Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 629285, 18 pages
doi:10.1155/2009/629285

Research Article

A New Frame Memory Compression Algorithm with

DPCM and VLC in a 4x4 Block

Yongseok Jin, Yongje Lee, and Hyuk-Jae Lee

Department of Electrical Engineering and Computer Science, Inter-University Semiconductor Research Center,
Seoul National University, Seoul 151-742, South Korea

Correspondence should be addressed to Hyuk-Jae Lee, hyuk_jae_lee@capp.snu.ac.kr
Received 11 January 2009; Revised 8 July 2009; Accepted 15 November 2009
Recommended by Gloria Menegaz

Frame memory compression (FMC) is a technique to reduce memory bandwidth by compressing the video data to be stored in
the frame memory. This paper proposes a new FMC algorithm integrated into an H.264 encoder that compresses a 4x4 block by
differential pulse code modulation (DPCM) followed by Golomb-Rice coding. For DPCM, eight scan orders are predefined and
the best scan order is selected using the results of H.264 intra prediction. FMC can also be used for other systems that require a
frame memory to store images in RGB color space. In the proposed FMC, RGB color space is transformed into another color space,
such as YCbCr or G, R-G, B-G color space. The best scan order for DPCM is selected by comparing the efficiency of all scan orders.
Experimental results show that the new FMC algorithm in an H.264 encoder achieves 1.34 dB better image quality than a previous
MHT-based FMC for HD-size sequences. For systems using RGB color space, the transform to G, R-G, B-G color space makes
most efficient compression. The average PSNR values of R, G, and B colors are 46.70 dB, 50.80 dB, and 44.90 dB, respectively, for
768x512-size images.

Copyright © 2009 Yongseok Jin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Frame memory size and bandwidth requirements often
limit the performance of a video processor designed for
implementing a video compression standard such as MPEG-
2, MPEG-4, and H.263 or H.264/AVC [1-4]. Frame memory
compression (FMC) is a technique to reduce frame memory
size by compressing the data to be stored in frame memory.
Memory bandwidth requirement is also reduced by FMC
because data access requirements are reduced. Figure 1 shows
a video processor in which the encoder and decoder of
an FMC algorithm are integrated inside the processor. A
reference frame is, in general, stored in an off-chip memory.
When the video processor stores the reference frame in the
off-chip memory, the FMC encoder compresses the data. To
access the reference frame from the off-chip memory, the
video processor fetches compressed data from the off-chip
memory and the FMC decoder decompresses and restores
the original data.

Three properties, low latency, random accessibility, and
low image quality degradation, are required for an efficient

FMC algorithm. Video processor performance is signifi-
cantly affected by the speed of the external memory, and
FMC algorithm latency delays the access of external memory.
Therefore, low latency in the FMC algorithm is required to
minimize performance drop-off. Image compression algo-
rithms like JPEG2000 are not suitable for FMC because they
are too complex for low latency implementation, although
their compression efficiency is high. The second property,
random accessibility, is needed because frame memory can
be accessed at an arbitrary address. Finally, FMC algorithms,
in general, adopt lossy compression to maintain relatively
high compression efficiency. Lossy compression typically
degrades image quality, and therefore, additional image
quality degradation may limit the practical use of FMC
algorithms.

Extensive research efforts have been made to reduce the
size and bandwidth requirements of frame memory [5-9]. A
popular technique for FMC is a transform-based approach
in which a frame is decomposed into small blocks that are
transformed into a frequency domain by a simple transform,
such as discrete cosine transform (DCT) [6], the Hadamard

Video processor .
Off-chip memory

FMC T

Video encoder Compressed ?aved !
compression FMC reference mgrlll(i)ery !
engine decoder frame e

FIGURE 1: Video processor with an integrated FMC encoder and
decoder.

Transform or its variations [7]. The frequency domain
coefficients are then compressed by quantization followed
by variable length encoding, such as Golomb-Rice coding. A
transform-based approach achieves an efficient compression
when the block size for a transform is large. For example,
the block size in the algorithm in [6] is 16 X 16. As the
transform block size increases, the hardware complexity of
a transform as well as the compression latency also increases.
Another approach is a spatial domain FMC that requires a
relatively small amount of computation [8, 9]. The FMC in
[8] is a variable-ratio compression which achieves an average
of 40% memory reduction. The FMC in [9] is a DPCM-
based approach which achieves 50%-constant compression
with pattern matching and selective quantization. This FMC
is implemented in software, but it is not verified in hardware.
Due to the sequential nature of the pattern decision, a
large latency is expected if this algorithm is implemented in
hardware.

Frame memory compression techniques for specific
applications have been proposed [10, 11]. For LCD, it is
often the case that data are over-driven to compensate for
the slow response time of an LCD panel. To detect the
difference between the current and the previous frames,
the previous frame is stored in a frame memory. FMC is
used to reduce the frame memory space and aggressive
techniques are employed at the sacrifice of the image quality
because a reconstructed image is used only to detect the
difference and slight image quality degradation is tolerable.
Another example use of FMC is texture compression in
graphics rasterization [12, 13]. In general, a slight image
quality degradation is allowed in texture image rasterization.
Therefore, texture compression often uses the dictionary-
based approach that aims an aggressive compression ratio at
the sacrifice of image quality. Both algorithms for the LCD
over-drive and texture compression allows image quality
degradation, and consequently, they may not be suitable for
image compression integrated in an H.264 compression chip.

This paper proposes a new FMC algorithm that com-
presses frame data efficiently by using intraprediction infor-
mation provided by an H.264/AVC encoder. The proposed
algorithm divides an image frame into 4 X 4 blocks and
compresses each block independently by a 50% constant
compression ratio. For each 4 x 4 block, DPCM is performed
along a predefined scan order. To achieve high compression
efficiency, eight DPCM scan orders are predefined on an
analog of the eight 4 X 4 intraprediction modes (excluding
the DC prediction mode) for an H.264/AVC encoder. To
select the best scan order, the FMC algorithm uses the
information provided by H.264/AVC intraprediction because

EURASIP Journal on Advances in Signal Processing

those predictions evaluate the correlations among neigh-
boring pixels and provide information about the direction
between highly correlated pixels. Once H.264 intraprediction
mode is selected, the scan order is selected from the
intraprediction mode, and DPCM is performed. The DPCM
results are further compressed by Golomb-Rice coding. If the
compression ratio does not reach 50%, the 4 x 4 block pixel
data are quantized by 1-bit right shifting, repeat DPCM, and
entropy coding.

Frame memory is used not only in a video compression
processor but also in an LCD driver [10, 11] or a 2D/3D
graphics processing chip [14]. A 50% compression of a
reference frame can also be used for these chips to save the
frame memory bandwidth and space. However, these chips
do not include an intraprediction module, so that the best
scan mode must be decided by the FMC algorithm itself.
Furthermore, video compression standards usually employ
the YCbCr 4:2:0 color format in the frame memory, but
other chips often employ the RGB 4:4:4 color format.
Therefore, the FMC algorithm for a video processor is not
directly applicable for an LCD driver or a 2D/3D graphics
chip. The second part of this paper modifies the FMC
algorithm proposed for an H.264/AVC encoder to be used
for the frame memory compression for these chips. This
modification includes the transform of the RGB color space
to another color space efficient for compression. Other
modifications are the inclusion of the step to select the best
scan mode and the combined packetization of three color
components.

The paper is organized as follows. In Section 2, the
proposed FMC algorithm is described. Then the FMC
algorithm for RGB color space is presented in Section 3.
Section4 explains the hardware implementation of the
proposed FMC algorithm. Section 5 compares image quality
degradation of the proposed FMC algorithm with a previous
algorithm. Conclusions are presented in Section 6.

2. FMC with H.264/AVC Video Compression

This section proposes an FMC algorithm that can be used to
reduce frame memory for an H.264/AVC encoder.

2.1. Basic Idea. The proposed FMC algorithm was designed
to compress a 4 X 4 block by 50% and generate a 64-bit
packet. To achieve this aim, the proposed algorithm employs
DPCM, which calculates differences between successively
scanned data and uses those differences to represent the
data. For efficient DPCM compression, the differences
between successive data should be small so that the data can
be represented by a small number of bits. The magnitude
of the difference depends on the image contents as well
as the scan order. For example, if a 4 X 4 block includes
vertical stripes, a DPCM scan along the vertical direction
results in a smaller difference than that along the horizontal
direction. Therefore, it is important to select a scan order
that minimizes the differences between data. To this end,
the proposed FMC algorithm uses eight scan modes (see
Figure 2). The eight modes are based on an analog of the

EURASIP Journal on Advances in Signal Processing

LN
L/

Mode 0 Mode 1
(a) (b)

Mode 3 Mode 4
(c) (d)

Mode 5 Mode 6
(e) (f)

Mode 7 Mode 8
() (h)

F1GUre 2: Eight scan modes for DPCM. Arrows indicate the scan order.

