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1. Introduction

The performance of information-theoretic-based methods
for model selection is difficult to analyze for small sample
sizes. Such a performance analysis is necessary because
these methods are based on asymptotic approximations
which are invalid for small samples [1]. In signal processing
applications, scenarios occur when small sample sizes may be
necessary or desirable to use (e.g., smart antennas signal pro-
cessing for moving platforms). In this paper, we introduce
a new method to evaluate the small sample performance of
two information-theoretic-based methods commonly used
in signal processing for a specific type of model selection:
estimating the number of directional sources from the
output signal of an array.

In this paper, we will analyze the small sample per-
formance of the Akaike Information Criterion (AIC) [2,
3] and the Minimum Description Length (MDL) [4, 5],
two commonly used information-theoretic approaches for
source enumeration [6]. Because the focus of this paper
is the small sample performance of information-theoretic
methods for source enumeration, rather than determining
which method for source enumeration is best, we will not

consider other methods for source enumeration that exist [7,
8] in our analysis. Early analyses show that for large sample
sizes, the MDL is a consistent estimator for the number of
sources, while the AIC tends to overestimate the number of
samples [9]. Subsequent performance analyses for arbitrary
sample sizes, however, have either relied on the use of large
array sizes [10], large sample sizes [10, 11], computationally
expensive Monte-Carlo simulations [12], or involved the use
of quantities which are difficult to evaluate numerically [13].
In this paper, we introduce a method to estimate the false-
alarm rate (FAR) for the AIC and MDL. The contribution
of our approach is that it can be used for arbitrary array
and data sizes and is simple and computationally inexpensive
to use, thereby making it practical for use in real-time
applications.

Our approach is based on a recent development in
random matrix theory known as the Tracy-Widom (TW)
Law. The TW law states that the largest eigenvalue of a
covariance matrix having a central white Wishart distribu-
tion converges to a limiting distribution known as the TW
distribution [14]. Such covariance matrices occur in array
signal processing applications where the output signal of a
multi-channel receiver can be modeled as the sum of i.i.d.



zero-mean Gaussian processes. It will be shown that the
utility of the TW distribution derives from two important
properties it possesses. First, the TW distribution transforms
the largest eigenvalue into a standardized random variable
whose distribution is independent of the array and sample
size [15, 16]. Given K array elements, from which N samples
are collected, the largest eigenvalue of the sample covariance
matrix, Ai, can be used to construct the standardized test
statistic z = (A — #K,N)/UK,N~ Although UK.N and OK.N
are functions of N and K, the TW distribution of the
standardized random variable, z, is the same for all values of
K and N. Thus, regardless of the array size or the number
of samples, the P-value of z can be determined from a
single table for the values of the TW cumulative distribution
function (CDF) just like the standard normal distribution.
Second, the TW distribution is applicable over virtually any
size of array and input sample size (despite the fact that
the TW was originally derived as the distribution for A,
in the limit of both K and N going to infinity) [16]. This
marks an important distinction between the TW distribution
and the distributions for the largest eigenvalue derived from
previous studies. The exact distribution of the largest sample
eigenvalue has been derived for arbitrary array sizes but is
only valid in the limit of large sample sizes [17]. A later
attempt to derive an approximation to the exact distribution
valid for finite sample sizes required the use of expressions
that are difficult and computationally expensive to evaluate
numerically [18]. Although an exact distribution for the
largest eigenvalue for any sample and array size exists, it
too is difficult to numerically evaluate efficiently [19]. In the
case of [18, 19], the evaluation of their distributions requires
computing the ratio of an incomplete Gamma function
and a complete Gamma function, whose arguments are
both on the order of the sample size. Attempts to obtain
reliable approximations to these ratios are cumbersome,
complicated, and require the use of look-up tables [18].
On the other hand, it will be demonstrated that the TW
distribution is simple, straightforward to use, and agrees well
with the right-hand tail of the distribution for the largest
eigenvalue of the sample covariance matrix for array sizes
from K = 3 to K = 9 and with sample sizes that range from
the minimum number of samples required to estimate the
covariance matrix well (which is max(3*K,2*K — 3) [20])
up to 20*K.

