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This paper presents a novel feature for online speech/music segmentation based on the variance mean of filter bank energy
(VMFBE). The idea that encouraged the feature’s construction is energy variation in a narrow frequency sub-band. The energy
varies more rapidly, and to a greater extent for speech than for music. Therefore, an energy variance in such a sub-band is greater for
speech than for music. The radio broadcast database and the BNSI broadcast news database were used for feature discrimination
and segmentation ability evaluation. The calculation procedure of the VMFBE feature has 4 out of 6 steps in common with the
MFCC feature calculation procedure. Therefore, it is a very convenient speech/music discriminator for use in real-time automatic
speech recognition systems based on MFCC features, because valuable processing time can be saved, and computation load is only
slightly increased. Analysis of the feature’s speech/music discriminative ability shows an average error rate below 10% for radio
broadcast material and it outperforms other features used for comparison, by more than 8%. The proposed feature as a stand-
alone speech/music discriminator in a segmentation system achieves an overall accuracy of over 94% on radio broadcast material.
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1. Introduction

Segmentation of audio data has become a very important
procedure in audio processing systems. It is especially signif-
icant in applications such as automatic speech recognition
(ASR), where only the speech segments of an input audio
stream are led to the system’s input, and nonspeech segments
are discarded [1, 2]. In this way, the speed and accuracy
of an ASR system can be improved, and the computation
load is also reduced. The prior segmentation of audio data is
also very important for applications such as broadcast news
transcription [3], where the speech is typically interspersed
with music and background noise. With the development
of the internet, content-based indexing [4—6] has emerged,
because there is a lot of audio data that is not indexed by web
search engines. In such systems, audio segmentation is part
of the indexing task. Segmentation is also used in systems for
audio and speaker diarization [7-9], retrieval of audio-visual
data [10, 11], and so forth.

One of the more often used acoustic segmentation
types is speech/music segmentation. This is not surprising,
because speech and music are two of the most important

and often present acoustic classes within the audio domain.
In the spectrum of typical speech and music signals, we
can see the difference between these two acoustic classes.
Typically different kinds of speech have certain common
features, for example, most of speech energy is in the lower
part of the frequency spectrum (below 1kHz). Depending
on the type of music the music frequency spectrum can
be quite different. There are many different music genres:
rock, pop, rap, classical, hip-hop, electronic, latin, jazz,
country, dance, and so forth. In some music genres (e.g., rap
music) music can also be quite similar to speech. Because
new domains for segmentation are constantly emerging,
speech/music discrimination and segmentation is an active
field of research.

To date, a lot of research effort has been put into
speech/music segmentation. Many different systems for seg-
mentation have been introduced and many different features
proposed (some of the features are compared in [12]),
such as zero-crossing rate (ZCR), low-frequency modulation
(4 Hz typically), root mean square (RMS), spectral roll-off
point (SR), spectral centroid (SC), spectral flux (SF, also
known as delta spectrum magnitude), percentage of “low



energy” frames (PLEFs), line spectral frequencies, perceptual
features such as timbre and rhythm, Mel-Frequency Cepstral
Coefficients (MFCCs), entropy and dynamism features,
and so forth. Some of the above-mentioned features are
more successful when their variance values are used (e.g.,
zero-crossing rate and spectral flux). Frameworks, such
as neural networks, Gaussian Mixture Models (GMMs),
support vector machines, Hidden Markov Models (HMMs),
and the nearest-neighbour, have been used for classification.
Although some frameworks perform better than others, fea-
tures are still one of the main factors for final performance.

Several approaches for speech/music discrimination have
been proposed in the past. Saunders [13] proposed a method
for real-time automatic monitoring of radio channels. His
system was based on using zero-crossing rate and energy
as features, extracted in a 2.4 second window. The author
reported an accuracy of 98%.

In their work, Scheirer and Slaney [14] used 13 features
to characterize the distinct properties of speech and music
signals. They also examined three classification schemes,
that is, the GMM classifier, the multidimensional MAP
Gaussian classifier, and the nearest-neighbour classifier. The
best classifier accuracy was reported at over 94%, and when
integrated into long segments of sound (2.4 seconds), it
achieved accuracy over 98%.

The authors in [15] proposed a method based on the
entropy and dynamism features within an HMM classifi-
cation framework. In their approach, an artificial neural
network trained on clean speech only is used as a channel
model, at the output of which entropy and dynamism are
measured every 10 milliseconds. These features are then
integrated over time through an ergodic 2-state HMM,
using minimum duration constraints. Different experiments,
including different music styles, as well as different temporal
distributions of speech and music signals, have been con-
ducted with a reported accuracy of over 90%. These authors
also noted that this method can be easily adapted to other
speech/nonspeech discrimination applications.

Two methods for speech/music classification for multi-
media applications were compared in [16]. The first method
is based on a zero-crossing rate and Bayesian classification.
This method is very simple from the computational point
of view, and gives good results in the case of pure music
or speech, but some performance degradation arises when
the music segment also contains speech superimposed on
music, or strong rhythmic components. In order to overcome
these problems, the authors proposed a second method,
which is based on neural networks. It is reported that
this method performs better at the expense of a limited
growth in computational complexity. In practice, real-time
implementation is possible, even if using low-cost embedded
systems.

The authors in [17] investigated several audio features
that have not been previously used in speech/music clas-
sification. Three different classification frameworks have
also been studied, and tests have shown that multilayer
perceptron neural networks achieve the best performance.

A classification method based on sinusoidal trajectories
is introduced in [18]. Sinusoidal trajectories represent the
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temporal characteristics of each sound category, such as
speech, singing voice, and a musical instrument. Twenty
temporal features are extracted from trajectories and used to
classify sound segments into categories, by using statistical
classifiers. The authors developed an optimal spectral track-
ing algorithm with low computational complexity, in order
to handle the temporal overlapping of sounds.