4 X 4 intraprediction modes for an H.264 encoder. H.264
4 x 4 intraprediction is performed in nine different scan
modes, but Mode 2 (DC mode) is excluded from Figure 2
because Mode 2 did not provide information useful for
scan order selection. An advantage resulting from Mode 2
exclusion is that only three bits are needed to represent the
remaining eight modes. The eight modes in Figure 2 cover
various image types for DPCM scans. For example, Mode 0
is suitable for an image with vertical stripes while Mode 1 is
suitable for horizontal stripes, and an image with diagonal
stripes may be best suited to one of the other modes.

2.2. Algorithm. The flowchart of the proposed algorithm is
shown in Figure 3. A single 4 X 4 block is the input of the
algorithm and the output is a 64-bit packet. As this FMC
is designed to reduce frame memory for H.264/AVC com-
pression, the H.264/AVC compression operations, including
intraprediction, are performed with FMC. To select two scan
modes from among the 8 modes shown in Figure 2, the 4 x 4
intraprediction result is assessed by the algorithm. The first
mode is the same as that determined by intraprediction,
excluding the DC mode. The horizontal and vertical modes,
in general, produce efficient FMC results. Thus, one of
these two modes is always selected as the second mode. For
example, if modes 1, 3, 5, or 7 are selected first by H.264
intraprediction, then mode 0 is selected as the second mode,
while if modes 0, 4, 6, or 8 are selected first, mode 1 is selected
second. If the DC mode is selected by intraprediction,
modes 0 and 1 are selected as the first and second modes,
respectively.

The two selected scan orders are provided to the next
step, which performs DPCM operations along the selected
scan orders. The input 4 X 4 pixels are quantized with the
quantization parameter (QP). For quantization, the input

4 x 4 pixels, Qp =0
p S P

Quantization |

N2
DPCM <
N2

Golomb-rice encoding |

Length < limits

Yes
Packing |
N
64-bit packet

4 X 4 intra prediction mode

Scan mode decision

Increment
[]

Z
o

F1GURE 3: Flowchart of the proposed FMC algorithm.

data are right shifted by QP times. For example, if QP = 2,
then the input data are shifted to the right twice. During
this shift operation, the left most bit is replaced by 0. The
quantization parameter is initially set to 0 and incremented
later, if required. The DPCM results are compressed by
Golomb-Rice coding and the required number of bits for a
single packet is calculated. If this number is less than the
limit (i.e., 64 bits), then the result of Golomb-Rice coding
is packed into a 64-bit packet. Since two scan modes are
selected and Golomb-Rice coding is performed for both
modes, the one requiring the smaller number of bits is
selected. If the Golomb-Rice coding result requires a larger
number of bits than the limit, the QP is incremented by
1 and quantization, DPCM, and Golomb-Rice coding are
performed a second time. The Golomb-Rice coding and
packetizing steps are explained next.

In order to match the desired bit-rate, the proposed
algorithm prequantizes the input pixels and then applies
DPCM. However, in lossy DPCM usually, there is a feedback
loop, and quantization is applied during (and not before)

the prediction. For a uniform quantizer, if the quantization
step size A (= 29P) is sufficiently small, it is reasonable to
assume that the quantization error is uniformly distributed
in interval [—A/2,A/2]. Note that the QP value used in
the proposed FMC is small (see Figure 20). Therefore, the
quantization error is likely to be distributed uniformly. This
implies that the quantization errors in both the feedback loop
and prequantization approaches have similar distribution of
quantization error and consequently the coding errors of the
two DPCMs do not differ significantly.

On the other hand, the hardware complexity of the
prequantization is just about a half of that required by
the conventional feedback-loop approach because the con-
ventional approach requires two adders in addition to the
dequantizer for an encoder whereas the prequantization
requires just a single adder. In summary, the prequantization
DPCM is adopted in this paper because computational
complexity is about a half of the feedback-loop DPCM
although the prequantization DPCM increases slightly the
coding error.

2.3. Golomb-Rice Coding. The Golomb-Rice coding [15, 16]
accepts only a nonnegative number as input. However, a
DPCM result can be negative. Therefore, for Golomb-Rice
coding input, a negative DPCM result is converted into a
nonnegative number by

2|diff|, diff >0
; (1)

source =))
<2|d1ff| — 1, otherwise

where diff represents a DPCM result and source represents
the input to the Golomb-Rice coding.

For Golomb-Rice coding, source is divided by 2 and
the division quotient is represented in unary notation that
represents a nonnegative integer, 7, with # zeros, followed by
a single one. The quotient and remainder in conventional k
bit binary notation are then concatenated to form a Golomb-
Rice codeword. The length of a Golomb-Rice codeword is

2

lengthgr = k+ 1+ [sourceJ'

2k

For a small source, a smaller k results in a smaller Golomb-
Rice codeword length. As source increases, a larger k may
produce a smaller code length. Thus, the choice of k depends
on the value of source. For example, if k = 0, the length
increase is too large for a large source. On the other hand,
if k > 2, the length is too large for a small source, and a k
greater than 2 is unacceptable for 50% compression because
the minimum number of bits assigned to each pixel is 4.
Therefore, the chosen value of k is either 1 or 2. For the eight
modes shown in Figure 2, a difference along the dotted line
is encoded with k = 2 while a difference along the solid line
is encoded with k = 1. DPCM results along dotted lines may
be large because the dotted lines cross edges. In this case, a
large k may lead to a smaller number of bits to represent this
large difference. By assigning the large k (k = 2) to the dotted
line and the small k (k = 1) to the rest, the total number of
bits generated by Golomb-Rice coding for all 16 pixels are, in
general, reduced.

EURASIP Journal on Advances in Signal Processing

Scan mode QP First pixel 15 golomb-rice codewords
(3 bits) (3 bits) ((8-QP) bits) (remaining bits)

FIGURE 4: The format of a Golomb-Rice codeword packet.

2.4. Packetization. The Golomb-Rice codewords are packe-
tized as a 64-bit packet. Figure 4 shows the packet format.
The 8 scan modes are coded with 3 bits and stored in the
leftmost position and the 3-bit QP is stored next. The first
pixel requires (8—QP) bits stored next to the QP and the
remaining bits store the Golomb-Rice codewords for the
remaining 15 pixels.

Video compression standards, such as H.264/AVC,
employ the 4:2:0 format in the YCbCr color space to rep-
resent an image. In general, the three color components are
stored in separate spaces in frame memory. One reason for
separate memory allocation is because the three components
are not always accessed at the same time. For example,
motion estimation in the H.264/AVC requires only the Y
color component. Another reason is the difference in the
amount of data in the Y and Cb (or Cr) color components.
In the 4:2:0 format, Y color data are assigned to each pixel,
while single Cb (or Cr) data are assigned to every 2 X 2 pixels
[17]. Thus, the amount of data for the Cb (or Cr) color
component is one fourth of that for the Y color component.
As a result, the Y color component requires four times larger
memory space than the Cb (or Cr) color components. As the
three colors are stored separately and accessed independently,
they are also compressed independently. Thus, the FMC
algorithm in Figure 3 is performed independently three
times for Y, Cb, and Cr colors.

2.5. Example. Consider a 4x4 block as shown in Figure 5(a),
and assume that the intraprediction mode resulting from
H.264/AVC is 1. Thus, the first scan order selected is mode
1 and the second scan order is mode 0. QP = 0 requires 91
bits for mode 1 and 212 bits for mode 0. Thus, QP = 0 is not
acceptable for both modes. For QP = 1, mode 1 scans data as
denoted by the arrow shown in Figure 5(b). The pixel values
quantized with QP = 1 (i.e., shifted once to the right) are
also shown in Figure 5(b). The scanned data along the dotted
arrow are 121, 120, 118, 118, 109, 108, 104, 103, 110, 110,
107, 105, 110, 110, 108, and 107. Thus, the DPCM results are
121,-1,-2,0,-9,-1,-4,-1,7,0,-3,-2,5,0, —2,and —1
in the scanned order shown in Figure 5(c). Table 1 shows the
Golomb-Rice codewords for the DPCM results. For example,
the fourth DPCM result, DPCM [4], is —9. From (1), the
source for this value is 17. From k = 2, the quotient and
remainder are 4 and 1, respectively. The quotient in unary
notation is 00001 and the remainder in k-bit binary notation
is 01. The final codeword is the concatenation of the quotient
and remainder, that is, 0000101. Table 1 shows the codewords
of all DPCM results. Fifty bits were required for all the words.
In addition to these bits, 6 bits are necessary to store the
mode and QP and 7 bits are required for the first datum.
As a result, the packet in mode 1 with QP = 1 requires 63
bits. On the other hand, mode 0 requires 124 bits when QP =

EURASIP Journal on Advances in Signal Processing

242 241 237 236

206 209 216 219

221 221 214 211

215 216 220 221

(a)

1217771207 " N8” T R
|
|
|
|

103™ " 7|"I04” " 7| 108" " [109

|

|

T

l

110~ "I~ ["107 ~ [I05
|
|
|

107- 77108 |~ 1o~ "~ [“110

(b)

121 -1 -2 0

-1 —4 -1 -9

7 0 -3 -2

-1 -2 0 5

(c)

FIGURE 5: An example of 4 X 4 block: (a) Input 4 X 4 pixel values,
(b) 4 x 4 pixel values after quantization by QP = 1, and (¢) DPCM
results.

