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None of the current epileptic seizure prediction methods can widely be accepted, due to their poor consistency in performance.
In this work, we have developed a novel approach to analyze intracranial EEG data. The energy of the frequency band of 4–12 Hz
is obtained by wavelet transform. A dynamic model is introduced to describe the process and a hidden variable is included. The
hidden variable can be considered as indicator of seizure activities. The method of particle filter associated with a neural network is
used to calculate the hidden variable. Six patients’ intracranial EEG data are used to test our algorithm including 39 hours of ictal
EEG with 22 seizures and 70 hours of normal EEG recordings. The minimum least square error algorithm is applied to determine
optimal parameters in the model adaptively. The results show that our algorithm can successfully predict 15 out of 16 seizures and
the average prediction time is 38.5 minutes before seizure onset. The sensitivity is about 93.75% and the specificity (false prediction
rate) is approximately 0.09 FP/h. A random predictor is used to calculate the sensitivity under significance level of 5%. Compared
to the random predictor, our method achieved much better performance.
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1. Introduction

Epilepsy is a brain disorder in which neurons in the brain
produce abnormal signals. One explanation for epilepsy is
that neuronal activity of human brain has two patterns. One
is the normal pattern which corresponds to normal activities
while the other is abnormal pattern in which epilepsy is
included. Neuronal activity of epilepsy can cause various
abnormal situations such as strange sensations, emotions
and behavior and loss of consciousness. Possible reasons
causing epilepsy are not unique. Seizure and epilepsy are not
completely equivalent. That is, a person having a seizure does
not necessarily mean that he/she has epilepsy. According to
the medical definition of epilepsy, the condition is that a
person with epilepsy should have two or more seizures in a
time period.

Based on information from the National Institutes of
Health, about 1 in 100, or more than 2 million people in
the United States, has experienced an unprovoked seizure
or been diagnosed with epilepsy. About 20% of people with

epilepsy will continue to experience seizures even with the
best available treatment [1].

EEG can be used to record brain waves detected by
electrodes placed on the scalp or on the brain surface.
This is the most common diagnostic test for epilepsy and
can detect abnormalities in the brain’s electrical activity.
Some nonlinear measurement methods such as dimensions,
Lyapunov exponents, and entropies were shown to offer new
information about complex brain dynamics and further to
predict seizure onset.

Iasemidis et al. [2, 3] were pioneers in making use
of nonlinear dynamics to analyze clinical epilepsy. Their
method was based on the assumption that there was a
transition from normal brain activity to a seizure occurrence.
Thus, state changes could indicate seizure occurrence. In
2003 [1], they showed that it was possible to predict
seizures minutes or even hours in advance by using the
spatiotemporal evolution of shortterm largest Lyapunov
exponent on multiple regions of the cerebral cortex, since
seizure could be characterized by similarity of chaotical
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degree of their dynamical states. Later on, an adaptive seizure
prediction algorithm was developed to analyze continuous
EEG recordings with temporal lobe epilepsy for the purpose
of prediction when only the occurrence of the first seizure is
known [4].

There are many researchers who are working in this
field and many publications have appeared. Ebersole [5]
summarized some seizure prediction methods from the First
International Collaborative Workshop on Seizure Prediction
(2005). He believed that no seizure forewarning has been
realized into the clinic. Hassanpour et al. [6] estimated
the distribution function of singular vectors based on the
time frequency distribution of an EEG epoch to detect
the patterns embedded in the signal. Then they trained a
neural network and further discriminate between seizure and
nonseizure patterns. Mormann et al. [7] summarized some
prediction methods and pointed out some of their pitfalls.
They also summarized the current state of this research field
and possible future development. In order to improve the
performance of an algorithm, a better understanding of the
inter-ictal period is necessary and all of its confounding
variables should influence the characterizing measures used
in the algorithms. They mentioned that a further promising
approach would be to model EEG signals to gain insight into
the dynamical processes involved in seizure generation [8],
[9]. For purpose of comparison, Schelter et al. [10] estimated
the performance of a seizure prediction method based
on a quantity indicating phase synchronization compared
with a Poisson process. Using invasive EEG data of four
representative patients suffering from epilepsy, they claimed
that two of them have good performance while the other
two do not. Therefore, further research in this field is still
necessary.