The author in [19] presented a method for perform-
ing automatic segmentation based on features relating to
rhythm, timbre, and harmony. A comparison was made
between features only, and between the features and manual
segmentation of a 48-song database. Standard information
retrieval performance measures were used for measuring
performance. Results show that the timbre-related features
perform best.

In [20], the authors performed speech/music classifi-
cation based on one-class support vector machines. The
experimental results show that the classification method,
which can be easily implemented, performs better than the
other methods implemented on the same database.

The authors in [21] proposed a method for speech/music
discrimination based on RMS and zero crossings. Experi-
mental results show good efficiency and performance. The
segmentation and classification algorithms were bench-
marked on a large dataset, with a classification accuracy of
about 95% and a segmentation accuracy of about 97%.

A computationally-efficient speech/music discriminator
for radio recordings was presented in [22]. It is an offline
system based on a region growing technique operating on a
single feature (chromatic entropy). This system was tested on
recorded internet radio broadcast material and achieved an
average discrimination accuracy of 93.38%.

The authors in [23] presented a robust and computation-
ally efficient speech/music discriminator. Their approach is
based on the extraction of four features (zero-crossing rate,
spectral roll-off, loudness, and fundamental frequencies).
The feature values are combined linearly into a unique
parameter. This method has achieved very good accuracy,
even for severely degraded and noisy signals, and it is also
remarkably robust in unknown situations. The low compu-
tational complexity of the method makes it appropriate for
applications that demand real-time operation.

In [24], the authors proposed two novel features for
speech/music discrimination, called Average Pitch Density
and Relative Tonal Power Density. The features were com-
pared to RMS, ZCR, variance of SF, and PLEF features. The
two novel features have proved to be more robust under noisy
conditions.

A method based on a low-frequency modulation feature
is presented in [25]. The low-frequency modulation ampli-
tudes calculated over 20 critical bands, and their standard
deviations were found to be good features for speech/music
discrimination and were also discovered to be less sensitive
to channel quality and model size than MFCC features.

The authors in [26] introduced an evolutionary
speech/music discrimination method for audio coding
improvement. In order to discriminate between speech and
music, a fuzzy rules-based system is incorporated into the
decision stage of a traditional speech/music discrimination
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system. Experimental results demonstrated the robustness of
the proposed system and a classification accuracy of about
94% was obtained over a wide-range of audio samples.

In [27], the authors presented a fast and robust
speech/music discrimination approach, based on a Modified
Low Energy Ratio feature (MLER). The feature is extracted
from each window-level segment as the only feature. A
novel context-based postdecision method was designed to
refine the classification results. The proposed method was
evaluated on various audio data, containing clean and noisy
speech from various speakers, as well as a wide range
of musical content. A classification accuracy of 97% was
achieved despite the low complexity of the method.

In this paper, we propose a novel feature for
speech/music discrimination. The main idea for the
feature construction is that energy in a narrow frequency
sub-band varies more rapidly, and to a greater extent for
speech than for music. The energy variance in such a
sub-band is, therefore, greater for speech than for music.

The remainder of this paper is organized in the following
way. In Section 2, we present the most commonly used set
of features for speech/music discrimination, which we will
use for comparison. Our proposed feature for speech/music
discrimination is presented in Section 3. Section 4 contains
an analysis of the feature’s discrimination ability. Section 5
presents the experimental setup for speech/music segmen-
tation. Descriptions of experiments and results are given in
Section 6. Conclusions and findings are drawn together in
Section 7.

2. Speech/Music Discrimination Features

Many standard features are available for the task of dis-
criminating between speech and music signals. For the
purpose of comparison with the proposed novel feature, we
implemented the following set of standard features.

(i) Zero-crossing rate (ZCR) is a member of the time-
domain features, and is the number of zero-crossings of
a signal within a predefined window. Zero-crossing occurs
when successive samples have different algebraic signs [28].
ZCR can be computed as

| N
ZCR = W,; |sgn[x(n)] — sgn[x(n — 1)]], (1)

where N is the number of samples in one window, x(#)
represents the samples of the input window, and sgn[x(n)] is
+ 1 as x(n) is positive or negative, respectively. ZCR is widely
used in practice and is also a strong measure for discerning
fricatives from voiced speech. The sampling rate of a signal
should be high enough to detect any crossing through zero.
It is also very important that the signal is normalized, so that
the amplitude average of the signal is equal to zero [29]. The
ZCR of music is usually higher than that of speech, because
ZCR is proportional to the dominant frequency (music has
higher average dominant frequency [30]).

(ii) Spectral roll-off (SR) is the measure of skewness
of the signal’s frequency spectrum. It is the value of the
frequency under which usually 95% of the signal’s power

resides. It is a good measure for distinguishing between
voiced and unvoiced speech. It is expected that speech has
a lower value of spectral roll-off, because it has most of the
energy in the lower part of the frequency spectrum. The
mathematical expression used, is

R M
> X(k) =0.95> X(k), (2)
k=1 k=1

where k is the frequency bin index, M is the total number of
frequency bins, X(k) is the amplitude of the corresponding
frequency bin, and R is the spectral roll-off number.

(iii) Spectral centroid (SC) is defined as the centre of
a signal’s spectrum power distribution. Like spectral roll-
off, spectral centroid is also a measure of spectral shape.
Music signals have high spectral centroid values because of
the high frequency noise and percussive sounds. On the other
hand, speech signals have a narrower range, where pitch stays
at fairly low values. It has different values for voiced and
unvoiced speech, and can be calculated as

_ Sl k- X(K)
St X (k)

where k is the frequency bin index, M is the total number of
frequency bins, and X(k) is the amplitude of the correspond-
ing frequency bin. Higher values mean “brighter” sound with
higher frequencies.