1. As mode 1 requires fewer bits than mode 0, it is chosen
as the best scan mode. Figure 6 shows the FMC result. In
Figure 6, the first three bits (001) and the next three bits (001)
represent mode 1 and QP, respectively. The next seven bits
represent the first datum quantized by QP = 1. The remaining
bits are the Golomb-Rice codewords of the next 15 DPCM
results.

TaBLE 1: The Golomb-Rice Codewords of the 4 x 4 Block Shown in
Figure 5.

Element Value Source k value Codeword
Diff [1] -1 1 1 11
Diff [2]) 3 1 011
Diff 3] 0 0 1 10
Diff [4] -9 17 2 0000101
Diff [5] -1 1 11
Diff [6] —4 7 1 00011
Diff [7] -1 1 11
Diff [8] 7 14 2 000110
Diff [9] 0 1 10
Diff [10] -3 5 1 0011
Diff [11] -2 1 011
Diff [12] 5 10 2 00110
Diff [13] 0 1 10
Diff [14] -2 3 1 011
Diff [15] -1 1 11

3. FMC of Frame Memory in RGB Color Space

There exist a number of applications other than H.264/AVC
video compression that store video data in frame memory.
For instance, an LCD display driver needs frame memory to
store its output video [10, 11]. For another example, a 2D
or 3D graphics processor also requires frame memory [14].
The FMC algorithm proposed in Section 2 is not directly
applicable to these other applications because they cannot
use the information obtained by H.264/AVC intraprediction.
Moreover, these other applications, in general, store video
in the RGB color space while the algorithm in Section 2 is
developed for video in the YCbCr color space. This section
extends the algorithm proposed in the previous section and
proposes the FMC algorithm suitable for video in the RGB
color space.

3.1. FMC in the 4:4:4 Format and Combined Packetization.
In an LCD display driver or 2D/3D graphic processor, an
image is stored in the RGB 4:4:4 format in which each
pixel is represented by R, G, and B color components.
Unlike the YCbCr colors in the 4:2:0 format, RGB color
components in the 4:4: 4 format are, in general, accessed at
the same time [10-14]. Thus, an effective memory access is
possible by storing three color components for one pixel in
consecutive memory addresses. As three color components
are stored consecutively and accessed at the same time, these
components can also be compressed at the same time to
be packetized into a single combined packet. The combined
packet allows more efficient compression than the separate
packet because the scan mode and QP can be shared by
these three colors. The format of the combined packet is
shown in Figure 7. The 4 x 4 block in the 4:4:4 format
consists of 16 pixels of three colors, so that total 384 bits are
required to store a single 4 x 4 block. By 50% compression,
the compressed packet size is less than or equal to 192 bits.

EURASIP Journal on Advances in Signal Processing

— - .
001001111100111011100000101110001111000110100011011001101001111 |

15 DPCM results

Fi1GURE 6: The packetized result of the example shown in Figure 5 and Table 1.

6
Best scan mode 1st pixel
QP
Scan mode| QP |Three color components| Exp- golomb codewords
(3 bits) (3 bits) of the first pixel of the remaining data

FiGure 7: The format of a combined Exp-Golomb codeword packet.

The scan mode and QP are stored in the leftmost 6 bits. Note
that only one scan mode and QP are required for three colors.
The first pixel data of three colors are stored next followed by
remaining pixels. For the compression of the remaining data,
it is observed experimentally that the Exp-Golomb coding is
more efficient than the Golomb-Rice coding (see details in
the next subsection).

3.2. Exp-Golomb Coding. Golomb-Rice codewords used in
Section 2 are efficient when the value of source is not large.
Recall that the length of a Golomb-Rice codeword increases
in proportion to its value. On the other hand, another
entropy coding, the length of an Exp-Golomb codeword, is

lengthgg = k+1+2 llog2 <32(2uicle) J (3)
The details about Exp-Golomb coding are presented in
[17]. The length of an Exp-Golomb codeword increases in
proportion to log(source). Therefore, Exp-Golomb coding
generates a shorter codeword than Golomb-Rice coding
when the value of source is large. It is observed by
experiments that Exp-Golomb coding is more efficient
than Golomb-Rice coding for combined packetization (see
Figure 20). Similar to Golomb-Rice coding, a large k gener-
ates a short codeword when the value of source is large. On
the other hand, a small k is preferable for a small source. Thus,
the value of k is chosen in the same manner as for Golomb-
Rice coding in Section 2; that is, 2 is chosen for the source
(DPCM results) represented by the dotted line’s shown in
Figure 2 while 1 is chosen for the rest DPCM results.

3.3. Scan Mode Decision. Among the eight possible scan
modes shown in Figure 2, the mode that generates the small-
est packet size must be selected. In Section 2, two candidate
scan modes are determined from the intraprediction mode in
H.264/AVC. Then, the results of the two modes are compared
and the best mode is selected between the two candidate
modes by comparing their packet sizes. For the FMC in
the RGB color space, the information from H.264/AVC is
not available. Thus, all eight scan modes are compared and
the best mode is selected among them. To this end, the
parameter QP is set to 0 and the lengths of fifteen sources
(DPCM results) are evaluated and then added to obtain the
packet size. The packet size must be evaluated for the whole

eight scan modes, so that a large amount of computation is
required for the selection of the best scan mode.

The computation for best mode selection is reduced by
taking advantage of the fact that there exist many DPCM
results that are shared by multiple scan modes. For instance,
in Figure 2, the first DPCM results of mode 1 and 2 are
identical (i.e., they are the difference between the leftmost
top pixel and its next pixel to the right). For the eight scan
modes with fifteen DPCM results each, the code lengths of
120 DPCM results need to be evaluated. Among these 120
DPCM results, 57 results are shared by more than one scan
modes. Thus, 63 DPCM results in total are necessary for the
evaluation of the code lengths for eight scan modes.

To obtain the accurate packet size, the evaluation of the
lengths of sources must be repeated until the packet size is
less than 192. However, the repeated evaluations require too
much computation. Therefore, only the evaluation with QP
= 0 is used to choose the best scan mode. Experiments show
that the order of the packet size chosen with QP = 0 is almost
the same as the order with the best QP.

3.4. Color Transform. With experiments, it is observed that
the compression efficiency is improved when the RGB color
space is first transformed into the YCbCr color space and
then the FMC is applied to the image in the YCbCr space (see
Section 5 for details on the experimental results). Note that
the transformed image in this case is in the 4:4:4 format
instead of the 4:2:0 format as in Section 2. Thus, all three
color components are available for each pixel, and they are
packetized in the same format shown in Figure 7. One of the
reasons why the YCbCr color space is more efficient than
the RGB color space is because the data in the Cb and Cr
colors vary more slowly than those in the R and B colors,
respectively. As a result, the DPCM results in the Cb and
Cr colors are smaller than those in the R and B colors,
respectively. The combined packetization of Y, Cb, and Cr
colors allow increased bits assigned to the Y color thanks to
the reduced bits assigned for Cb and Cr colors. The increased
bits assigned to the Y color decreases the error in the Y color,
and consequently, the error in the Cb and Cr is also reduced
because Y is used to derive Cb and Cr. Moreover, Y color
affects the subjective quality greater than Cb or Cr color.
As a result, image quality is, in general, improved by the
color space transform. The transform coefficients between
the RGB color space and the YCbCr color space are given by
ITU-R recommendation BT.601 [18].

One source of quality degradation with the YCbCr color
space transform is the round-off error in the transform.
For instance, consider the pixel with its value {R,G,B} =
{128,128,128}. Suppose that this pixel is transformed into
the YCbCr color space. This pixel is transformed into

EURASIP Journal on Advances in Signal Processing

{Y,Cb,Cr} = {142.592,-8.46,—10.695}. By rounding
off these values to integers to store in memory, this pixel
becomes {143, -8, —11}. Suppose that this pixel is trans-
formed back to the original RGB color space. {R,G,B} =
{131.784,132.284,124.058} is obtained. By rounding off
these values again to integers, the pixel becomes {R,G,B} =
{132,132,124} which is significantly different from the
original value {128,128,128}. This example shows that a
significant error is caused by the transformation.