The outline of the paper will be as follows. In Section 2,
we present the TW distribution and compare its distribu-
tional behavior to that of the largest eigenvalue from sample
covariance matrices for small array and data sample sizes.
In Section 3, the AIC and MDL will be derived under the
condition that the variance in the input noise is known. In
Section 4, the TW law is used to estimate the FAR for the AIC
and MDL when there is no external source and when there is
only one external source present, respectively. In Section 5,
we summarize the results of the paper.

2. The Tracy-Widom Law

The TW law states that a standardized form of the
largest eigenvalue for a covariance matrix having a central
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white Wishart distribution approaches a unique limiting
distribution. Consider N random vectors with K compo-

nents, X,,, with multivariate normal distribution X, b
MNp(0,0%Ik) forn = 1,...,N, where ¢ denotes the noise

variance and I is the K by K identity matrix. Following the
notation of Dyson [21], = 1 and § = 2 indicate the real
and complex normal distributions, respectively. The sample
covariance matrix, R, is constructed from the data samples
(from which their mean has been subtracted) using R =
(/N)(EN_, X, XH), where superscript H denotes conjugate
transpose.

The eigenvalues of f(, called the sample eigenvalues, are
determined and ranked according to their magnitude such
that il > .. > XK. Under these conditions, the TW law
states that:

def M — UKN
2 e AT RN

D K
—~_F =~ —~¢30<c<1l, (1)
O'K,N ﬁ asN C C

where

(VK+ N —2+f)

N >

(\/K+wlN—2+[3) L_{_ 1 3
OK.N N Nie 7\/}\’_72_{_/3 )

and Fg is the TW CDE shown in Figure 1. Fg must be
computed numerically, and its values have been tabulated
to four significant digits for z values in increments of 0.01
[22]. A complete published table for both F; and F, is
available [23] and a downloadable copy of these files is
also available on the MatLab Central website (see http://
www.mathworks.com/matlabcentral/fileexchange/24590. In
this sense, the TW distribution works the same way as
the standard normal distribution, which also must be
numerically computed and requires a single look-up table
for its use. Since only complex covariance matrices will be
considered in our analysis, F, will be used exclusively from
this point on.

Figure 2 plots the difference between F, and the empirical
cumulative distribution functions (ECDF) with respect to z
for K = 2,3,5,7,and 9. The ECDF for each K was generated
from one million Monte-Carlo simulations, using N = 3K
random samples on each trial. Based on this figure, we
observe the following four important relationships between
the TW distribution and the distribution for the largest
sample noise eigenvalue.

UK.N

(2)

Observation 1. The TW distribution provides a good approx-
imation to the right-hand tails of the largest eigenvalue’s
distribution function even when K and N are small.

Figure 2 shows that the agreement between the ECDFs
and the TW CDF is good in the right-hand tail of the
distributions. Around z = —1.0 (which according to Figure 1
is slightly above the 80% level of the CDF), all the ECDFs
cross F,. For z > —1, the difference between the ECDFs and
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FiGURE 1: The cumulative distribution functions of the TW distri-
butions for real and complex white Wishart covariance matrices as
a function of the standardized random variable z given in (1).
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FiGure 2: The difference in F,, the TW CDE, and the empirical
CDFs of z for various values of K using N = 3K. The two classes of
distributions are in good agreement past z = —1, the 80th percentile
level for F,.

the TW distribution is less than 1% for all values of K. A
more quantitative look at the agreement between the right-
hand tail of the TW distribution with that of the ECDFs
is shown in Table 1. The CDF for the standardized form of
the largest sample eigenvalue was estimated at three z values
corresponding to the CDF values for the TW distribution at
90%, 95%, and 99%. The ECDF values were determined for
5 different array sizes (K = 2,3,5,7, and 9) with N = 3K.
The last column gives an estimate for twice the standard
error (SE) of the ECDF values based on that obtained from

TasLE 1: ECDF values for the 90%, 95%, and 99 %F, CDF Values.

ECDF Values (%) for N/K = 3

F, CDF (in %)
K=2K=3K=5K=7 K=9

2*SE (in %)

90 90.97 90.74 90.54 90.41 90.035 +0.06
95 95.85 95.65 95.46 95.53 95.25 +0.04
99 99.23 99.18 99.11 99.07 99.05 +0.02

binomial sampling, SE = /p(1 — p)/Nsivs , where p is the

true CDF value, and the number of simulations Ngps =
10°. Despite the agreement between the values of the TW
CDF and the ECDFs, the difference between them typically
exceeds 2 SE units, and is therefore statistically significant.