(iv) The percentage of low energy frames (PLEF) is a
percentage measure of low energy frames, and is also known
as Low Short Time Energy Ratio (LSTER) [31]. PLEF is
defined as the proportion of frames, with RMS power of less
than 50% of the mean RMS power within a specific window
(usually 1 second). A higher value for speech is expected,
because it contains more silent moments than music. The
mathematical expression for PLEF feature calculation is

SC , (3)

N-1
PLEF = % > [sgn(0.5 - STExy — STE(n)) + 1], (4)
n=0

where n is the index of a current frame, N is the total number
of frames in a window, STE(n) is the short-time energy of a
current frame, and STE v is the average short-time energy in
a window, and can be calculated as

N-1
STExy = . STE(n). (5)

n=0

(v) Spectral Flux (SF) [32]: spectral flux, also known as
delta spectrum magnitude, is a measure which characterizes
the change in the shape of the signal’s spectrum. The rate of
change in spectral shape is higher for music and, therefore,
this value is higher for music than for speech. Spectrum flux
can be calculated as the ordinary Euclidean norm of the delta
spectrum magnitude:

1

M
A > (Xi(k) = X1 (k)2 (6)

k=1

SF =



where M is the total number of frequency bins, i is the frame
index, k is the frequency bin index, and X; and X;_, are the
spectrum magnitude vectors of frames 7 and i- I, respectively.
It is known that speech alternates between transient and
nonperiodic speech to short-time stationary and periodic
speech, due to phoneme transitions (e.g., consonant to
vowel). On the other hand, music and environmental sounds
can be periodic or monotonic, and have more constant rates
of change versus that typical for speech. This means the
variance of SF for speech is larger than for music and most
environmental sounds.

3. Variance Mean of Filter Bank Energy

In this section, we will describe the motivation for construct-
ing the newly-proposed Variance Mean of Filter Bank Energy
(VMFBE) feature.

Our goal was to analyze the possibilities of constructing a
good discriminator between speech and singing voice with
instrumental accompaniment. As can be seen in Figure 1,
spectral representations of speech and music can be very
different, despite the fact that there is a human voice present
in both cases. It is typical for speech that the speaker’s pitch
can have values between 50 Hz and 400 Hz, and can vary
by as much as 160 Hz, especially if the speaker is excited
or surprised [33, 34]. Also, the duration of the phonemes
is shorter for speech (40-200 milliseconds) than for the
singing voice (600—-1200 milliseconds) [35]. This can be seen
in Figure 1, where changes in individual speech harmonics
are more rapid for speech than for music. Furthermore,
Figure 1 also shows that speech harmonics in music tend
to have steadier values during longer periods of time
than with speech. If we exploit this fact and divide the
signal’s spectrum into several sub-bands, narrow enough
to catch the variation of pitch and higher harmonics, we
can expect the energy of an individual sub-band to go
through more drastic and rapid changes during speech than
music. Thus, the variance in energy of such a sub-band
should be higher for speech than for music. With this idea
in mind, we now define the VMFBE feature calculation
procedure.

3.1. Calculation of a VMFBE Feature. The first three steps
of VMEBE feature calculation are sampling, windowing,
and DFT calculation. These steps will be described in detail
later (in Section 5), when the experimental framework is
presented because they are also common to some other
features. Now, we will focus solely on VMFBE feature
calculation.

After calculating the signal’s spectrum magnitude, we
filter the spectrum with a set of triangular filters. These
filters are distributed evenly on the melodic scale (mel-
scale) frequency axis with 50% overlap. The equation for
transforming frequency from linear scale (fiin) to mel-scale

(fmel) [36] is

flin
Smel = 2595 - log,, (700 +1]. (7)
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The centre frequencies on linear scale (fc) of mel-
distributed triangular filters [36] are calculated according to

fc(l) = 700 - (1O(STF+Z-(SAF/Z—STF)/(L+1))/2595 _ 1), (8)

where STF is the start frequency of the first (lowest) sub-band
(32 Hz in our case), SAF is the sampling frequency, L is the
number of filters, and [ is the sub-band filter index.

Every DFT magnitude coefficient is multiplied by the cor-
responding sub-band filter channel gain and the logarithmic
energy in that sub-band [36] is calculated as

M
Ey = log X" (X, [k] - Fi[k])’, n=1---W, (9)
k=1

where | = 1---L is the filter number index, k is the
frequency bin index, M is the number of frequency bins, n
is the frame index in the variance calculation window, W is
the number of frames in the variance calculation window,
Ej  is the logarithmic energy coefficient of the corresponding
filter, X, is the spectrum magnitude vector, and F; is the
corresponding filter channel gain function.

After filter bank energy calculation, we calculate the
energy variance for each filter channel. The variance can
be calculated over different time windows. The variance
calculation window has to be long enough to capture enough
energy dynamism but, at the same time, it must not be
too long, because time resolution for the segment border
calculation will be low. The variance of an individual filter
channel can be expressed as

Vi =var(E), E =][Ey....Ew], I=1---L, (10)
where V; is the variance of the /th corresponding filter
channel, /is the filter number index, L is the number of filters,
and E is the energy vector of the /th filter channel. Visual
representation of the filter bank energy variance coefficients
can be seen in Figure 2. However, 200 filters were used for
better visual representation. In the figure there are three
explicit regions. The left region represents speech (0-8 sec-
onds), the middle region represents silence (8—10 seconds),
and the right region represents music. It can be seen that the
energy filter bank variance coefficients representing speech
attain higher values than those representing music, especially
in the lower half of the frequency band. This is due to the fact
that the majority of energy in speech resides in the lower half
of the frequency spectrum.