In this work, we use a nonlinear method different
from existing ones to predict seizures. We believe that EEG
measurements of seizures from epileptic patients can be
described as a stochastic process and has a certain probability
distribution. Suffczynski et al. [8] investigated the dynamical
transitions between normal and paroxysmal state of epilepsy.
A Poisson process or a random walk process can be used
to simulate the transition between the two states. We found
that the characteristic variables from epileptic EEG data can
be used to represent the procedure of seizure occurrence.
We develop a dynamic model where a hidden variable
is involved. Features of the hidden variable can become
an indicator of seizure occurrence. The hidden variable is
considered to have the property of second order Markov
chain. The method of particle filter associated with a neural
network is used to estimate the hidden variable. Features of
the hidden variable can be extracted and seizure onset can
be detected in advance based on these features. As pointed
out by Litt et al. [11], during the transition from normal
brain activities to a seizure, some regions of the brain have
similar activities. This similarity makes it possible for some
characteristics detectable during the preseizure period.

Based on a probability distribution, the sensitivity can be
reached by a random predictor. It is meaningful only when a
predictor has higher sensitivity than the random predictor.
We set significance level as 5%. Assume that the random

predictor generates alarms following a Poisson process in
time without using any information from the EEG [10].
The sensitivity from the random predictor can be obtained.
Comparing the two, our prediction results are superior to
those from the random predictor.

This paper is organized as follows. In Section 2, we
introduce particle filters and neural networks. In Section 3,
our method is presented including the dynamic model
and the way for solving the hidden variable. In Section 4,
experimental data is given. In Section 5, data processing
and simulation results are described. Finally, in Section 6,
discussion and conclusions are addressed.

2. Particle Filters

Although particle filters, namely, sequential Monte Carlo
methods, were introduced much earlier, it became attractive
and was further developed in the 1990s since comput-
ers can provide more powerful ability of computation.
These methods have been very popular over the past
few years in statistics and related fields since it can be
used to simulate nonlinear non-Gaussian distributions, and
they are improved greatly in the implementation [12–17].
Particle filters can approximate a sequence of probability
distributions of interest using a set of random samples
called particles. These particles are propagated over time
following the corresponding distributions by sampling and
resampling mechanisms. At any time, as the number of
particles increases, particles should asymptotically converge
toward the sequence of theoretical probability distribution.
In reality, computation time is a very important factor to
consider so the number of particles cannot go too big.
Thus effective sampling algorithms are key steps to capture
a certain probability distribution by a limited number of
particles.

The basis of a particle filter is a sequential importance
sampling/resampling algorithm [18]. Most sequential Monte
Carlo methods developed over the last decade are based on
this algorithm. This technique is capable of implementing a
recursive Bayesian filter by Monte Carlo simulations. The key
idea is to use a sample of random particles to approximate a
posterior probability distribution. The sequential sampling
is very important in realizing this algorithm. Assume an
arbitrary distribution p(x). Samples are supposed to be
drawn from p(x), but in many practical cases, p(x) is not
a standard probability distribution,for example, Gaussian
distribution, and, therefore, it is difficult to draw samples
from p(x). Based on the Bayesian importance sampling
scheme [19], a sample xi, i = 1, . . . ,N , can be drawn from
another probability distribution q(x) called the importance
function, which is easy to sample. Thus these particles
can approximate the distribution q(x). In order to use
these particles to represent the desired distribution p(x), a
weighted approximation to the density p(x) is given by

p̂(x) =
∑N

i=1 w̃
iδ
(

x − xi
)

∑N
i=1 w̃i

, (1)
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where

w̃i = p
(

xi
)

q(xi)
, (2)

and δ(·) is a Dirac delta function defined as

δ
(

x − xi
)

=
⎧

⎨

⎩

1, if x = xi

0, otherwise.
(3)

If the samples are drawn from an importance function
q(x1:n | α1:n), then the weights in (2) are determined as

w̃i =
p
(

xi1:n | α1:n

)

q(x1:n | α1:n)
. (4)

Now we can proceed to obtain a recursive updating
equation which can keep the previous trajectories of particles
when a set of new data is available. At each iteration,
samples can approximate the corresponding distribution,for
example, p(x1:n−1 | α1:n−1), and then approximate p(x1:n |
α1:n) with a new set of samples. From the Bayesian theory, we
can easily obtain

q(x1:n | α1:n) = q(xn | x1:n−1,α1:n)q(x1:n−1 | α1:n−1). (5)

From (5), we already have samples xi1:n−1 ∼ q(x1:n−1 |
α1:n−1), and can draw a particle from xin ∼ q(xn |
x1:n−1,α1:n) to augment samples to become xi1:n. The aim is

to approximate density function p(·), and p(x1:n | α1:n) is
expressed as follows, based on the Bayesian theory and the
Markov properties [20],

p(x1:n | α1:n) = p(αn | xn)p(xn | xn−1)
p(αn | α1:n−1)

p(x1:n−1 | α1:n−1).