For the FMC in the RGB color space, it is not mandatory
to use the YCbCr color space. In the JPEG2000 standard
for image compression, a modified YCbCr color space is
used for the removal of the transform error [19]. The FMC
algorithm can be applied to the JPEG2000 YCbCr color space
just in the same way as the original YCbCr color space. The
transformation error is reduced because the transformation
is reversible. In JPEG2000, 9 bits are used to store each of
Cb and Cr components so that no error is created by the
transform. Thus, the image quality with the JPEG YCbCr
space is better than that with the original YCbCr space.

A number of demosaicing algorithms [20-23] as well
as digital display interface such as low-voltage differential
signaling (LVDS) adopt the color space consisting of G, R-
G, B-G instead of the YCbCr color space. One of the main
advantages is a simple transformation from/to the RGB color
space because only subtraction operations are needed for
the transformation. Another advantage comes from the fact
that the error in R-G or B-G does not affect the G color
space so that the error in the G color space is less than
that in R-G or B-G color space. This property can reduce
the quality degradation by color transform because human
eyes are more sensitive to the G color than the R or B color.
For simplicity, Dr and Db are used hereafter to denote R-G
and B-G spaces, respectively. Instead of the original YCbCr
color space, the JPEG2000 color space or GDbDr color space
can also be used for FMC. Section 5 presents experimental
comparisons among these color spaces.

In the packet shown in Figure 7, the first three pixels are
stored from the 7th bit. In the RGB color space, (8 — QP) bits
are necessary to store one color component of the first pixel.
Thus, to store three colors, 3 - (8 — QP) bits are required.
For the original YCbCr color space, 8 bits are required to
represent Y, Cb, Cr color components. Thus, 3 - (8 — QP)
bits are necessary to store the first pixel in the packet shown
in Figure 7. In the JPEG2000 YCbCr color space, (8 — QP)
bits are needed for the first pixel. On the other hand, (8 — QP
+ 1) bits are needed for the Cb color of the first pixel because
they include the sign bit. Similarly, Cr also requires (8 — QP
+ 1) bits. Therefore, (8 — QP) + 2 - (8 — QP) bits are required
to store Y, Cb, and Cr colors of the first pixel. For the GDbDr
color space, G requires 8 bits while Dr or Db requires 9 bits.
Thus, (8 — QP) +2 - (8 — QP) bits are also necessary for the
first pixel.

3.5. Algorithm. Figure 8 shows the flow chart of the FMC
algorithm discussed in this section. This algorithm processes
three color components in the YCbCr or GDbDr space
simultaneously, so that the number of bits for the input 4 x 4
pixels is 384 and that for the output packet is reduced to 192

384-bit pixel data

| Color transform ‘
\2

| Scan mode decision ‘
i

Quantization ‘
\2

| DPCM ‘
2

Golomb-rice encoding ‘

L

Increment

QP

Length < limits

| Packing

J

192-bit packet

FiGure 8: Flowchart of the FMC for the RGB color space.

by 50% compression. When compared with the algorithm
shown in Figure 3, the first step is added to the transform
from the RGB color space to YCbCr (or GDbDr) color space.
The scan mode decision step is different from that in Figure 3
because the best scan mode is decided by comparing all 8
scan modes. The Golomb-Rice coding is replaced by Exp-
Golomb Coding, and Quantization, DPCM steps are the
same as those in Figure 3.

3.6. FMC by 75%. The data in the RGB color space can be
compressed by 75% with the combination of color trans-
form, subsampling, and the FMC proposed in Section 2.
Subsampling from the 4:4:4 format to the 4:2:0 format
achieves 50% compression. Recall that the FMC algorithm
in Section2 is applied to the subsampled data in the
4:2:0 format to achieve another 50% compression. Color
transform to another color space like YCbCr is necessary
because the subsampling of the Cb and Cr colors does not
severely deteriorate the visual quality of an image because
human eyes are more sensitive to the Y color than Cb and Cr
colors. The original YCbCr color space may create a round-
off error. To reduce this error, the JPEG2000 YCbCr color
space or the GDbDr color space is also considered as the
target color space. The effectiveness of three color spaces are
evaluated by experiments as presented in Section 5.

4. Hardware Implementation

This section explains the hardware implementation of the
proposed FMC algorithm in Section 2.

4.1. Encoder. The pipeline architecture of the FMC encoder
is shown in Figure 9(a). To increase the throughput, the
encoder operation is pipelined in four stages. In pipeline
Stages 1 and 2, quantization, DPCM, and Golomb-Rice

8
4
Stage 4 4 % 4 block
——>{ 5 shifter
1
| sppcm || spepcMm]
15 15
== |11] [] Sources
2 | 5GRencoder | | 5GR encoder |
- [CT 1T [T TT] GRcodes
3 Compare length
- GR codes
!
- I E— Packet

Header GR codes

(a)

EURASIP Journal on Advances in Signal Processing

Stage -y Packet
Header GR codes
1 l
Header &
- [T TIT IJ/IIHIHGRCOdeS
2 5 GR decoder
___ D:l;l:l] GR codes
5 Inverse DPCM
3
4
Reconstructed
R 4 4 x 4 block

(b

=

F1GuUre 9: Block diagram of the FMC encoder and decoder.

encoding are performed for codeword generation. Initially,
QP is chosen 0 and the codeword is generated. In Stage 3, if
the codeword size is less than or equals to 64 bits, the pipeline
moves to the next stage. Otherwise, the QP is incremented
and Stages 1, 2 and 3 are repeated. The codeword generation
and QP increment are repeated until the codeword size is
less than or equal to 64. Five cycles are needed to complete
a single iteration of Stages 1, 2, and 3. The total execution
time is 5(QP + 1) + 1 cycles because Stages 1, 2, and 3 take
5 cycles. If QP is 0, a new 4 X 4 block is processed at every 5
cycle. The gate count of the FMC encoder is 19.8 K.

4.2. Decoder. In general, the execution time of an FMC
encoder is not critical because the compressed data are not
used immediately but they are stored in a frame memory
for use in some time later. However, the execution time of
an FMC decoder is critical because its result is immediately
used. Therefore, an optimized hardware design is needed to
minimize the execution time of a decoder. Figure 9(b) shows
the proposed pipelined architecture of an FMC decoder. In
Stage 1, a 64-bit packet is read from the frame memory.
The proposed FMC decoder needs 5 cycles to complete one
4 x 4 block and processes a new 4 x 4 block for every 3
cycles. Assuming that the memory bandwidth is allowed to
transmit 32bits per a cycle, the throughput of the FMC
decoder is larger than that of the frame memory. Therefore,
the memory bandwidth is the bottleneck of the overall
throughput and the addition of the FMC decoder does not
decrease the data access throughput. The gate count of the
FMC decoder is 11.3 K.

4.3. Complexity Comparison. The complexity of the pro-
posed algorithm is compared with the previous work based
on Modified Hadamard Transform [7]. Table 2 shows the
numbers of additions (or subtractions) and shifts required
for both encoding and decoding operations of FMC. For the
proposed FMC, N represents the number of iterations. The

TasLE 2: Complexity comparison (FMC encoding/decoding).

Addition (or

Block size Subtraction) Shift
Proposed
FMC in 4x4 30N/15 16 - (N —1)/16
Section 2
MHT-based
FMC 1x8 27127 68/36

Golomb-Rice coding is not considered for this comparison
because it is common for both FMCs. Experiments show that
the average number of N is equal to 2.43. If this number is
used for the equation in Table 2, the proposed FMC encoding
requires 72.9 additions (or subtractions) and 22.88 shifts for
each 4x4 block (16 pixels). The MHT-based FMC requires 27
additions (or subtractions) and 68 shifts for each 1 x 8 block
(8 pixels). To process 16 pixels (two 1 x 8 blocks), the MHT-
based FMC requires 54 additions (or subtractions) 136 shifts.
Thus, the proposed FMC requires a comparable amount of
computation. For decoding, the proposed FMC also requires
less computation than the MHT-based FMC. The complexity
reduction is possible by the proposed FMC because it makes
use of the information given by an H.264 encoder.

4.4. Integration into an H.264 Encoder Chip. The proposed
FMC encoder and decoder are integrated with H.264 encoder
[24]. Figure 10 shows a block diagram of the encoder. The
hardware accelerators for motion estimation, deblocking
filter, intraprediction, and variable length coder are imple-
mented in hardware and the remaining part of computation
is processed by the ARM7TDMI processor. VIM (Video
Input Module) accepts image data from an image sensor
and SPI interface outputs the encoded stream. Memory
Controller is designed for efficient data communication with
an external SRAM. Two AMBA AHB buses are used for

EURASIP Journal on Advances in Signal Processing

Image sensor

_ AHB|Vide0 input module |T

Intra prediction &

reconstruction

FMC encoder |%

Memory
controller

Motion estimation

Deblocking filter

el FMC decoder |€

AHB

Variable length coder ————————)| SPI

Encoded
stream

F1GUrk 10: Block diagram of the H.264/AVC encoder integrated with the FMC encoder and decoder.

the communication between modules. One AHB bus is
mainly used for the control of the hardware modules by
ARM7TDMI processor and the other AHB bus is mainly
used for data communication between hardware modules
and external memory. The FMC encoder and decoder are
placed between the AHB bus and the memory controller.
Figure 11 shows the layout and the chip photograph of the
H.264/AVC encoder shown in Figure 10. The die area of
the H.264/AVC encoder is 5mm X 5 mm using the Dongbu
1P6M 0.13 um CMOS technology.