In order to obtain only one feature from a number of
filter bank energy variance coefficients, we calculate the mean
of those coefficients. Mathematically, we formulate this as

L
VMFBE = %ZV,, (11)
I=1

where [ is the filter bank number index, L is the number of
filters, V; is the variance value of the corresponding filter’s
energy, and VMEBE is the calculated feature value. After the
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FIGURE 1: Spectrograms of (a) Speech of a female radio speaker, (b) music including vocals, recorded from public broadcast radio station.
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FIGURE 2: Visual representation of the energy filter bank variance
coefficients (0-8 seconds speech, 8-10 seconds silence and 10-20
seconds music).

calculation of mean, we get the average variance value for our
window of observation. The values of the VMFBE feature for
our demo recording are shown in Figure 3. This figure shows
that the VMFBE feature achieves higher values for speech,
than for music, as was anticipated.

If we compare the calculation steps of the VMFBE feature
calculation with the calculation procedure of the MFCC
features, we notice that 4 out of 6 steps are in common
(windowing, DFT calculation, mel-filtering, and filter log-
energy calculation) [36]. By taking this into account, only
two additional steps (sub-band filter energy variance calcu-
lation and energy variance mean calculation) are required to
implement a speech/music discriminator in an ASR system,
based on MFCC features. For example, if speech/music
discriminator would be implemented using variance of SF,
only 2 out of 5 steps would be in common with MFCC
feature calculation procedure.

VMFBE feature value

0 2 4 6 8 10 12 14 16 18 20
Time (s)

FIGURE 3: Visual representation of the VMFBE feature (value for
speech is higher than for music; 0-8 seconds speech, 8-10 seconds
silence, and 10-20 seconds music).

4. Discrimination Ability Analysis of
the Proposed Feature

Analysis of the proposed VMFBE features’ discrimination
ability, together with other features mentioned in Section 2
(standard used features for speech/music discrimination),
is performed on two different databases. The first database
is composed of television news shows and late-night news
shows, recorded mostly in a studio environment. Recordings
of lower quality are usually telephone recordings or news
reports from the field. The second database is the database
of radio broadcast recordings from several Slovenian radio
stations.

4.1. BNSI Broadcast News Database. The Slovenian BNSI
Broadcast News database was collected in a cooperation
between the University of Maribor and the Slovenian public
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TaBLE 1: Focus conditions of the BNSI database.
FC Description Perc. (%)
FO Read studio speech 36.6
F1 Spontaneous studio speech 16.2
F2 Clean telephone speech 1.65
F3 Speech with music background 6.0
F4 Read or spontaneous speech' with 376
background other than music

F5 Speech of nonnative speakers 0.1
Fx Unclassified 1.85

broadcast company RTV SLO [37]. Two different types of
news shows are incorporated into the BNSI database. The
first is the evening news, and the other the late-night news
shows, where more detailed analysis of major daily events
is given. The audio format is 16 bit 16 kHz wav. The speech
corpus consists of 42 news shows which include 36 hours of
speech. Also, 30-hour material is used as a train set, 3 hours
as development, and 3 hours as evaluation set. The database
material is divided into 7 focus conditions (FC). The focus
conditions are presented in more detail in Table 1.

As can be seen from the table, the two most frequent
conditions are FO (read studio speech) and F4 (read or
spontaneous speech with a background other than music).
The database contains both male and female speakers with
approximately equal shares. Speech represents 88% of the
database material and 12% is nonspeech material. The
nonspeech part of the database is composed of silence, music,
and noise. More than 70% of nonspeech material is music,
and it is composed of jingles, intros, and so forth, the music
is mostly instrumental and electronic (no singing). Manual
transcriptions are available for the database. Transcriptions
also include information about a speaker’s gender, back-
ground, sound fidelity, channel bandwidth, commercials,
and so forth.

4.2. Radio Broadcast Database. For the purpose of our
analysis a radio broadcast database was built. The database
contains radio broadcast material collected from several
public radio stations. The idea was to collect more diverse
material from as many music genres as possible. The material
was collected by sampling an FM tuner connected to a
desktop PC. Recordings were sampled at 16 KHz using a 16-
bit resolution, single channel. The database contains both
male and female speakers, with in studio and telephonic
channel conditions. Background conditions sometimes vary
(silence, noise, and often silent music, which is typical for a
radio broadcast material). Many different performers (local
and international) and music genres are represented in the
database: pop, jazz, various types of rock, dance, hip-hop,
rap, and so forth. Altogether 48 hours of sound material
was compiled, where music represents 65%, speech 25%, and
10% other radio broadcast material (commercials, intros,
etc.). Two subsets were defined within the structure of the
database. The first subset is a train set and is assigned for
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training purposes. It is compiled from 2 hours of randomly
chosen speech and music material from the database (60%
music, 40% speech). The test set also includes 2 hours
of randomly chosen speech and music material from the
database. The material from the train and test sets are
selected in such a way that they do not overlap with each
other. Manual annotations were also created for the database.
These annotations contain marks for speech segments,
music segments, and other (commercials, intros, etc.).
Transcriptions for the database were not created because
the database is only used for speech/music segmentation
evaluation.

4.3. Discrimination Ability Estimation. This section analyses
the ability of features to discriminate between speech and
music audio class. This method for estimating classification
error is based on estimating the probability density function
(PDF) of each class using histograms. Analyses were carried
out on both databases. An example of histograms for the
VMEBE feature, and the variance of SF feature for both
databases, is shown in Figure 4.