(6)

When particle weights are considered, the updating
equation is given by

w̃i
n =

p
(

αn | xin
)

p
(

xin | xin−1

)

p
(

xi1:n−1 | α1:n−1

)

q
(

xin | xi1:n−1,α1:n

)

q
(

xi1:n−1 | α1:n−1

)

p(αn | α1:n−1)

∝
p
(

αn | xin
)

p
(

xin | xin−1

)

p
(

xi1:n−1 | α1:n−1

)

q
(

xin | xi1:n−1,α1:n

)(

xi1:n−1 | α1:n−1

)

= w̃i
n−1

p
(

αn | xin
)

p
(

xin | xin−1

)

q
(

xin | xi1:n−1,α1:n

) .

(7)

Based on the prior distribution, the initial step of the
above recursion can be defined for n = 1 as

w̃i
1 =

p(x1 | α1)
q(x1 | α1)

. (8)

Thus, particle weights for n = 1, 2, . . ., can recursively
be obtained. We can extend the same procedure to all the

particles. In (7), the term p(αn | α1:n−1) is omitted since it is
a value by calculation. Doucet [21] showed that the effect of
omission is compensated by normalizing the weights using

wi
n =

w̃i
n

∑N
i=1 w̃i

n

. (9)

The sequential importance sampling algorithm has been
developed, but two problems exist in practice. One is the
phenomenon of degeneracy and the other is the choice of
importance function q(x). In general, all but a few particles
will have negligible weights after several iterations and a
large computational effort is devoted to updating trajectories
whose contribution to the final estimation is almost zero
[18]. Liu and Chen [16] introduced a method to measure
particle degeneracy. The effective sample size Neff is defined
as:

Neff = Ns

1 + Var
(

w∗in

) , (10)

where w∗in denotes the true weight by calculation directly. It
is not easy to calculate Neff from the above equation, so an
approximation of Neff can be used as

̂Neff = 1
∑Ns

i=1

(

wi
n

)2 , (11)

where wi
n is the normalized weight obtained from (8).

The smaller the ̂Neff, the worse the degeneracy. Generally
speaking, increasing the number of particles can reduce
degeneracy, but it is impractical. When ̂Neff ≤ Nthreshold,
where Nthreshold is usually taken as one third of the particle
number, resampling is necessary. Resampling procedures
can decrease the degeneracy phenomenon but it introduces
practical, and theoretical problems [18]. From a theoretical
point of view, the simulated trajectories are no longer
statistically independent after resampling so the previous
convergence result will be lost. From a practical point of
view, it limits the opportunity to parallel computation since
all the particles must be combined, although the importance
sampling steps can still be realized in parallel.

3. Methods

This section includes three parts. The first part describes our
dynamic model. The second one introduces the solution for
hidden variable in our model. The last one addresses seizure
feature selection and determination.

3.1. Dynamic Model. Energy can be used to represent
features of a signal. For epileptic seizures, we find that energy
for some specific frequency band (4–12 Hz), which includes
theta (4–8Hz) and alpha (8–12 Hz) waves, can be modeled
by a similar Poisson process. Other combinations based on
delta (0–4 Hz), theta, alpha, and beta (12–30 Hz) waves are
also calculated but their characteristics are not as obvious.
Our dynamic state model is given by

xk = αxk−1 + βxk−2 + vk

Ek = Axke−xk/B + wk, k = 1, 2, . . . ,
(12)
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where xk is a random variable and has a normal dis-
tribution initially. vk,wk are white noise with Gaussian
distribution and they are independent. α,β are parameters
to be determined. Ek is the energy from specific frequency
band. A and B are unknown constants. The process for xk
is actually assumed to be a second-order Markov chain. The
hidden variable xk can represent transition changes and has
the ability to indicate seizure occurrence in advance. The
process chosen in (12) is based on our study and on the
work in [8]. Also, the energy in a frequency band changes
continuously and its value is affected by the most recent past
values. To the best of our knowledge, no other researchers
have developed a model which is used to simulate seizure
process behaviors and further to predict their occurrence.