5. Experimental Results

5.1. FMC Algorithm in an H.264 Encoder. Software imple-
mentation of the proposed algorithm in Section 2 is inte-
grated with H.264/AVC JM reference software version 13.2
[25] so that the reference frame is compressed by the pro-
posed FMC. Previous work, based on Modified Hadamard
Transform (MHT) proposed in [7], is also implemented and
the results are compared. The two algorithms are evaluated
with three CIF-size (352 x 288) video sequences: Foreman,
Mobile Calendar, and Table Tennis; as well as with two
HD-size (1920 x 1080) sequences: Blue sky and Pedestrian
area. For every sequence, 100 frames are used and the
encoding speed is 30 frames per second. For experiments,
the test sequence is encoded as a Baseline profile stream
with the intraframe interval of 10, 3 reference frames
for motion estimation, deblocking filter turned on, rate-
distortion optimization also turned on, and four QP values,
20, 24, 28, and 32.

The rate distortion performances for Y component
are shown in Figure 12. The average PSNR degradations,
by the FMC algorithms, are measured and shown in
Table 3. These values are obtained by Bjontegaard’s method
presented in [26]. For the three CIF-size sequences, the
average PSNR degradations are 0.77dB and 2.39dB by
the proposed and MHT-based FMCs, respectively. For the
two HD-size sequences, the average PSNR degradations are
0.38 dB and 1.72 dB by the proposed and MHT-based FMCs,
respectively. For both CIF-size and HD-size video sequences,
the proposed FMC makes a significant improvement over
the previous MHT-based FMC. The results also show that

TABLE 3: Average BD-PSNR(dB) degradation compared with the
original H.264.

Proposed MHT-

Sequence 8-mode FMC p I-mode FMC based
FMC
EMC

Foreman 0.45 0.69 1.08 2.72
Mobile
and 0.76 1.00 1.32 2.41
calendar
Table 0.49 0.61 0.93 2.05
tennis
CIF 0.57 0.77 111 2.39
average
Blue sky 0.47 0.65 1.05 2.05
Pedestrian) ¢ 0.11 0.24 1.38
area
HD 0.27 0.38 0.64 1.72
average

quality degradation of HD-size video is less than that of
CIF-size video. This is because spatial correlation of a 4 X 4
block generally increases as image size increases, so that
compression with minimal loss of information is possible.
The simulation also evaluates the efficiency of the scan
mode decision step in Figure 3. The mode selected by
the scan mode decision step may not always be the scan
mode that maximizes the compression efficiency. Thus, all
8 modes are used by the FMC algorithm and the best
scan mode is then selected. In Figure 12, “8-mode FMC”
presents the results when the best scan mode is selected
from among all 8 modes. Another simulation uses the
scan mode selected by the H.264 intraprediction, “1-mode
FMC” (Figure 12). The computational complexity of 1-
mode is half of that using the proposed algorithm because
only one mode is evaluated while the proposed algorithm
evaluates two modes. The 1-mode quality degradation is
larger than that using the proposed algorithm. Comparing
the average of the three CIF-size sequences, the 8-mode
algorithm was 0.20 dB better than the proposed algorithm
while the 1-mode algorithm is 0.34dB worse than the

10 EURASIP Journal on Advances in Signal Processing
TABLE 4: Ratio of the difference along the dotted line scan over that along the solid line scan.
Foreman mobile Table tennis Blue sky Pedestrian area Average
Dotted/solid line 177.6% 140.2% 151.5% 180.1% 312.7% 153.4%

Figure 11: Chip layout and photograph.

proposed algorithm. For the two HD-size sequences, the 8-
mode and 1-mode algorithms average 0.11 dB better and
0.26 dB worse, respectively, than the proposed algorithm.
These results show that the proposed algorithm produces a
reasonable trade-off between complexity and quality.

Figure 13 shows the subjective quality comparison. As
shown in the figure, the MHT-based FMC suffers from
the blur around the numbers while the number blurring is
significantly reduced by the proposed FMC.

Within the 60 frames of the Foreman sequence, the
PSNR of each frame is shown in Figure 14. Three lines show
the proposed FMC, the MHT-based FMC, and the original
H.264 encoder with no FMC. An intraframe is inserted once
in every 10 frames, and the peaks in the graph represent the
intraframes. The MHT-based FMC significantly drops the
PSNR for all frames while the proposed algorithm produces
notably less quality degradation.

Since the frame compression is lossy, this raises the issue
of drift, as there may be a mismatch between the encoded
frame written in the compressed file, and the decoded frame
stored in the memory and used later for the prediction
of successive frames. The decrease of PSNR is observed in
Figure 14 as the PSNR of a frame distant from an intraframe
is less than that close to the intraframe not only with the
proposed EMC but also with the H.264 encoder. This result
shows that the drift by the propose FMC does not affect
significantly the PSNR drop. In order to precisely measure
the additional PSNR drop caused by the proposed FMC,
the PSNR difference between the original H.264 encoder
without the FMC and the integrated H.264 encoder with
the FMC is shown in Figure 15. As shown in this figure, the
PSNR difference does not vary significantly regardless of the
distance from an intraframe. This result also shows that the
additional PSNR drop caused by the proposed FMC is not
very significant. This experiment is performed with various
intervals of intraframe period, and the results are similar to
that shown in Figure 15. Thus, the additional experimental
results are not presented in this paper.

The eight scanning modes given in Figure 2 are employed
based on an analog of the 4 X 4 intraprediction modes
for an H.264 encoder. Among the eight scanning modes,
the best mode is selected to minimize the DPCM error.
For the selected scanning mode, the scan along the solid
line is the major scanning direction whereas the scan along
the dotted line is, in general, perpendicular to the major
scanning direction. Therefore, the difference along the solid
line is likely to be smaller than that along the dotted line.
For example, consider the case when a 4 X 4 block includes
a virtual stripe pattern so that scanning mode 0 is selected.
In this case, the scan along the dotted line crosses the vertical
stripe and the chance is very high that the difference along the
dotted line is larger than that along the solid line. Therefore,
the “source” along the dotted line is expected to have a large
value.

The expectation is supported by experimental results
given in Table 4. The numbers given in this table are the
ratios of the average difference along the dotted line over that
along the solid line. This table shows that the difference along
the dotted line is about 153.4% of that along the solid line.

In an H.264 encoder, deblocking filter is the only module
that stores the reference frame. Figure 16 shows a 16 X
16 macroblock (lightly shaded blocks) that is the current
macroblock to be filtered. To perform deblock filtering,
the 4 x 16 pixels (dark shaded blocks) above the current
macroblock and 16 X 4 pixels in the left of the current
macroblock are necessary. Note that the 4 x 16 pixels are
already processed by the above macroblock and they are
compressed before they are stored. Then, for the current
macroblock, the above 4 x 16 pixels are read again from
the reference memory and filtered and then written back
again. Thus, these pixels are stored into reference memory
twice. As they are compressed whenever they are stored into
reference memory, they are compressed twice. The successive
compressions increase the PSNR degradation.

One way to reduce the PSNR degradation is to store the
data without compression for the first write of the 4 x 16
pixels. These 4 x 16 pixels are read again and then compressed
in the second write. As the second write finally stores the
reference frame which is to be used by the next frame, the
goal of memory size reduction is achieved even though only
the second write is compressed.

Table 5 shows the BD-PSNR difference between the two
approaches. The numbers in the table show the BD-PSNR
drop (i.e., the difference in the BD-PSNR between the
original H.264 encoder and the integrated H.264 encoder
with the proposed FMC). The first column shows test video
sequences and the second column shows the case when
both the first and second writes compress the 4 X 16 data
whereas the third column shows the BD-PSNR drop when
only the second write by deblocking filter is compressed.