The ZCR feature was calculated over a 20 millisecond
frame with a 10 millisecond frame shift. The signal was
first normalized to obtain the correct result. PLEF was
another feature calculated within the time-domain. Short
time energy (STE) was calculated within a 20 millisecond
frame with a 10 millisecond frame shift. The ratio of frames
with STE lower than 50% of the average STE was calculated
over a time period of 1 second. SR, SC, and SF are members
of the frequency domain features. All three were calculated
using 32 milliseconds long frames with a frame shift of 10
milliseconds. A Hamming window was used for windowing,
and a DFT of the order 512 was calculated. The SR feature
was calculated with a roll-off coefficient of 0.95. The VMFBE
feature was calculated using the same front-end setup as for
the SC, SR, and SF features. The order of DFT was also 512.
The magnitude of the frequency spectrum was then filtered
using 24 triangular filters, evenly distributed on the melodic
scale.

Results for the speech/music discrimination abilities of
all the presented features can be seen in Tables 2 and 3.
Table 2 shows the results of tests conducted on the radio
broadcast database, and Table 3 shows the results of tests
conducted on the BNSI database. In both cases, the train sets
of the databases were used.

In regard to features ZCR, SC, SR, and SF, a variance
version (in tables marked as “Var. of”) was also calculated
and compared to other features, in addition to their basic
version. The variance of a particular feature was calculated
within a 1 second window.

As expected, from the list of standard speech/music
discriminative features, the variance of SF performed the
best. On the radio broadcast database (see Table2) it
outperformed the second rated standard feature (PLEF)
by 4% absolute average. The proposed VMFBE feature
proved to be the most effective. Results obtained on the
radio broadcast database show that the VMFBE feature has
more than 8% average better discriminative ability than
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FiGure 4: Histograms of (a) VMFBE feature on radio broadcast database, (b) Var. of SF feature on radio broadcast database, (c) VMFBE

feature on BNSI database and (d) Var. of SF feature on BNSI database.

the second-rated feature (variance of SF). The same as in
previous research work [14], the variance of SF proved
to be a good discriminator between speech and music,
and performed best from the list of standard speech/music
discriminators used in this discriminative ability test. For this
reason, we chose this feature to compare its performances
to the VMFBE feature in the speech/music classification and
segmentation task.

Results obtained on the BNSI database (see Table 3)
show a minor advantage of the VMFBE feature over the
variance of SE. Only 2.3% higher-average discrimination
ability was achieved. The BNSI database has very low portion
of music material and the material is mostly instrumental
(jingles, intros, etc.). Therefore, results obtained on the radio
broadcast database show more realistic performance abilities
of features for speech/music discrimination.

5. Description of the Experimental Framework

The performance of the speech/music segmentation and
classification was evaluated on the databases, as described in
Sections 4.1 and 4.2.

5.1. Basic Structure of the Speech/Music Segmentation and
Classification Framework. The block scheme of the defined
speech/music segmentation and classification framework is
shown in Figure 5. The input audio signal is sampled at
16 KHz with 16 bit resolution. The Hann window is used for
windowing, with a length of 512 samples, which is equal to
32 milliseconds at a sampling frequency of 16 KHz. Window
shift is 10 milliseconds (160 samples). Over each window, the
512-order discrete Fourier transformation (DFT) is applied,
which is followed by feature calculation. When calculating



TaBLE 2: Speech/Music discrimination ability of features. Experi-
ments were performed on radio broadcast database.

Feature Music Speech Average
Error (in %)
ZCR 30.92 32.50 31.71
Var. of ZCR 18.61 37.34 27.97
SC 25.71 28.06 26.88
Var. of SC 13.37 43.98 28.67
SR 18.72 35.11 2691
Var. of SR 14.41 34.50 24.45
PLEF 29.87 13.50 21.68
SF 25.70 45.46 35.58
Var. of SF 18.05 16.26 17.15
VMFBE 7.25 10.61 8.93

TaBLE 3: Speech/Music discrimination ability of features. Experi-
ments were performed on BNSI database.

Feature Music Speech Average
Error (in %)
ZCR 28.68 39.42 34.05
Var. of ZCR 14.24 26.90 20.57
SC 25.61 43.31 34.46
Var. of SC 09.18 26.15 17.66
SR 26.66 43.15 34.90
Var. of SR 13.49 21.36 17.42
PLEF 43.12 06.94 25.03
SF 30.37 56.09 43.23
Var. of SF 26.03 7.64 16.83
VMFBE 21.35 7.71 14.53

TABLE 4: Results for discrimination ability with a shorter variance
calculation window (200 milliseconds).

Feature Music Speech Average
Error (in %) on radio broadcast database
Var. of SF 24.82 26.67 25.74
VMEFBE 13.82 21.58 17.70
Error (in %) on BNSI database
Var. of SF 24.86 20.53 22.69
VMEFBE 15.87 17.63 16.75

the variance of SF, we calculate the variance over a period
of 200 milliseconds with 100 millisecond overlap. If we
were to calculate variance in a 1second window, the time
resolution would be too inexact for successful determination
the beginning or the end of a segment. Variance in the
VMEBE feature calculation procedure was also calculated
over 200 milliseconds. We tested the basic discrimination
ability again, because the length or the variance calculation
window changed. The results are shown in Table 4.

As can be comprehended from Table 4, the discrimina-
tion abilities of both features dropped when using a shorter
time window for variance calculations. Nevertheless, the
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VMEBE feature still outperforms the variance of SF by 7%
on average.

After the feature calculation step, feature classification
and segmentation procedures are performed. The result of
segmentation and classification is written into the output
segmentation text file (SEG). The output segmentation file
is used later during the evaluation process.