3.2. Solution of the Dynamic Model. We already introduced
particle filters in Section 2. In order to improve its perfor-
mance under small number of particles, we develop a novel
algorithm to combine particle filters with neural networks.
The strategy of backpropagation neural networks can be used
to adjust particles in tail area with low weights in a particle
filter.

The basic idea of backpropagation neural networks is to
use the steepest descent (gradient) procedure to minimize
the error energy at the output layer. The error energy can be
denoted as follows:

E
Δ= 1

2

∑

k

(

dk − yk
)2 = 1

2

∑

k

ek
2, (13)

where k = 1, . . . ,N ;N is the number of neurons in the output
layer. dk is the target value and yk is the output of neural
network. By using gradient procedure and updating weights
of all neurons to train a neural network, proper weights can
be found so that the output of the network is close to the
desired objective within an assigned error. The activation
function in neural networks can be chosen according to
actual problems [22].

There are one input, one hidden, and one output layer
built in our algorithm. The dimension of input layer is
determined adaptively by particle samples in the particle
filter. Particles with smaller weights are considered as the
input data of a neural network. Their corresponding weights
are set as inputs of the neural network, and their particle
values as initial weights of the neural network. The weights
of the remaining particles are set as biases of corresponding
neurons. The neural networks can improve the performance
of particle filters,for example, the number of simulation is
reduced significantly. The noise wk in (12) is small since
measurements are intracranial EEG data. In general, the
computational complexity is O(N), where N is the number
of particles. Our algorithm is displayed in Algorithm 1 [23].

3.3. Feature Determination. Based on Algorithm 1, the hid-
den variable in the dynamic model can be obtained. For a
given patient, suppose that the first seizure is known. All
the parameters in (12) can be obtained. Parameters α and β
can be determined by minimizing errors, based on a known

seizure. A and B can be obtained by minimizing error wk.
One further step is to do regression analysis.

The regression analysis is based on the method of
Chatterjee and Hadi [24], expressed by

Y = Xξ + ε, ε ∼ N
(

0, σ2I
)

, (14)

where Y is a dependent variable (output), X is an inde-
pendent variable (input or data), and ε is the error. The
parameter ξ can be determined using the least square error
method and the predicted data can then be obtained from
(14).

Normally there is a peak at some time instants before
seizure occurrence and x value will be between 270 and
360 during the ictal period. The feature of a “peak” can
be described by the mean value (with threshold of ±10%
of the previous mean value), the variance before it (with
threshold of±5% of the mean of previous variance), the peak
amplitude (at least 10 more than the previous mean value),
and the width of peak (from 1 minute to 6 minutes). The
mean value and variance can be calculated for 15–30 minutes
before the peak; peak amplitude can be detected by the real
peak value, and the width of peak can also be obtained at
the same time. We assume that these features will be kept the
same at the next seizure onset. All the features can be updated
as long as the information of a new seizure is available.
Thus the system can adaptively update all related parameters
automatically based on available seizure information.

From Figure 1, the hidden variable’s value at certain time
before seizure occurrence reaches a peak. Before that peak,
the variance is small, which means that the curve before
the peak is smooth. Figure 1 shows this characteristic. The
difference between the time at which seizure is alerted to
happen, and seizure actual occurrence is the prediction time.
Based on this type of signature, a certain time point before
seizure occurrence can be recognized and a seizure alert is
provided at that point. For Figure 1, the prediction time is 14
minutes. The minimum intervention time is set to 2 hours
in our study. If a seizure appears from 3 to 120 minutes
after a seizure is alerted, this prediction is considered to be
successful. Otherwise, a false prediction is counted.

4. Experimental Data

The EEG data that we use are invasive EEG recordings of 6
patients with medically intractable temporal lobe epilepsy.
The data were recorded during an invasive presurgical
epilepsy monitoring at the Epilepsy Center of the University
Hospital of Freiburg, Germany. In order to obtain a high
signal-to-noise ratio, fewer artifacts, and to record directly
from temporal areas, intracranial grid-, strip-, and depth-
electrodes were utilized. The EEG data were acquired
using a Neurofile NT digital video EEG system with 128
channels, 256 Hz sampling rate, and a 16 bit analog-to-digital
converter. For each patient, we were given 4–6 channels of
data recorded from temporal areas. The amplitude of data
is relative to the real one after sampling them, but all the
features will be kept the same.

