriers

Total bandwidth Btot 20 MHz

Subcarrier spacing B = Btot/S 78.125 KHz

OFDM symbol duration Ts = 1/B 12.8 μs

Frame length Lf 100 symbols

Frame duration Lf Ts 1.28 ms

Noise power spectral density N0 −174 dBm/Hz

Path-loss exponent α 3.6 —

Shadowing standard deviation σ 5 dB

Target minimum data rate D0 100 Kbps

Target BER b 10−3 —

Target maximum outage probability ε 0.05 —

Target cell radius R 100 m

Table 3: Available modulations’ SNR thresholds for b = 10−3.

Modulation 64-QAM 16-QAM QPSK BPSK

Zone index q 1 2 3 4

γq (dB) 23.2 17 10 6.8

Rcut is set to the BPSK range RBPSK, the maximum number of
users is served except those who fall beyond RBPSK in terms of
shadowed distance. The achieved data rate is improved in the
opposite case when the base station decides not to serve users
beyond the cell edge by setting Rcut = R. The improvement is
significant for high SNRs while it vanishes near SNR = 20 dB
where RBPSK � R. The gain in user rate is paid for in terms
of the average number of users in rate outage as expected by
(55). This is shown in Figure 9. So, a tradeoff has to be found,
via Rcut, between user rate and rate outage. By varying Rcut

for a fixed total power Ptot = 10 W, we show in Figure 10 the
average percentage of users in rate outage versus the average
maximum user rate.

Now we compare the average spectral efficiency (59) of
our allocation method to the average spectral efficiency of
two other methods. The first one, used if no CSI is available,
corresponds to a traditional “static” allocation of subcarriers
and rates based on a worst-case design. The second allocation
method, called “Max-Min” method, is the one introduced in
[7] and reused in [6]. It is based on the assumption of full
CSI knowledge that allows an improved spectral efficiency
but requires excessive feedback overhead.

In the static allocation case, the power margin must
account for both effects of shadowing and fading. We found
by simulation that under a composite log-normal-Rayleigh
channel, the required power margin for the specified BER
and outage probability is F = 14.8 dB. This value can be
retrieved analytically using results in [21] where it was shown
that a composite log-normal-Rayleigh distribution is equiva-
lent to a modified log-normal distribution. Without any CSI,
the same modulation must be used over all subcarriers. The
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Figure 8: Maximum user rate versus worst-case average SNR for
U = 100 users.

modulation order M must guarantee to edge users (worst-
case) the required BER. So, M can be obtained by setting
du in (36) to the cell radius R. Then, the S subcarriers must
be equally partitioned among the users so that each user
achieves a data rate (S/U)B log2M. Concerning the “max-
min” method [6], its goal is to maximize the minimum
user rate under a total power constraint. Maximizing the
minimum rate is equivalent to maximizing the sum rate with
users having equal rates. In Figures 11 and 12, the spectral
efficiency (59) of our allocation method is compared to the
spectral efficiency of the above-mentioned methods for 10
and 100 users respectively. We choose a cutoff distance of
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Figure 9: Average percentage of users in rate outage versus the
cutoff distance for U = 100 users and Ptot = 10 W (WASNR
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Figure 10: Tradeoff between the achieved user rate and the
percentage of users in rate outage for U = 100 users and Ptot = 10 W
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120 m (the mid-point between the cell radius and the BPSK
range). According to Figure 9, this cutoff distance yields
about 8.5% of users in rate-outage. This, from Figure 10,
corresponds to an average user rate of 760 kbps. To make
the comparison fair, the CSI is quantized on 3 bits. This
reduces the feedback overhead required by the “max-min”
method to 3S bits per user. However, our allocation method
requirement in terms of CSI precision is significantly less

Worst-case average SNR (dB)

20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 25

Sp
ec

tr
al

effi
ci

en
cy

(b
ps

/H
z)

0

1

2

3

4

5

6

7

Max-min method (full CSI)
Our method (partial CSI)
Static method (no CSI)

Figure 11: Average spectral efficiency of our allocation method
compared to the static and max-min methods for U = 10 users
and Rcut = 120 m.

as shown in the sequel. Due to multiuser diversity gain,
the “Max-Min” method exhibits a spectral efficiency gain of
about 1 bps/Hz when the number of users passes from 10 to
100. On the otherhand, the average spectral efficiency of our
method is unchanged as expected by (59). In both cases, for
the static method, the whole cell is covered using the BPSK
of spectral efficiency 1 bps/Hz. We see that our allocation
method offers a significant spectral efficiency gain compared
to the static method.

As mentioned earlier, the main advantages of our method
are its simplicity and the limited CSI feedback it requires. The
price to be paid is some degradation in spectral efficiency
compared to the full-CSI-based “max-min” method as
shown in Figures 11 and 12. This loss is compensated by the
complexity reduction and the limited feedback overhead that
our algorithm requires.

Concerning the rate outage, note that the static method
yields zero rate outage at the expense of the achieved spectral
efficiency. If the BPSK is replaced by the QPSK, the rate
outage remains null (since the BS has not any criterion
for rejecting some users) while the BER-outage probability
constraint will be violated for near-edge users which is not
compatible with the target of this work. The simulated
average percentage of users in rate outage is plotted in
Figure 13 versus the WASNR and compared to the expected
analytic results from (55).