5.2. Classification Step. The feature classification procedure
is executed after the feature calculation step, using a GMM
classifier. Classification using GMM uses a likelihood esti-
mate for each model, which measures how well the calculated
feature is modelled by the trained Gaussian clusters. A feature
is assigned to whichever class is the best model of that feature.
On the basis of the likelihood values, the frames are classified
and in the segmentation step they are grouped into segments
according to minimum segment duration rules.

The train sets of the databases were used for training
the GMM models. We trained one model for each acoustic
class (one for music and one for speech) using five Gaussian
mixtures per class. The number of mixtures was defined
empirically, by considering the achieved speech/music dis-
crimination accuracy. The speech training material in both
databases included male and female speakers under different
environmental circumstances (studio recording, recording
over a telephone line, etc.). Radio broadcast database speech
material typically includes quite a large portion of speech
with quiet music in the background. On the other hand,
the music material of the databases used differs a great deal.
The BNSI database has low portion of music material. This
music material is mostly instrumental (jingles, intros, etc.),
with no singing voice present. As mentioned earlier in this
article, the radio broadcast database contains a wide variety
of music. In the database different genres of music and
different performers (local and international) can be found.

5.3. Segmentation Step. After the classification procedure,
frames are grouped into segments according to the classifi-
cation tag (whether a frame was classified as a speech frame
or as a music frame). The classification result is smoothed
out using mean filter, which filters out any glitches during
the classification step. The segments are created according to
the minimum speech and music segments’ duration rules.
An example of the segmentation procedure is shown in
Figure 6. When the transition from speech to music (or vice
versa) is detected (e.g., t1 mark in Figure 6), the algorithm
marks the transition point as the potential beginning of the
music segment and, at the same time, the measurement of
segment duration begins. The algorithm then waits for the
transition from music to speech (t2), and if the segment
duration S1 is long enough, the segment is confirmed,
otherwise the segment is refuted. In Figure 6, the segment S1
is refuted because the segment does not fulfill the minimum
segment duration rule. The segment S2 is verified, because it
fulfills the rule. The segment t2-t3 was not compared to the
minimum speech size because music segment S1 (t1-t2) was
not confirmed as a valid music segment.
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F1GURE 5: Block scheme of the proposed speech/music segmentation and classification framework.
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FIGURE 6: An example of segmentation procedure; (a) marking the
potential segments, (b) refuting the unsuitable and confirming the
suitable segments (speech = 1, music = 0).

The minimum speech segment duration rules for radio
broadcast database are the same for both acoustic classes
(minimum segment duration is set at 3 seconds). In the
database there are almost no labelled segments shorter than
that. Minimum segment duration rules are different for the
BNSI database. Minimum nonspeech duration is set at 1500
milliseconds, because the transcription rules for the BNSI
database instructs that 1500 milliseconds is the minimum
nonspeech section duration. The minimum speech duration
is set at 600 milliseconds. Many speech segments in the
BNSI database begin with the greeting of the news anchor,
followed by a short pause (nonspeech). The duration of
this short speech segment is around 600-700 milliseconds
and the duration of the short pause segment is around 300
milliseconds. By setting the minimum speech duration to
the mentioned value we can, in such a case, successfully
determine the beginning of the speech segment.

The whole framework works online. The delay of the
system depends on the longest minimum segment duration,
set by the segment duration rules (1.5 seconds for BNSI
database and 3 seconds for radio broadcast database).

6. Evaluation and Results

6.1. Evaluation. We used the percentage of frame-level accu-
racy measure for the evaluation metric. We calculated three
different frame-level accuracies: speech, music, and overall
frame-level accuracy. Speech frame-level accuracy is defined
as a percentage of the true speech frames classified as speech,
the music frame-level accuracy is defined as a percentage of
the true music frames classified as music, and the overall
accuracy is defined as a percentage of correctly classified

TABLE 5: Accuracy results for speech/music segmentation, per-
formed on BNSI and radio broadcast database.

Feature Music Speech Overall
Accuracy (in %; radio broadcast database)
Var. of SF 90.49 91.12 90.70
VMFBE 94.24 92.78 94.05
Accuracy (in %; BNSI database)
Var. of SF 84.01 95.76 94.51
VMFBE 95.85 95.90 95.90

speech and music frames. The mathematical formula for
overall accuracy is

FS + FM

- . 0,
Ts+TMm 100%

Overall acc. = (12)
where FS and FM stand for found speech and music
frames, and TS and TM stand for true speech and music
frames. Commercials were discarded from the evaluation.
The reason for discarding commercials is that they are
labelled as homogenous segments and in order to use them
in the evaluation procedure, they should be labelled in
more detail (which part is speech and which is music).
It should be noted that when one class dominates the
other (as in BNSI, speech class dominates the nonspeech),
overall accuracy mostly depends on the accuracy of that
dominant class. In such a case, the overall accuracy itself
does not provide enough information; therefore, all three
accuracies need to be presented. Transcriptions in the BNSI
database and the evaluation tool (ELIS-SEG; developed
during the COST278 project campaign) do not explicitly
support speech/music segmentation evaluation, but only
speech/nonspeech. Because music in the BNSI database
represents more than 70% of all non speech material (the
rest is mostly silence), we used the speech/nonspeech evalu-
ation procedure to evaluate our speech/music segmentation
framework on the BNSI database. Regular speech/music seg-
mentation evaluation was performed on the radio broadcast
database.

6.2. Results. Speech/music segmentation performance for
both the variance of SF and VMFBE features was tested on
test sets of the BNSI and radio broadcast databases. The
results are shown in Table 5. Performance was measured as
frame-level accuracy of speech, music, and overall.