For each patient, there are datasets called “ictal,” and
“interictal,” with the former containing EEG-recordings with
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1. Importance sampling

-For i = 1, . . . ,N , sample x̃in ∼ q(xn | xi1:n−1,α1:n), and set x̃1:n
Δ= (xi1:n−1, x̃in),

where q(xn | xi1:n−1,α1:n) is a chosen probability density function.
N is the number of particles and n is the current time.
-For i = 1, . . . ,N , evaluate the importance weights up to a normalizing constant:
w̃i

n = w̃i
n−1(p(αnx̃in)p(x̃inx̃

i
n−1))/q(x̃in | x̃i1:n−1,α1:n), where p(αn | x̃in), and p(x̃in | x̃in−1)

are conditional probability density functions for αn, and x̃in, respectively.
-For i = 1, . . . ,N , normalize the importance weights:

wi
n = w̃i

n/
∑N

j=1 w̃
j
n,where wi

n is the normalized weight.
-At time n, identify particles with high weights, and low weights.
Replace some low weight particles with high ones if needed.
-At time n, adjust particles with low weights by neural networks.
Assign and normalize weights by the aforementioned procedure
-Evaluate ̂Neff using ̂Neff = 1/

∑Ns
i=1 (wi

n)2, where ̂Neff is the threshold parameter.
2. Resampling if necessary
-If ̂Neff ≥ Nthreshold, where Nthreshold is a preset threshold, xi1:n = x̃i1:n for i = 1, . . . ,N ;
-Otherwise, for i = 1, . . . ,N , sample an index j(i) distributed according to the discrete distribution
with N elements satisfying Pr { j(i) = l} = wl

n for l = 1, . . . ,N ;

for i = 1, . . . ,N , xi1:n = x̃
j(i)
1:n , and w∗in = 1/N , where w∗in is an updated weight.

Algorithm 1: Importance sampling/resampling particle filter with a neural network.

epileptic seizures, and the latter EEG-recordings without
seizure activity. We use all ictal EEG data, and at least 10
hours interictal data for each subject.

For a particle filter, the optimal strategy is to choose
q(xn | xin−1,αn) = p(xn | xin−1). Therefore, we use
linearization technique to linearize the model (12). It now
becomes

xk = αxk−1 + βxk−2 + vk = f (xk−1, xk−2) + vk, (15)

Ek = A f (xk−1, xk−2)e− f (xk−1,xk−2)/B

+
[

Axke−xk/B − Axke−xk/B/B
]

|xk= f (xk−1,xk−2)

× (xk − f (xk−1, xk−2)
)

+ wk, k = 1, 2, . . . .

(16)

5. Results

5.1. Data Preprocessing. Intracranial EEG data are unpro-
cessed directly from patients. Although they were obtained
from intracranial electrode contacts on brain directly, there
still exist some unusual values in the recording,for exam-
ple, very big difference between two close points in the
measurement. These points can be replaced with normal
ones by interpolation, since there are few of this type of
points in our data. Then roll-over windowing technique is
applied to them. We choose nonoverlap 5-second window
to divide EEG data of a single channel. Wavelet transform
“DB4” is used to get the energy of specific band since
it can give good performance and it is widely used to
analyze EEG data. Compared with energy of different
frequency bands, the frequency band of 4–12 Hz shows
much better performance and is chosen for use in our
model.

One seizure with predition time

Prediction time

Seizure onset
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Figure 1: One typical figure with prediction time and seizure.
The vertical solid line marks prediction time point and the vertical
dashed line indicates seizure occurrence.