Observation 2. The distribution for the standardized largest
sample noise eigenvalue is stochastically less than the TW
distribution.

Figure 2 shows that for z > —1, the sign of the difference
in the CDFs is always negative. An important consequence of
this observation is that P(z = Z | z = (A} — pkn)/0kN) <
P(z = Zz ~ F)forallZ > —1. Thus, we see that
if the TW distribution is used to approximate the true
distribution for the largest sample noise eigenvalue, it will
always overestimate the probabilities of events in the right-
hand tail of the distribution.

Observation 3. As K increases, while K/N is held constant,
the normalized largest sample noise eigenvalue’s distribution
functions approach the TW distribution.

This observation is a direct consequence of (1). Figure 2
illustrates this fact since the ratio of N/K is fixed at 3 for all
of the ECDF curves. Figure 2, along with Table 1, shows that
not only does the convergence occur as K increases, but that
it is relatively rapid.

Observation 4. The agreement between the TW and stan-
dardized largest noise eigenvalue’s distribution generally
improves as the P-value decreases (for P-values < 10%).

The agreement between the TW CDF and the ECDFs
shows a general uniform improvement for z > —0.5, which is
a fraction of a percentile past the 90% CDF value for F,.

The relationship between the TW distribution and the
limiting distribution of the standardized sample eigenvalue
in the limit as N goes to infinity (while K is held fixed)
is difficult to determine. Technically, they are not required
to converge, since the hypothesis required for the TW law
to hold, that the ratio of K/N to converge to a positive
number less than one, is not satisfied. It is known that as
K is held fixed and N increases, the maximum eigenvalue
converges to unity (almost surely), so that the distribution
of the maximum eigenvalue becomes degenerate in the limit
of N — oo [24]. This fact, however, is of no apparent
use in trying to understand the limiting distribution of
the standardized sample eigenvalue, because although the

support for the distribution of the quantity A — pk,N clearly
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F1GURE 3: The ECDF values at the 90% level for F, are computed as
a function of the number of data samples for three different array
sizes. The dashed lines give a bounds of +1¢ about the mean.

goes to zero as N — oo, so does the scale factor ok n.
Although this problem is not of central importance in our
analysis (which focuses on small sample sizes), simulations
indicate that the difference in the distributions appears to
stay about the same for each K up to at least N < 20K.
Figure 3 plots the ECDF values for the 90% level for the TW
distribution as a function of N for K = 3,5, and 9. The
values at each data point shown are obtained using 100,000
Monte-Carlo simulations. The mean of the ECDF values is
computed and a one-standard error range about the mean
(dashed parallel lines) is plotted along with the ECDFs. It
is seen that the ECDF values mostly stay within the one-
standard error range.

3. Information-Theoretic Criterion

3.1. Preliminaries. The AIC and MDL are used in likelihood
estimation problems when the number of parameters in
a statistical model is not fixed. Although they are derived
in different ways, both provide a measure of how well
members from a family of distributions agree with some true
distribution [3, 5]. In both cases, the chosen model is that
which minimizes an information theoretic criterion, which
for our purpose can be expressed in the generic form:

IC = —ln[f(X | @)] + y1cy, (3)

where f is the probability density function of the model

distribution, X denotes a given random sample, 0 is the
vector of the maximum likelihood estimates (MLEs) for the
model parameters, # is the number of degrees of freedom in
the model, and yic is a parameter dependent on which IC
method is used. For the AIC, yic = 1, while yic = In(N)/2
for the MDL.
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The AIC and MDL can be used to estimate the number
of sources in a multichannel signal [6]. The exact implemen-
tation of the method depends on the signal structure of the
sources, channel noise, and array configuration considered
[25]. For simplicity, we will consider a uniform linear array
of K ideal isotropic elements. We adopt the statistical signal
model used in [6]:

M
X(n) = zA(Hm)Sm(n) +e, forn=1,...,N. (4)

m=1

In this model, there are a total of M sources (where M <
K). The nth sample of the signal from the mth source,
Sm(n), is a stationary, complex random process having the
distribution (0, 02,). In our analysis, the signals used will
have the form S,,(n) = exp{jlwt, + ¢m(n)]}, where the
phase at each time sample is a random variable such that

Om(n) b Unif(0,27). The K X 1 complex vector, A(0,,),
is the array steering vector for the mth source whose angle
of arrival is 0,,. We assume that the collection of vectors,
{A(Om)}fn/lzl, are linearly independent. The random channel
noise at the nth sample is modeled as the complex random

vector &, bdd. MN>(0,0%Ix). We shall assume o? is known
(since it can be estimated from an analysis of the receiver’s
signal in the absence of any sources) and for the remainder
of the analysis, we will set 02 = 1.

3.2. AIC and MDL Derivation (Known Noise Variance). This
subsection derives the explicit form of the AIC and MDL IC
under the assumption that the noise variance is known.

The MLE for the model parameters given M sources must
first be determined. Our starting point is the general form for
the log-likelihood function of the signal model given in the
last section [9]:

Ly = —N Trace| (Rly) 'R| -~ NIn[Det(Rly)] - NKIn,
(5)

where R[); is the population covariance matrix for the
M source model, and R is the sample covariance matrix.
The quantities associated with sample covariance matrix,
maximum likelihood estimates, and population covariance
matrix will be denoted with hats, tildes, and no markings,
respectively.

The eigenstructure of the population covariance matrix
for a collection of M narrowband, uncorrelated sources
can be expressed as the direct sum of two subspaces, the
signal subspace and noise subspace. The signal subspace
has dimension M. It has M distinct population eigenvalues
greater than unity, which shall be ordered such that A; >

- > Ay Its orthogonal complement, the noise subspace,
has dimension K — M, and its population eigenvalues are all
unity. Hence, the inverse of the population covariance matrix
under this model, (R| M)_1 , can be expressed in spectral form
as

K
Z ukuf. (6)

IR
(Rlp)™ = Z T“mum +
m=1""Mm k=M+1
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Substituting (6) into (5), using the cyclic permutation
property of the trace operator, and dropping the constant
term, we obtain

K . M
Z ukHRuk]» - NZ In(A,,).
m=1

M 1 R
Lly=-N{ > R, +
m=1""m k=M+1
(7)

The MLE estimates the eigenvalues and eigenvectors of
the signal subspace. They are found by maximizing the
likelihood function subject to the constraint that the signal
eigenvalues are greater than or equal to one and the signal
eigenvectors be orthonormal. The details of the solution to
this problem can be found elsewhere [26]. The MLEs for
the eigenvectors are found to be the eigenvectors of R, and

the MLEs for the eigenvalues are )Nlm = Max [/Tm, 1] for
m = 1,...,M. This solution produces the maximum log-
likelihood function:

Ty - _N{ S[(3) o) -] + kﬁlxk}. ®

m=1 m

The last term needed to determine the form of the AIC is
the number of free parameters. Since our model consists of
M eigenvalues (which are real scalars) and M eigenvectors
(which have K complex components), it follows that the
total number of parameters in our model is M + 2KM. The
2KM components of the signal eigenvectors, however, are
not all independent of each other. In fact, there are a total of
M? constraint equations that they must satisfy: M of these
equations come from the constraint that the eigenvectors
have unit length, while the M(M — 1) remaining equations
come from the orthogonality constraint. The number of
parameters required to characterize M orthonormal vectors
embedded in CX is a known result in algebraic geometry. The
parameter space of these vectors forms a manifold, known as
the complex Stiefel manifold, which has been proven to have
dimension M (2K — M) [27]. This result implies that the total
number of free parameters in our model is

n(M) =M +2KM - M> = M[2K+1)-M]. (9)

This result corrects a previous error in the literature, in
which it is stated without proof that the total number of free
parameters (for the eigenvalues and eigenvectors) is M (2K —
M) [9].