EURASIP Journal on Advances in Signal Processing

Foreman Mobile and calender
44 A
42
42 -
40 40 1
3 2
38
Z Z 361
w w
9 =9
34 -
36
32
34 30 T T T T T T Y
300 600 900 1200 1500 1800 2 1 00 1000 2000 3000 4000 5000 6000 7000 8000
Bit rate (kbps) Bit rate (kbps)
(a) (b)
44 - Table tennis 46 - Blue sky
42 A 44 |
—~ 401 —~
5 5 427
o 381 o
% % 40 1
B 36 =9
34 4 38 1
32 T T T ! 36 T T T T)
500 1500 2500 3500 4500 5000 10000 15000 20000 25000 30000
Bit rate (kbps) Bit rate (kbps)
(c) (d)
m Pedestrian area
43
Y
=
z
o 41
Z
&
40
39
38 T T T : y
3000 8000 13000 18000 23000 28000
Bit rate (kbps)

—¥— H.264 + 8-mode FMC
—%~ H.264 + 1-mode FMC

—4— Original H.264
—— H.264 + Proposed FMC
—A— H.264 + MHT-based FMC

(e)

FIGURE 12: Rate distortion performance comparison of various FMC algorithms integrated into an H.264 Encoder.

11

12

EURASIP Journal on Advances in Signal Processing

#12 - mobile_cif_qp28_org_decoded

»nxal23 §
45678910
NI21BMKBBY

Amew123
. 4567880
IRV R TR R A

FIGURE 13: Subjective quality comparison for Mobile Calendar sequence: (a) original H.264, (b) H.264 + Proposed FMC, and (c) H.264 +

MHT-based FMC.

37.7 1

37.2 4

PSNR (dB)

36.7

36.2 T T T T T 1
0 10 20 30 40 50 60

Frame

—— Original H.264
H.264 + proposed FMC
—+— H.264 + MHT-based FMC

FIGURE 14: PSNR variations in the Foreman sequence over 60
frames.

0.4

0.3

0.2

PSNR drop (dB)

0.14

0 t T T T T
0 10 20 30 40 50 60

Frame

FIGURE 15: PSNR difference between the original H.264 encoder
and the integrated H.264 encoder with the proposed FMC.

L

N

16 X 16 luma 8 x 8 chroma (Cb) 8 x 8 chroma (Cr)

F1GURE 16: The pixels to be written twice for deblocking filter.

TaBLE 5: Effect of compression by the first write of deblocking filter
in BD-PSNR degradation (dB).

Compression in .
Compression only

Sequence both the ﬁrsF and in the second write
second writes
Foreman 0.69 0.65
Mobile and Calendar 1.00 0.79
Table Tennis 0.61 0.47
CIF average 0.77 0.65
Blue sky 0.65 0.49
Pedestrian Area 0.11 0.08
HD average 0.38 0.29

By storing the first write without compression, an average
of about 0.12dB improvement is achieved for CIF-size
videos and an average of 0.09 dB improvement for HD size
videos.

The H.264 Encoder has four modules that access the
external memory. They are image sensor interface, video
input module, motion estimation, and deblocking filter. The
image sensor module receives pixel data from an image
sensor in the YUV 4:2:0 format and stores it in the external
memory. The video input module reads the input data to
process H.264 encoding. The memory bandwidth to access
the input data is as follows:

churrent frame store/load = HxWx15x 2, (4)

where Wand H represents width and height of a frame. For
the reference frame, both deblocking filter and motion esti-
mation modules access the reference frame. The bandwidth
required by deblocking filter is as follows:

H W
BWDpg store = (1—6 X R) X (16X 16 X 1.5+ 16 X 4 X 2),

H
BWDB 10ad = <T6 X %) X (16 x 4 % 2).

(5)

EURASIP Journal on Advances in Signal Processing

The memory bandwidth requirement by motion estimation
depends on the search range, search algorithm and data reuse
scheme. The H.264 encoder in this paper adopts the full
search algorithm and level C data reuse scheme [27]. Thus,
the required memory bandwidth is

BWME luma

i (6)
X (W+SRy —1) X (16 + SRy — 1) X fre,

T 16
where SRy and SRy represent the horizontal and vertical
search ranges, respectively, and fi.r is the number of reference
frame. The memory requirement for chrominance compo-
nents by motion estimation is as follows [28]:

BWME chroma = (%) X (%) X(16X3X3X2). (7)

Thus, the total memory requirement is
BWiotal

= (BWcurrent frame(store/load) + B\NDB store T B\NDB load (8)

BWME luma + BWME chroma) X FrameRate.

Figure 17 shows the required memory bandwidth that
depends on the frame size and search range. The frame
rate is 30 frames per second and all frames are encoded
as P-frame. The bar graphs given in Figure 17 show the
required bandwidth when search ranges (SRy/SRy) are
64/32 (H[-32, +31], V[-16, +15]), 128/64 (H[—64, +63],
V[-32, +31]), and 196/128 (H[—98, —97], V[—64, +63]),
respectively.

To support this memory bandwidth, the required oper-
ating frequency is

Freqmin

_ BWiotal
(memory bus bit widthx memory bus utilization)

)

Assuming that memory bus bit width is 32 and the memory
bus utilization is 100%, the line graphs show the required
operating clock frequency of the external memory. The
solid line graph shows the frequency for the original H.264
encoder whereas the dotted line graph shows that for the
integrated H.264 encoder with the proposed FMC. Figures
17(a) and 17(b) show the cases when the number of reference
frames is 1 and 3, respectively. With the proposed FMC, the
total memory bandwidth is reduced to about 50% whereas
the bandwidth required by the current frame remains the
same. The performance of the H.264 encoder is limited
when the memory bandwidth cannot meet the required
bandwidth. For example, if the number of reference frames
is 3, the frame size is 1920 x 1080, and the search range is
64 x 32, then required clock frequency is 233.3 MHz. For
most commercially available SDRAMs (not DDR-SDRAM),
this clock frequency is impossible. With the integration of the
proposed FMC, the clock frequency is reduced to 138.9 MHz

13
244.3
1000 1 r250
>
§ 800 1 200 E
= 600 1 F150 <
2 =
T 400 + 100 g
2 S
g 50 £
& 200 A 50 &
64/32 1128/64 1196/128| 64/32 1128/64 1196/128
1280 x 720 1920 x 1080
Original B/W —— Original freq.
== Reduced B/W - -- Reduced freq.
(a)
536.3
2000 500 =
= 1600 400
= 2
= 1200 247.3 300 ?
2 L
% 800 200 %
5 400 100 &
24
O 4
64/32 1128/64 196/128 | 64/32 1128/64 1196/128
1280 x 720 1920 x 1080
Original B/W —— Original freq.
== Reduced B/W --- Reduced freq.

(b)

FiIGUure 17: Reduction of the bandwidth requirement by the
proposed FMC. (a) 1 reference frame. (b) 3 reference frames.

which is in the range of the normal operating frequency of
an SDRAM. The reduction of memory traffic also makes
decreases the power consumption.

5.2. EMC for the RGB Color Space. This subsection presents
the experimental results to evaluate the FMC algorithm for
the RGB color space proposed in Section 3. To this end,
twenty-three images of size 768 x 512 in the RGB color
space shown in Figure 18 are used. Image degradations by
the four FMCs with RGB 4:4:4 format, GDbDr 4:4:4
format, JPEG2000 YCbCr 4:4:4 format, and the standard
YCbCr 4:4:4 format are compared. The quality degradation
represented by PSNR is presented in Table 6. The boldface
letters represent the best results among the five FMCs. In
general, GDbDr-based FMC outperforms the others for G
and R color components while the JPEG2000 YCbCr-based
FMC outperforms for B color component. In general, the
correlation between B and G colors (DDb) is less than the
correlation between B and Y colors (Cb), and consequently,
the JPEG2000 YCbCr achieves the better PSNR for B color
than GDbDr does.

14 EURASIP Journal on Advances in Signal Processing

(21) (22)

FIGURE 18: Test RGB bitmap images.

TABLE 6: PSNR (db) of frame memory compression for 23 Images with various color transformations.