As given in Table 5, the performance of the VMFBE
feature compares favourably with the performance of the SF
feature’s variance, on both databases. The results obtained on
the BNSI database show 1.4% better performance although
the VMFBE feature outperformed the variance of SF by more
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TABLE 6: Accuracy results (in %) for speech/music segmentation for
multifeature discriminator.

Database Music Speech Overall
Radio broadcast 96.26 93.37 95.91
BNSI 95.69 98.17 97.87

than 10%, regarding music accuracy. The reason why this
difference contributes so little to the overall performance
difference is in the fact that speech is the dominant class in
the BNSI database, and music represents only 10% of the
test material in the evaluation set of the BNSI database. It
is typical that television broadcast news databases include a
fairly small amount of music material (it is similar for other
broadcast news databases collected within the COST278
project [38]).

The results obtained on the radio broadcast database
show a bigger advantage over the VMFBE feature regard-
ing the variance of SF in segmentation performance. In
contrast to the BNSI database, music is the dominant
class in this database and represents almost 65% of the
database evaluation set. The VMFBE feature shows a 3.35%
segmentation performance gain according to the variance of
SE feature. The results obtained on this database are more
representative, because this database contains more diverse
music material than the BNSI database.

After reviewing the segmentational files of the VMFBE
feature segmentation procedure, we noticed that errors
mostly occurred regarding rap music material. This happens
quite often for this type of music as it is closest to natural
human speech, although it has a strong beat, but it does not
have such a distinctive melody, like some other music genres.
This characteristic makes rap music harder to discern from
speech than some other genres.

We also tested the joint-discriminating ability of the
presented features, by joining variance versions of all features
and a PLEF feature, into a vector. In this way, we obtained
a feature vector with 6 feature coefficients (VMFBE, var.
of SE, var. of SC, var. of SR, PLEF, and var. of ZCR).
We trained the GMM model on the same data as before.
However, 30 Gaussian distributions were used for individual
acoustic classes. Variance of features was, as in the previous
example, calculated over a period of 200 milliseconds with
100 millisecond overlapping. The segmentation process
and minimum segment duration rules were the same as
before. The results obtained for multi-feature speech/music
classification and segmentation framework, are shown in
Table 6.

The results in Table 6 show almost 2% overall accuracy
gain for the speech/music segmentation task, performed on
the BNSI and radio broadcast databases, comparing to the
results in Table 5. The results for radio broadcast database
show a bigger accuracy gain for music (2.02%) than for
speech (0.59%). For the BNSI database it is the opposite case.
Speech shows a 2.27% accuracy gain, while music accuracy
decreased by 0.16%. Because the segmentation accuracy
of the dominant acoustic class improved quite noticeably,
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FiGure 7: Histogram of speech/music segmentation time-error
analysis.

TABLE 7: Segmentation performance of MFCC features, performed
on BNSI and radio broadcast database.

Features Music Speech Overall
Accuracy (in %; radio broadcast database)
MEFCC 128 mix. 94,12 97.53 94.56
MFCC 256 mix. 94.25 97.95 94.73
Accuracy (in %; BNSI database)
MFCC 128 mix. 91.23 97.54 96.91
MEFCC 256 mix. 91.72 97.76 97.15

overall speech/music segmentation accuracy also essentially
increased.

In order to evaluate the time accuracy of the
speech/music segmentation, we performed the time-
error analysis. We measured the time differences between
hand-labeled reference borders and automatically calculated
borders. The results of time-error analysis are shown in
Figure 7 in the form of a histogram. Results of the analysis
show that the average segmentation time-error is +0.36
seconds. This means that, on average, the segment borders
are set later than they actually occur.

For the purpose of comparison with the VMFBE feature,
we tested the ability of MFCC features to discriminate
between the speech and music acoustic classes. As in other
experiments, these experiments were also performed on both
databases. We used the same training material to train the
GMM models, as used for other features. We used two
different model complexities; one model with 128 Gaussian
mixtures and the other with 256 Gaussian mixtures. We
calculated 12 standard MFCC features extended by the log-
energy. The feature vector, therefore, has 13 coefficients. The
results for speech/music segmentation accuracy for MFCC
features, are shown in Table 7.

The results from Table 7 show that there is only a
slight difference between models with 128 mixtures and 256
mixtures, therefore, tests with higher model complexities are
not needed. If we compare the overall results from Table 7
with the overall results from Table 5, we can see that MFCC
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TaBLE 8: Cross-test segmentation performance of VMFBE and
MEFCC features on BNSI and radio broadcast database.

Features Music Speech Overall
Accuracy (in %; on radio broadcast
database with BNSI GMM models)

MFCC 256 mix. 90.68 93.10 90.99

VMEFBE 94.11 92.81 93.94

Accuracy (in %; on BNSI
with radio broadcast GMM)
MEFCC 256 mix. 71.86 94.33 92.23
VMEFBE 96.37 94.95 94.89

features perform slightly better than VMFBE feature (0.7%
on radio broadcast database and 1.2% on BNSI database),
mainly because of the better performance for the speech
acoustic class. The performances of MFCC and VMFBE
features for the music acoustic class are very similar on
the radio broadcast database. The VMFBE feature slightly
outperforms the MFCC features over a 128 mixture exper-
iment, while the performance with 256 mixture experiment
is practically the same. On the BNSI database (regarding the
music acoustic class), the VMFBE feature outperforms the
MECC features by more than 4%. Although MFCC features
show small overall performance advantage (less than 1%, on
average), the VMFBE feature shows solid performance when
discriminating the music acoustic class. The VMFBE feature
also has the advantage of having a faster feature extraction
algorithm than MFCC features and, therefore, represents
a smaller computation load for a system. The tests made
on the BNSI evaluation set show that the VMFBE feature
extraction algorithm is 19% faster than the MFCC feature
extraction algorithm. For 3 hours, 4 minutes, and 58 seconds
of material, the VMFBE feature extraction algorithm needed
85 minutes and 55 seconds to complete, and the MFCC
feature extraction algorithm needed 104 minutes and 28
seconds. For classification the VMFBE feature classification
procedure needed only 0.47 seconds and the MFCC feature
classification procedure needed 4 minutes and 20 seconds.
The main reason for such a big difference in time needed
for classification is in the different model complexities. The
VMEBE feature has only a 5 mixture model, whereas the
MFCC features have a 256 mixtures model. In the overall
(feature extraction and classification step), the VMFBE
feature represents a 22% smaller computation load than
the MFCC features. The time complexities of the VMFBE
and MFCC features were measured on an Intel Core2duo
3.0 GHz with 4 GB of RAM within Linux environment.