It follows from (3), (8), and (9), that the IC for our model
can be expressed in the following form:

ic - N{f [(*) i) <]+ ixk} .

m=1 m k=1

- yIC[MZ - 2M(K+ %)]

It is convenient to represent the expression on the right hand
side of (10) as a function of M:

~

def < | (Am ¥R S
ron= 3| (= +1n (L) = A | + D A
k=1

m=1 m

()]

A second quantity which will be useful in the next section is
the difference between I'(M + 1) and I'(M):

(11)

ATM) € T(M + 1) = T(M) = [(QM“ ) + ln(iMﬂ)]
M+1
2(K — M)

- XMH +Y1c N

(12)

4. The IC False Alarm Rate

4.1. False Alarm Rate Approximation. The FAR is a measure
by which the number of sources is overestimated. It is defined
as the probability that the number of estimated sources is
greater than the true number of sources. In general, the FAR
will be a function of the number of sources present, and
can therefore be computed as the sum of the conditional
probabilities of the disjoint events:

K
Pia(M)= Y P(MI|M), (13)
M=M+1

where P(M | M) denotes the probability that the IC
estimates M sources are present, given that M sources are
present.

It is reasonable to assume that the estimated number of
sources has some distribution about M, and that the leading
contribution to the FAR for M sources should be at M = M+
1. In fact, it has been found that when K > 2 and M = {0, 1},
to a good approximation [28]:

Pea(M) =~ P(M =M+1| M), (14)

thereby reducing the determination of the FAR to estimating
the probability of a single event.

As a final observation, we note that the probability of
the event on the RHS of (14) is less than the true FAR.
This might lead one to think that the probabilities for the
FAR we are obtaining will be lower bounds on the true
FARs. Even though the probability on the RHS of (14) is
a lower bound on the true FAR, the probability we will be
computing will not be P(M = M +1 | M) but rather
an approximation to it using the TW law. Because the TW
distribution is stochastically greater than the distribution
using the standardized largest eigenvalue (which is how
P(M=M+1]|M)is computed), the FAR that is computed
will be greater than P(I\A/I = M + 1 | M). It turns out that the
difference between Pga (M) and P(Z/VI\ =M+ 1| M) is much
smaller than the difference between P(M = M + 1 | M) and
its approximation using the TW law. Hence, the final FAR
computed will actually be an upper bound on the true FAR.



4.2. Estimation of the IC FAR for M = 0. Using the
approximation from the previous section for the case when
M = 0 makes it necessary to only consider the contribution

of the event M = 1 to the FAR. Since the estimate for
the number of sources minimizes the IC, it follows that the
approximation for the FAR can be rewritten as

Ppa(0) ~ P(I(1) < T(0) | 0). (15)

The event on the right hand side of (15) is A['(0) < 0, which
using (13) is given by
1 ~y o~ 2K
Pea(0) ~ P(;Tl +in(Ar) - A + % < 0), (16)
where 'Xl = Max[/il, 1]. The MLE for the largest eigenvalue

has two possible cases: Xl < 1, and Xl > 1. For Ay < 1,
(16) reduces to Ppa(0) = P(2yicK/N < 0), which is not
possible. This result is not surprising, since the decision that
M = 1 when the largest eigenvalue was less than one would
be equivalent to deciding a source was present when its signal
eigenvalue was less than one. Hence, when M = 0, the only

case that needs to be considered is X1 > 1, for which the FAR
reduces to

Pea(0) ~ p(l +1n(il) A+ ZK% < 0). (17)

The function g (/Tl) =1+ ln(il) - Xl + 2Ky1c/N is positive
at A; = 1 and monotonically decreases for A; > 1. Thus,

& has exactly one zero for Xl > 1, which can easily be
found numerically. Denoting the zero of g; by A, (17) can
be written as

Pra(0) = P(1; > Ay). (18)

The probability on the right-hand side of (18) can be
evaluated by rewriting it as

Pra(0) ~ P( A~ pr > M _‘uK’N>. (19)

OK,N OK,N

Approximation of the test statistic’s distribution by the
TW distribution is reasonable if the FAR is less than 20%.
Thus, assuming that the FAR is less than 20%, and using the
TW distribution as an approximation to the true test statistic
give the approximation to the FAR when M = 0 as

PeA(0) = 1 — F, (W) (20)

The accuracy of this method is tested using simulation.
A comparison of the approximate FARs obtained from (20)
with the FARs obtained from simulation for the AIC and
MDL are shown in Figures 4(a) and 4(b), respectively. The
FARs for two different array sizes as a function of N are
analyzed in both figures. Smaller values of K are used for the
MDL due to the fact that the FARs for K > 6 are less than
1/100 of 1%, which is too small to be computed reliably with
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TaBLE 2: Estimated Error in TW Approximated AIC FARs for M =
0.