Image no. RGB4:4:4 GDbDr4:4:4 JPEG YCbCr4:4:4 YCbCr4:4:4
R G B R G B R G B R G B

(1) 39.63 39.65 39.64 45.42 49.52 43.94 43.82 43.76 46.51 41.80 46.63 39.69
(2) 45.96 45.93 46.05 48.33 52.60 47.78 47.69 50.77 48.99 43.32 47.23 42.83
(3) 46.97 46.92 47.06 48.62 53.40 47.29 47.09 47.16 48.11 44.20 46.67 43.03
(4) 44.97 44.91 44.96 47.18 51.36 46.67 47.08 49.05 47.50 42.78 46.51 41.94
(5) 39.20 39.14 39.21 42.07 47.06 40.34 42.64 43.10 42.67 40.86 45.48 39.22
(6) 41.16 41.23 41.29 46.17 50.17 44.27 44.61 43.77 45.89 41.95 46.58 40.92
(7) 45.99 46.06 45.97 48.24 52.42 45.97 45.42 45.78 46.50 43.60 46.91 42.50
(8) 38.77 38.77 38.92 43.53 47.84 42.26 43.69 44.20 43.79 41.31 45.60 39.60
9) 45.80 45.83 45.84 49.59 53.56 48.11 47.40 46.30 47.12 44.40 46.95 42.32
(10) 45.12 45.14 45.24 48.29 52.92 47.83 47.36 45.98 46.84 44.21 47.30 42.34
(11) 42.39 42.49 42.47 46.83 50.64 44.39 45.64 45.72 45.61 42.58 46.04 41.25
(12) 46.68 46.56 46.67 50.15 54.13 49.32 47.18 46.41 47.72 44.35 47.01 43.61
(13) 36.20 36.20 36.32 41.27 45.76 38.32 40.86 40.42 41.59 39.94 44.26 38.61
(14) 41.46 41.54 41.48 44.50 48.45 41.11 43.24 43.92 42.88 41.58 46.03 40.02
(15) 44.76 44.64 44.78 45.85 51.09 45.25 46.72 46.40 46.91 42.99 46.81 41.71
(16) 44.88 44.90 44.86 49.76 53.47 49.54 45.66 45.98 47.72 43.97 48.03 41.65
(17) 44.14 44.39 44.43 48.64 51.62 45.15 46.10 46.75 46.38 43.49 47.27 41.70
(18) 39.73 39.82 39.87 43.07 46.87 39.61 42.19 42.28 42.23 40.81 45.25 39.68
(19) 43.02 43.17 43.15 47.19 50.99 45.31 43.90 45.47 46.88 42.26 46.83 41.40
(20) 44.49 44.65 44.69 48.37 52.04 46.07 44.96 46.03 46.86 43.29 47.79 42.51
(21) 41.12 41.19 41.27 46.74 50.23 43.87 43.88 44.79 45.29 42.18 46.02 41.14
(22) 42.97 43.15 43.21 45.55 49.06 42.52 43.59 44.22 44.81 41.86 46.28 40.67
(23) 46.72 46.91 46.94 48.67 53.10 47.81 47.04 47.34 47.46 43.88 46.95 42.88

Avg. 43.14 43.18 43.23 46.70 50.80 44.90 45.12 45.46 45.92 42.68 46.54 41.36

EURASIP Journal on Advances in Signal Processing

15

FIGURE 19: (a), (¢), and (e) are the original images of test 5, 13, 18 and (b), (d), and (f) are their GDbDr-based FMC compressed images.

As the human eyes are more sensitive to the G color than
the B color, it is reasonable to choose the GDbDr-based FMC
rather than the JPEG2000 YCbCr-based FMC. Note that the
average PSNRs for R, G, and B achieved by the GDbDr-
based FMC are 46.70 dB, 50.80 dB, and 44.90 dB, respectively.
As the PSNR is very large, the quality degradation is hardly
observed. Among the twenty-three test images, three images

with the lowest PSNR degradation are chosen and the
images with the GDbDr-based FMC are compared with their
original images. Figure 19 shows these images and it is very
hard to distinguish the original image from the compressed
image.

The FMC algorithm proposed in Section 3.6 is also
evaluated with the twenty-three RGB images. Recall that

16 EURASIP Journal on Advances in Signal Processing
TaBLE 7: PSNR (db) of 75% frame memory compression for 23 Images with various color transformations.
Image no. RGB4:2:0 GDbDr4:2:0 JPEG YCbCr4:2:0 YCbCr4:2:0
R G B R G B R G B R G B

(1) 22.10 38.25 21.94 35.79 39.73 36.98 35.35 36.85 36.15 36.03 39.34 35.75
(2) 28.33 44.90 29.28 33.69 46.17 41.53 35.28 42.38 39.63 34.92 42.43 36.63
(3) 29.73 45.58 30.61 37.90 46.94 36.25 38.74 41.26 37.57 38.23 43.82 36.52
(4) 28.44 43.71 28.33 33.96 45.26 41.12 35.82 40.83 40.60 35.25 41.86 37.55
(5) 21.83 37.68 22.12 33.75 39.06 32.65 34.13 35.65 33.40 34.81 38.55 33.12
(6) 23.23 39.82 23.64 38.23 41.39 36.68 36.97 38.07 36.46 37.38 41.15 35.47
(7) 27.46 44.61 27.47 37.70 45.85 36.35 38.02 40.49 37.46 37.88 43.39 35.87
(8) 19.27 37.41 19.42 34.06 38.30 34.35 34.31 36.03 34.51 34.58 38.06 33.52
9) 27.34 44.37 27.73 39.66 45.69 37.79 39.41 41.13 38.33 38.12 43.93 36.62
(10) 27.96 43.80 27.96 39.01 44.88 38.27 39.20 40.89 38.71 38.05 43.49 36.75
(11) 24.82 41.06 25.29 36.31 42.54 39.02 36.68 39.08 37.94 36.48 41.48 36.41
(12) 28.32 45.25 27.99 38.86 46.54 39.23 39.60 41.54 39.95 38.42 44.11 37.63
(13) 20.02 34.90 20.06 34.77 36.39 32.05 33.10 33.50 32.03 34.79 36.72 32.25
(14) 24.05 40.13 25.02 32.59 41.63 32.57 33.18 37.20 32.85 33.90 39.55 32.88
(15) 27.41 43.38 27.72 33.65 44.80 37.85 35.53 39.65 38.66 35.28 41.52 36.88
(16) 27.19 43.62 27.67 41.69 45.05 40.27 39.78 41.26 39.61 39.25 44.28 37.77
(17) 27.45 42.85 27.15 40.12 44.25 38.08 38.75 40.87 37.94 38.53 43.41 36.42
(18) 23.56 38.34 23.74 35.24 39.74 33.50 34.71 36.09 33.78 35.43 39.24 33.27
(19) 23.59 41.82 24.12 38.35 42.92 38.03 37.51 39.84 37.97 37.59 42.21 36.16
(20) 25.86 43.19 25.89 39.97 44.20 36.18 38.15 40.32 37.01 38.95 43.52 35.51
(21) 23.95 39.75 24.29 38.00 41.37 36.25 36.58 38.16 35.93 37.10 41.09 35.15
(22) 26.39 41.76 26.09 35.65 43.23 35.20 35.42 38.40 35.88 36.07 41.15 34.67
(23) 29.77 45.34 29.38 37.29 47.10 37.47 37.82 41.39 38.21 37.45 44.18 36.30
Avg. 25.57 41.81 25.78 36.79 43.18 36.86 36.70 39.17 36.98 36.72 41.67 35.61

this algorithm achieves 75% compression by combining
the 50% FMC algorithm and another 50% compression by
color transform and subsampling from RGB 4:4:4 format
into YCbCr (or GDbDr) 4:2: 0 format. Table 7 shows PSNR
values when the images are compressed by 75%. For the
transform into the standard YCbCr color space and the
JPEG YCbCr color space are evaluated and compared with
the GDbDr color space. As shown in Table 7, the FMC with
GDbDr color space achieves the best quality for the G and
R color component while the FMC with JPEG2000 YCbCr
color space achieves the best quality for B color components.
The FMC with the standard YCbCr color space does not
outperform for any image. When compared with the image
quality by the 50% FMC algorithm presented in Table 6, the
image quality is significantly degraded as PSNR is much less
than that in Table 6. The quality degradation is caused by
large compression ratio.

Figure 20 shows the efficiency of the combined packetiza-
tion which is explained in Section 3.1. Figure 20(a) shows the
average QPs for the combined and separate packetizations.
Note that QP + 1 corresponds to the number of iteration
in FMC encoding. To compare the efficiencies of Golomb-
Rice coding and Exp-Golomb Coding, both are used for

the compression and their results are compared. In this
figure, GR and EG stand for Golomb-Rice and Exp-Golomb
codings, respectively. The combined packetization reduces
the average QP of G color, but it increases the average QP
of Dr and Db colors. This implies that the degradation of
G color is substantially reduced while those of R and B
colors may increase. Figure 20(b) compares the PSNR of
combined packetization with that of separated packetization.
As shown in this figure, the PSNR of G colors as well as
R and B colors increase when combined packetization is
adopted. It is because the error reduction of the G color also
affects the error reduction of R and B colors, consequently
resulting in the improvement of PSNR for all three color
components. It is also shown that Golomb-Rice coding
is efficient for separate packetization while Exp-Golomb
coding is efficient for combined packetization. This is shown
in Figure 20(a) because the QP of Exp-Golomb coding for
combined packetization is slightly less than that of Golomb-
Rice coding while the QP is substantially increased by Exp-
Golomb coding for separate packetization. In Figure 20(b),
it is shown that Exp-Golomb coding achieves better PSNR
than Golomb-Rice coding for combined packetization, but
less PSNR for separate packetization.