To evaluate the robustness of the VMFBE feature, we
cross-tested the speech/music segmentation performance
with BNSI GMM models on the radio broadcast database,
and vice versa. For the comparison we also cross-tested the
segmentation performance of the MFCC features. The results
are shown in Table 8.

As the results in Table 8 show, the VMBEFE feature
proves to be more robust, because it achieves higher cross-
test segmentation accuracy (3.05% higher on the radio
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broadcast database and 2.66% higher on the BNSI database),
than MFCC features, and also the drop in segmentation
performance is smaller. Comparing with the results from
Table 7, the MFCC features achieved 3.7% lower accuracy
on the radio broadcast database, and 4.9% on the BNSI
database. Comparing the results from Table 5, the VMFBE
feature achieved only 0.11% lower segmentation accuracy
on the radio broadcast database, and 1.01% on the BNSI
database.

It is always a difficult task to compare the proposed
methods against methods presented in the past by other
authors. The main reason for this are the diverse datasets,
used by different authors, which are often not available to
others. There are also differences, if the proposed systems
work online or offline. Thus, it is only reasonable to compare
the proposed method to methods evaluated on similar
databases (same kind of material, e.g., broadcast news), and
similar circumstances. The results of our system obtained
on the radio broadcast database can be compared to the
system performance in [14]. The authors in that paper used
40 minutes of recorded radio broadcast material with a
wide-variety of music genres and different speakers. Also,
36 minutes of material was used for classifier training and
4 minutes for testing (we used 2 hours of material for
training and analysis and 2 hours for testing). The same as
in our case, in [14] the variance of SF proved to be the
best standard feature for speech/music discrimination. When
testing the features’ discriminatory ability on their database,
the variance of the SF feature produced a 13% error-rate.
The same feature produced a 17.15% error rate on our
database, while the feature proposed in this paper (VMFBE)
produced an 8.93% error-rate. The results for multifeature
speech/music segmentation cannot be directly compared,
because different sets of features were used in individual
systems.

In adition, the authors in [39] trained and evaluated their
system on a database containing radio broadcast material.
Their database was composed of various male and female
speakers, and various music genres. The amount of speech
material was 9.3 minutes and the amount of music was
10.7 minutes. They used four features for speech/music
discrimination: line spectral frequencies (LSFs), differential
line spectral frequencies (DLSFs), line spectral frequencies
with higher order crossings (LSF-HOC:s), and line spectral
frequencies with linear prediction zero-crossing ratio (LSF-
ZCR). The authors implemented segment-level classification
by making decisions over 50 frames (1 second). An accuracy
of 95.9% was reported. The authors also tested the perfor-
mance of a speech/music segmentation system proposed in
[14] on their database, and 93.2% accuracy was achieved.
If we indirectly compare the accuracy performance of our
multifeature method with those results, performance is at a
similar level. Therefore, we can say that our database has a
similar structure as the databases used in [14, 39], and the
results obtained on our database show the true advantage of
the VMFBE feature over other features used and tested in this
article. We also used more training and testing material (2
hours each set), than the authors in [14, 39] (40 minutes and
20 minutes resp.).
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7. Conclusions

This paper presents a novel feature (VMFBE) for
speech/music  discrimination. ~ Discrimination  ability
analyses and comparative tests were performed on the BNSI
broadcast news database, and the radio broadcast database.
This feature was compared to several other standard
speech/music discrimination features (zero-cross rate
(ZCR), spectral centroid (SC), spectral roll-off (SR), spectral
flux (SF), and percentage of low energy frames (PLEF)).
Variance versions of the features were also calculated and
compared. The results show more than 8% better average
discrimination ability in a 1 second window than the second
rated feature (variance of SF). On the radio broadcast
material, 3.3% accuracy gain is achieved for speech/music
segmentation with the VMFBE feature over the variance
of SE As a standalone discriminator in a speech/music
segmentation system, the VMFBE feature achieves an overall
accuracy of over 94%. On the BNSI database, where music
material is not as diverse, it achieves almost 96% overall
accuracy. The experiment based on all 6 features, presented
in this article, was also performed, and an overall accuracy
of 95.91% was achieved on the radio broadcast material.
Although MFCC features perform slightly better regarding
overall segmentation results, the VMFBE feature shows
better discrimination abilities for the music acoustic class
and also 22% lower computation cost, than the MFCC
features. The cross-test results also show that the VMFBE
feature proves to be more robust to new conditions and
unseen data than the MFCC features.

The VMFBE feature is a very convenient speech/music
discriminator for automatic speech recognition systems,
where MFCC features are used for recognition. When calcu-
lating the VMFBE feature, 4 out of 6 steps are in common
with the MFCC features calculation procedure. Valuable
processing time can be saved and almost no additional
computational cost is needed to implement the speech/music
discrimination procedure into a real-time ASR system based
on MFCC features.
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