Finally, we want to characterize the sensitivity of our
allocation method to CSI accuracy. Imperfect CSI is modeled
by adding a zero-mean Gaussian error to the user shadowed
distance. We assume that errors for different users are
independent. Thus, if du is the shadowed distance of user

u, the estimated distance is d̂u = du + eu. The error eu
follows a Gaussian law of standard deviation σu = a R so
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Figure 12: Average spectral efficiency of our allocation method
compared to the static and max-min methods for U = 100 users
and Rcut = 120 m.
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Figure 13: Average percentage of users in rate outage versus the
worst-case average SNR for U = 100 users and Rcut = 120 m.

that a represents the error standard deviation normalized to
the cell radius R. This parameter measures the CSI accuracy
(a perfect CSI corresponds to a = 0). Errors on shadowed
distances disturb the rate allocation decision leading to
unexpected BER outage events. We use the average percentage
of users in BER-outage per frame as an overall performance
metric. In Figure 14, this metric is plotted versus the accuracy
parameter a for a fully loaded system (U = Umax) and a
total power Ptot = 10 W. We notice that the percentage of
users in BER outage for perfect CSI (a = 0) is about 2 %.
The degradation does not exceed 2 % even at a = 0.5 which
corresponds to a significantly-degraded CSI. This shows the
robustness of the proposed resource allocation method to
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Figure 14: Effect of CSI accuracy measured by the parameter a on
the average percentage of users in BER outage (U = Umax, Ptot =
10 W).

CSI estimation errors. So, even with coarse estimates of
users’ shadowed distances, the achieved overall performance
remains acceptable. In fact, all the base station needs in
order to properly allocate the resources is the index of the
modulation zone each user belongs to. Assume that the base
station broadcasts the modulation zones’ radii to all the users
in a dedicated frame header and that the shadowed distances
are estimated by users themselves. In this case, each user can
find the index of his modulation zone and then feedback
this value to the base station on the uplink. This fedback
information is simply a discrete value between 1 and Z,
the number of modulation zones. So, the feedback requires
about log2Z information bits per user. In our example
above where Z = 4 zones, two bits per user are needed.
This approach is equivalent to quantizing the CSI, or users’
shadowed distances, using irregular thresholds which are the
zones radii (Rq = 51, 76, 119, 146 (m) in our example). In
full CSI approaches, if the CSI is quantized on N bits, the
feedback overhead is NS bits per user.

9. Conclusion

In this paper, we considered the problem of resource
allocation on the downlink of a single-cell OFDMA system
under QoS fairness constraints with limited channel state
information (CSI). Fairness was defined by a minimum
user data rate, a target BER, and a maximum BER-outage
probability. We supposed that the only CSI available to the
base station is a coarse estimation of the users shadowed dis-
tances that we defined. Thus, under the fairness constraint,
a total peak power constraint and a given number of users
uniformly distributed over the cell of a given radius, we
derived the optimal subcarrier and rate allocation that offers
the maximum data rate per user.

Simulation results showed that our resource allocation
algorithm yields a significant spectral efficiency enhance-
ment compared to the traditional static scheme. Meanwhile,
the loss in terms of average spectral efficiency with respect
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to a full-CSI-based opportunistic allocation was shown to be
acceptable. In fact, this performance degradation is the price
to be paid for the reduced complexity and the low feedback
overhead that our solution requires. Finally, the robustness
of our algorithm to CSI estimation errors was shown which
proving that even a coarse CSI is sufficient for our algorithm
to operate efficiently.

Appendix

Here we provide the details of derivation of (53) from (52).
After replacing (50) and (51) into (52) and integrating with
respect to θ, the equation to be proved becomes

∫ R

0
erf

(
10 log10

(
Rq/r

)

σ
√

2/α

)

r dr

= 1
2
R2 erf

(
C log

Rq

R

)

+
1
2
R2
qe

1/C2
(

1− erf
(
C log

Rq

R
+

1
C

))
.

(A.1)

The positive constant C was defined earlier by C =
10α/(σ

√
2 log 10). Let Aq = C logRq. Then, the left-hand

side (LHS) of the equation above becomes

LHS =
∫ R

0
erf
(
Aq − C log r

)
r dr. (A.2)

Considering the variable change y = Aq − C log r we obtain

LHS = 1
C
e2Aq/C

∫∞

Aq−C logR
e−2y/C erf(y)dy. (A.3)

Now we integrate by parts assuming that g(y) = erf(y)
and df (y)/dy = −(2/C)e−(2/C)y . It follows that dg(y)/dy =
(2/
√
π) e−y

2
and f (y) = e−(2/C)y . So, we obtain

LHS = −1
2
e2Aq/C
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f (y)g(y)

]∞
Aq−C logR

−
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Aq−C logR
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(A.4)

A new variable change x = y+1/C in the second term integral
leads to

LHS = 1
2
e2Aq/C

[

e−2(Aq−C logR)/C erf
(
Aq − C logR

)

+ e1/C2 2√
π
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1
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(A.5)

Remembering that Aq = C logRq, the wanted formula is
obtained.
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