EURASIP Journal on Advances in Signal Processing

0.1
0.14
0.12
o 0.08
0.06
0.04
K r
0 -
Dr, G, Db Dr ‘ G ‘ Db
Combined Separated
m EG
GR
(a)
55
50
=
=
45 4
Z
w
o
40 1 —
35 4
R ‘ G ‘ B R ‘ G ‘ B
Combined Separated
® EG
GR

(®)

FiGure 20: QP and PSNR comparison between combined and
separate packetization. (a) The QP averaged over twenty-three test
images shown in Figure 18. (b) The PSNR averaged over twenty-
three test images shown in Figure 18.

6. Conclusions

This paper proposes an FMC algorithm that compresses
video data to be stored into frame memory. The pro-
posed FMC algorithm achieves lower image degradation
than other transform based algorithms. The computational
complexity is relatively small because the information given
by H.264/AVC video encoding is used. By using the pixel
correlation information, which comes from the H.264/AVC
intraprediction, an efficient DPCM scan order is selected
without a significant increase in the amount of computation.
The proposed algorithm performs the compression in a 4 X
4 block, so that both horizontal and vertical correlations

17

are exploited. As a result, higher compression efficiency is
achieved than with an MHT-based algorithm, which exploits
only the horizontal correlations. As a result, compared to
an MHT-based algorithm, image quality is improved by an
average of 1.62dB and 1.34dB for CIF-size and HD-size
images, respectively.

The proposed FMC algorithm is modified for the system
without an H.264/AVC encoder. As the intraprediction result
from H.264/AVC is not available, an additional step to select
the best scan order is necessary. This system, in general,
stores RGB colors instead of YCbCr colors as in H.264/AVC
compression. For improved compression efficiency, the RGB
color space is transformed into another color space and then
compression algorithm is performed for the transformed
domain. Experiments with various color spaces show that the
most efficient result is obtained with the G, R-G, B-G color
space.

Acknowledgments

This work was sponsored by ETRI System Semiconductor
Industry Development Center, Human Resource Develop-
ment Project for IT-SoC Architect, and CAD tools were
supported by the IDEC.

References

[1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-
T VCEG, “Draft ITU-T recommendation and final draft
international standard of Joint Video Specification (ITU-T
Rec. H264—ISO/IEC 14496-10 AVC),” in Proceedings of the
7th Meeting on Document JVT-G050d35, Pattaya, Thailand,
March 2003.

[2] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, et al., “Analysis and
architecture design of an HDTV720p 30 frames/s H.264/AVC
encoder,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 6, pp. 673—-688, 2006.

[3] T.-M. Liu, T.-A. Lin, S.-Z. Wang, et al.,, “A 125 pW, fully
scalable MPEG-2 and H.264/AVC video decoder for mobile
applications,” IEEE Journal of Solid-State Circuits, vol. 42, no.
1, pp. 161-169, 2007.

[4] Y. Chen, C. Cheng, T. Chuang, C. Chen, S. Chien, and L.
Chen, “Efficient architecture design of motion-compensated
temporal filtering/motion compensated prediction engine,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 18, no. 1, pp. 98-109, 2008.

[5] V. G. Moshnyaga, “Reduction of memory accesses in motion
estimation by block-data reuse,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP02), vol. 3, pp. 3128-3131, Orlando, Fla, USA,
May 2002.

[6] W. Y. Chen, L. E. Ding, P. K. Tsung, and L. G. Chen, “Archi-
tecture design of high performance embedded compression
for high definition video coding,” in Proceedings of the IEEE
International Conference on Multimedia and Expo (ICME "08),
pp. 825-828, Hannover, Germany, June 2008.

[7] T.Y. Lee, “A new frame-recompression algorithm and its hard-
ware design for MPEG-2 video decoders,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 13, no. 6, pp.
529-534, 2003.

18

(8]

(9]

(10]

(11]

(14]

T. Song and T. Shimamoto, “Reference frame data compres-
sion method for H.264/AVC,” IEICE Electronics Express, vol. 4,
no. 3, pp. 121-126, 2007.

Y. V. Ivanov and D. Moloney, “Reference frame compres-
sion using embedded reconstruction patterns for H.264/AVC
decoders,” in Proceedings of the 3rd International Conference on
Digital Telecommunications (ICDT ’08), Bucharest, Romania,
July 2008.

J. Someya, A. Nagase, N. Okuda, K. Nakanishi, and H. Sugiura,
“Development of single chip overdrive LSI with embedded
frame memory,” in Proceedings of the International Symposium
Digest of Technical Papers (SID °08), vol. 39, pp. 464—467, Los
Angeles, Calif, USA, May 2008.

J. Someya, N. Okuda, and H. Sugiura, “The suppression
of noise on a dithering image in LCD overdrive,” IEEE
Transactions on Consumer Electronics, vol. 52, no. 4, pp. 1325—
1332, 2006.

J. Strom and T. Akenine-Moller, “PACKMAN: texture com-
pression for mobile phones,” in Proceedings of the 2nd
International Conference on Computer Graphics and Interactive
Techniques, p. 66, Singapore, August 2004.

J. Strom and T. Akenine-Moller, “/PACKMAN: highquality,
low-complexity texture compression for mobile phones,” in
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Con-
ference on Graphics Hardware, pp. 63-70, Los Angeles, Calif,
USA, 2005.

D. Kim, K. Chung, C.-H. Yu, et al., “An SoC with 1.3 Gtexels/s
3-D graphics full pipeline for consumer applications,” The
IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 71-84,
2006.

S. W. Golomb, “Run-length encodings,” IEEE Transactions on
Information Theory, vol. 12, pp. 399—-401, 1966.

R. E Rice, “Some practical universal noiseless coding tech-
niques,” Tech. Rep., Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, Calif, USA, 1979.

L. E. G. Richardson, H.264 and MPEG-4 Video Compression:
Video Coding for Next-Generation Multimedia, John Wiley &
Sons, New York, NY, USA, 2003.

ITU-R BT.601-5, “Studio encoding parameters of digital
television for standard 4:3 and wide-screen 16:9 aspect ratios,”
ITU-T, 1995.

C. Christopoulos, A. Skodras, and T. Ebrahimi, “The jpeg2000
still image coding systemml: an overview,” IEEE Transactions
on Consumer Electronics, vol. 46, no. 4, pp. 1103—1127, 2000.
S. C. Pei and L. K. Tam, “Effective color interpolation in CCD
color filter arrays using signal correlation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 13, no. 6, pp.
503-513, 2003.

K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed
demosaicing algorithm,” IEEE Transactions on Image Process-
ing, vol. 14, no. 3, pp- 360-369, 2005.

D. Menon, S. Andriani, and G. Calvagno, “Demosaicing
with directional filtering and a posteriori decision,” IEEE
Transactions on Image Processing, vol. 16, no. 1, pp. 132-141,
2007.

X. Li, “Demosaicing by successive approximation,” IEEE
Transactions on Image Processing, vol. 14, no. 3, pp. 370-379,
2005.

J.-S. Jung, G. Jin, and H.-J. Lee, “Early termination and
pipelining for hardware implementation of fast H.264
intraprediction targeting mobile HD applications,” EURASIP
Journal on Advances in Signal Processing, vol. 2008, Article ID
542735, 19 pages, 2008.

(25]

[26]

(28]

EURASIP Journal on Advances in Signal Processing

Joint Model (JM)—H.264/AVC Reference Software, http://
iphome.hhi.de/suehring/tml/download/.

G. Bjontegaard, “Calculation of average PSNR differences
between RD curves,” in Proceedings of the 13th VCEG Meeting
in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG, Documents VCEG-M33, Austin, Tex, USA, March
2001.

J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and
memory bandwidth analysis for full-search block-matching
VLSI architecture,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 12, no. 1, pp. 61-72, 2002.

H. Honggqi, X. Jiadong, D. Zhemin, and S. Jingnan, “High
efficiency Synchronous DRAM controller for H.264 HDTV
encoder,” in Proceedings of the IEEE Workshop on Signal
Processing Systems (SiPS ’07), pp. 373-376, Shanghai, China,
October 2007.

	1. Introduction
	2. FMC with H.264/AVC Video Compression
	2.1. Basic Idea
	2.2. Algorithm
	2.3. Golomb-Rice Coding
	2.4. Packetization
	2.5. Example

	3. FMC of FrameMemory in RGB Color Space
	3.1. FMC in the 4 : 4 : 4 Format and Combined Packetization
	3.2. Exp-Golomb Coding
	3.3. Scan Mode Decision
	3.4. Color Transform
	3.5. Algorithm
	3.6. FMC by 75%

	4. Hardware Implementation
	4.1. Encoder
	4.2. Decoder
	4.3. Complexity Comparison
	4.4. Integration into an H.264 Encoder Chip

	5. Experimental Results
	5.1. FMC Algorithm in an H.264 Encoder
	5.2. FMC for the RGB Color Space

	6. Conclusions
	Acknowledgments
	References