Mean Absolute Mean Relative
Difference in FARs Difference in FARs
K
3 0.36% 18%
5 0.23% 14%
7 0.16% 11.5%
9 0.13% 10.3%

the TW distribution used in our analysis. A smaller range
for N is also used for the MDL, as it is found to converge
to zero very rapidly. For each value of K and N, 10° Monte-
Carlo simulations were run using complex white noise. The
covariance matrix and its eigenvalues are computed and
substituted into (10) to determine the number of sources
that minimize the IC. The percentage of these runs for which
M > 0 is the estimated FAR for M = 0.

As Figures 4(a) and 4(b) show, the theoretically predicted
FAR using the TW law provides a good estimate of the com-
puted FAR when M = 0 for both the AIC and MDL. Both
figures suggest that the TW FAR estimate is an upper bound
on the true FAR. This finding is a direct consequence of
Observation 2. As K increases, the approximation to the FAR
improves, which is a direct consequence of Observation 3.
The agreement between the FARs obtained from theory and
simulation is better for the MDL than for the AIC. This is due
to the fact that the FARs are smaller for the MDL than the
AIC, hence by Observation 4, this result is also expected. To
obtain a more quantitative understanding of the discrepancy
between the theory and simulation for AIC, we computed
the mean absolute and relative difference between the FAR
obtained from simulation and theory. Table 2 compares these
differences between the theoretical and simulated FARs for
K = 3,57, and 9 with N going from 2K — 3 up to
250. Table 2 shows that both absolute and relative differences
uniformly decrease as K increases.

4.3. Estimation of the IC FAR for M = 1. The FAR
approximation from (14) is also valid for M = 1. Using
the FAR approximation for M = 1 and repeating the same
arguments for the M = 0 case, it can be shown that the FAR
at M = 1 can be approximated as

Pea(1) = P(L > Ay | 1), (21)

where A; is the solution to the equation 1 + ln(iz) - iz +
2y1c(K = 1)/N = 0. The solution for A, can be found
numerically with the same method used for A; with the
M = 0 case.

The difference between the analysis of the M = 0 and
M = 1 cases lies in the way we determine the probability
of the events on the right-hand sides of (18) and (21). The

probability of the event Xl > A can be estimated using the
TW distribution. However, the TW law is not applicable to
estimating the probability of the event 1, > A, because it
applies to the largest, not the second largest eigenvalue.
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FIGURE 4: (a) (plates on left) AIC FAR for different array sizes as a function of sample size with no sources present. (b) (plates on right) MDL
FAR for different array sizes as a function of sample size with no sources present.

A hypothesis test for the presence of M sources, however,
can be constructed using the TW distribution based on the
following theorem (whose proof is given in [16, pages 303
and 321]).

Eigenvalue Inclusion Principle. Let )L[MH] denote the (M +
1)th largest sample eigenvalue of a K X K covariance matrix
constructed from the output signal from a K element array
containing M sources (where M < K and the sources
are as described earlier) along with noise ~ Nc(0,1). Let
A([)}1]<— u denote the largest eigenvalue of a (K — M)X(K — M)
covariance matrix constructed from the output signal from a
K — M element array containing zero sources and only noise
~ Nc(0,1). Then it follows that:

()L[M“] ) < P(AOK = x) Vx € R. (22)

This theorem essentially relates the CDF for the largest
noise eigenvalue from a K element array having M sources
with the CDF for the largest eigenvalue from a “noise”
covariance matrix for a (K —M) element array. For the case of
M = 1, the eigenvalue inclusion theorem and (21) imply an
upper bound on the FAR for M = 1that can be expressed in
terms of the largest eigenvalue of a noise covariance matrix:

Pea(1) = P(A2 > A |1),
P(AIK _x> < ()L[OK 1 >x>

P (23)
:>PFA ( 0,K— 1>A2)

The probability of the event on the right-hand side of (23)
now can be estimated using the TW law, since it involves
the largest eigenvalue of a covariance matrix containing no
sources. Proceeding as before with the M = 0 case, this upper
bound can be expressed in terms of the TW CDF as

Ppa(1) < 1 —p(pz[/\z_ﬂK—l,N}).