5.2. Preprocessing. Based on the dynamic model (12), Ek is
obtained from the above steps and the hidden variable xk can
be found by particle filter associated with a neural network
realized by Algorithm 1. We assume that the initial condition
of xk for the model is a normal distribution N(300, 5). The
mean value that we choose is based on initial energy that we
calculate. Normally its value is about 300. Thus, less time is
needed to run Algorithm 1 at the initial points. Actually this
value cannot have any effect on the final result except the
running time. vk,wk are white noise, and we assume vk ∼
N(0, 0.6) and wk ∼ N(0, 0.1). In the dynamic model (12),
A,B are unknown parameters. The number of particles that



6 EURASIP Journal on Advances in Signal Processing

Table 1: The optimal parameters α and β for six patients

Patient No. No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

α 0.7972 0.9001 0.8164 0.8775 0.9155 0.8599

β 0.2028 0.0999 0.1846 0.1225 0.0845 0.1401

we use is 200. For each patient, the first seizure is supposed
to be known and is used to determine the parameters. The
algorithm of minimum least squares error is used to find the
optimal parameters under the assumption that the process is
steady before the next seizure occurrence. We follow the same
procedure when dealing with all seizures of each patient.
According to the energy values calculated and parameter
optimization, A = 2800 and B = 40 can be obtained. Table 1
shows the optimal parameters α and β for six patients based
on the first seizure occurrence.

Model (12) is a nonlinear model with Gaussian state
space. A local linearization technique is applied to nonlinear
equations and an approximate linear equation is obtained in
(16). A series of values of hidden variable x can be obtained
based on Algorithm 1.

5.3. Experimental Results. Intracranial EEG data from six
patients are tested using our algorithm. It includes a total
of 22 epileptic seizures, and 110 hours of data. Six of them
are taken out to determine all the related parameters in
model (12) for the subsequent seizures of each patient. After
the preprocessing described above, Algorithm 1, namely, the
particle filter associated with a neural network, is used
to identify the hidden variable x. In order to recognize
the general characteristics before seizure onset, the method
of linear regression is applied to calculated values of x.
This regression process can make clear the tendency of
change for the hidden variable x and provide some obvious
characteristics which are used to identify seizure occurrence
in advance.

Figures 2–7 show the hidden variable x from six patients
computed by our algorithm. Each of them includes two
figures, one from ictal EEG with one seizure, and the other
from interictal EEG without seizure. It is seen for all the ictal
EEG that the characteristics occurring some time instants
before the seizure can be recognized and used for predicting
seizure onset. All patients here have temporal lobe epilepsy.
Figure 2 shows an epileptic seizure from a male patient. The
prediction time is 42 minutes. After seizure happens, the
variable x is on a little high level compared to that before
seizure. For the interictal period, the value x is higher than
that during ictal period. Figure 3 shows an epileptic seizure
from a female patient. Its characteristics are the same as
Figure 2 including ictal and interictal transition data. The
prediction time is about 11.5 minutes. Data in Figure 4 are
from a female patient too. The prediction time is about 30
minutes. The interictal characteristics, which oscillate on the
low values, are different from others. Figures 5 and 6 have
very similar characteristics: figures for interictal EEG data
are on the relative low values smoothly; figures for ictal EEG
data are on similar values. Figure 5 is from a young male
patient and Figure 6 is from an old female patient. Their
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Figure 2: Ictal and interictal hidden variable x from one patient
with epilepsy. The vertical solid line marks prediction time point
and the vertical dashed line indicates seizure occurrence.

prediction times are 39 and 38.5 minutes, respectively. Figure
7 comes from a young male patient. Both ictal and interictal
values x are relatively low compared to other patients, but
its characteristics before the seizure are obvious. This seizure
can be known 6.25 minutes in advance.

Totally we tested 16 seizures from these 6 patients.
The average prediction time is 38.5 minutes. The longest
prediction time is 83.7 minutes and the shortest one is
6.25 minutes. 15 seizures can be predicted successfully. The
sensitivity is 93.75%.101 hours intracranial EEG testing data
are analyzed by our algorithm and specificity (false-positive
rate) is about 0.09 FP/hour.

In order to determine the performance of our method,
a random predictor is used to calculate the sensitivity. We
assume that the random predictor generates alarms following
a Poisson process in time without using any information
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Figure 3: Ictal and interictal hidden variable x from one patient
with epilepsy. The vertical solid line marks prediction time point
and the vertical dashed line indicates seizure occurrence.

from the EEG. The probability to raise an alarm in a period
of duration can be calculated as [10]

P ≈ RFP × PSO, (17)

when RFP × PSO is smaller than one, where RFP is the
maximum false prediction rate, which is set as 2 seizures each
day, and PSO is seizure occurrence period. In our case, PSO
is 2 hours. To decide the statistical significance of sensitivity
values, we follow Schelter’s method [10] to calculate the
probability as

P{k;K ;P} = 1−
⎛

⎝

∑

j<k

⎛

⎝

K

j

⎞

⎠P jPK− j

⎞

⎠

d

, (18)

where P is the above probability for the given false prediction
rate, and prediction period, and K is the seizure number.
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Figure 4: Ictal and interictal hidden variable x from one patient
with epilepsy. The vertical solid line marks prediction time point
and the vertical dashed line indicates seizure occurrence.

This is the probability of predicting at least k out of K
seizures by means of at least one of d independent features
correctly. For our case, d is one. The significance level is
set at 5%. For 2 seizures, the sensitivity is 100% to meet
the significance level. The sensitivity is 67% for 3 seizures
and it is 50% for 4 seizures. Our method can detect 15 out
of 16 seizures, and the only one missed is from a patient
having 4 seizures. For 5 out of the 6 patients, our method
has sensitivity of 100%. The sensitivity for the other patient
with a missed detection is 75% which is much better than
the random predictor (which is only 50%). Therefore, our
method has superior performance to the random predictor.

6. Discussions and Conclusions

Although many methods are published for predicting epilep-
tic seizures, none of them has been accepted widely so new
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Figure 5: Ictal and interictal hidden variable x from one patient
with epilepsy. The vertical solid line marks prediction time point
and the vertical dashed line indicates seizure occurrence.

methods are necessary to complement or replace current
ones. The novel prediction method developed in this paper
is different from other current existing methods. The wavelet
transform is used to get the energy of specific frequency band
of 4–12 Hz in our method. The dynamic model based on
energy under frequency 4–12 Hz is used to describe seizure
features. A particle filter associated with a neural network
is used to solve the hidden variable in the model. Here the
important part is to use a neural network, which can improve
algorithm performance even with small number of particles.
We use 109 hours intracranial EEG data to estimate the
performance of this method including 8 hours of data to
determine optimal parameters for the second seizure of each
patient in the model. 15 out of 16 seizures were successfully
predicted, and the sensitivity is 93.75%. The false-positive
rate is about 0.09 per hour. Therefore, this algorithm can
capture signatures before epileptic seizure onset, and further
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Figure 6: Ictal and interictal hidden variable x from one patient
with epilepsy. The vertical solid line marks prediction time point
and the vertical dashed line indicates seizure occurrence.

can be used to predict them. Our algorithm was applied
to a single channel EEG data which represent activities of
a certain brain region (temporal areas) since all the 4–6
channels of each patient provided similar EEG data. The
results obtained support the thought of modeling EEG
signals to gain insight into the dynamical process involving
seizure generation [8, 9].

In order to determine the performance of our method, a
random predictor under the significance level of 5% is used
to obtain the sensitivity. For all six patients, our method has
shown superior performance to the random predictor.

The original motivation to predict seizure is to meet the
requirement for a successful therapeutic intervention, for
example, for drug administration. The time interval between
prediction and occurrence of seizure is necessary and useful
to the treatment of a patient. In order to meet requirements
in clinic, reliability is a key factor for any prediction method,
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Figure 7: Ictal and interictal hidden variable x from one patient
with epilepsy. The vertical solid line marks prediction time point
and the vertical dashed line indicates seizure occurrence.

and specificity and sensitivity are used to assess how well a
method works. Sometimes sensitivity of an algorithm is high
while its specificity is low, which means there are a lot of false
predictions. This situation cannot be allowed in clinic since
too many false predictions will lead to impairment due to
possible side-effects of interventions or loss of the patients’
acceptance of seizure warning [10]. Although our method
is tested by a limited intracranial EEG data, it has a reliable
performance for all six patients including preictal, interictal,
and postictal transition data. Application of our method here
focuses on the same type of epilepsy-temporal lobe epilepsy,
but its extension to other types of epilepsy is feasible. Also
data that we use are intracranial from brain surface directly.
Our future research will consider to apply the method to
scalp EEG data from patients with epilepsy, and to compare
it with results from intracranial ones.

There are two important issues in this method. The first
one is that noise in EEG data should be low, which can be
guaranteed by modern technology. The second one is the
choice of channels. In reality, one further step is needed
to detect the channel in the brain regions where seizure
happens.

This method is promising based on results obtained.
Potential applications in clinic for seizure warning need a
prior step which is EEG channel selection since channels on
different regions of brain have different response to the same
seizure. The present algorithm is the first step to apply it to
the diagnosis using EEG measurements. It can provide very
useful information for doctors and patients.
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