OK-1,N

(24)

Our analysis supports the conjecture that a single source
will “pull up” the largest noise eigenvalue as the source’s
power increases [16]. Figure 5 shows the simulated FARs
for the AIC (top panel) and MDL (lower panel) for an
input from a 3-element ULA containing a single source. The
FARs are computed as a function of the sample size, where
for each N, estimates are obtained from 10° Monte-Carlo
simulations. The simulations were run at different signal to
noise ratios (SNR) for the source. Figure 5 shows that as
the SNR increases, the FAR also increases and approaches
an upper limit. From (21), this implies that as the SNR
increases, the distribution for the second largest eigenvalue
shifts to larger values. From (22), we know the second largest
eigenvalue’s distribution is bounded above as the source
power becomes asymptotically large.

Figure 6 compares the upper bound for the FAR obtained
using the TW distribution from (24) with the estimated FAR
upper bound obtained from simulations using a source with
SNR = 40 dB. The top panel shows the FAR upper bounds
for the AIC when K = 3 and 9. For K = 3, the upper bound
derived from the TW distribution is much larger than the
simulation estimated FAR upper bound. This is attributable
to two factors. First, (24) shows that the eigenvalue inclusion
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FIGURE 5: Estimated FARs for a single source from a 3-element ULA
as a function of the number of samples.

principle overestimates the true FAR since it replaces the
probability of the event of interest (AEI]( > A;), with an

event (/1([)}1](_1 > A;), whose probability is larger. Second,
Observation 2 shows that the use of the TW law in evaluating
the probability of the event (/1([)},1 > A,) gives a probability
slightly larger than the true probability. The bottom panel in
Figure 6 compares the estimated upper bound for the FAR
with that obtained using the eigenvalue inclusion principle
and the TW distribution for the MDL. The FARs for the
MDL are compared for two different array sizes of K = 3
and K = 6. Similar to the AIC, the MDL results also show
that the agreement between the TW and the true largest noise
sample eigenvalue improves as K increases, as expected from
Observation 3. For K = 6, in fact, the two estimated and
TW derived FARs are seen to be practically identical. This
is again consistent with Observation 4, which suggests that
the agreement of the TW and largest noise eigenvalue CDFs
improves for events lying further out in the distribution’s
right-tail.

The results from Figure 6 raise the question of which one
of the two overestimation factors is the dominant one. If the
eigenvalue inclusion theorem produced a very tight upper
bound and the majority of the overestimation was due to TW
distribution approximation, then this would suggest a possi-
ble means of improving the upper bounds through the use of
correction factors to the approximate distribution function.
To obtain an understanding of the relative importance of
the two overestimation factors, Figure 7 replotted the FARs
for the AIC in Figure 6 for K = 3. Additionally, Figure 7
also plotted the FAR derived from the eigenvalue inclusion
principle using (23). The FAR obtained using the eigenvalue
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FiGUure 6: Comparison of TW FAR Upper Bound with Estimated
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FiGure 7: Contributions to the Overestimation in the FAR of the
AIC.

inclusion principle, shown as the open circles, is about 0.5%
above the simulated FAR upper bound. The TW approxi-
mation of the eigenvalue inclusion principle condition leads
to a further overestimation of about an additional 0.5%, as
indicated by the solid line. In this particular example, the
contributions from the eigenvalue inclusion principle and
the TW approximation are comparable.
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5. Conclusions

Information-theoretic methods for model selection are
perhaps the most commonly used means for source enu-
meration in signal processing. The implementation of these
methods, however, requires the use of large sample approx-
imations, thereby calling into question the performance of
these methods for small sample sizes [1, 5]. As discussed
in the introduction, past performance analyses either have
relied on the use of large sample size assumptions, and
large array sizes, or are computationally complicated and
expensive to use. In this paper, we presented a simple,
computationally efficient method for FAR estimation using
a recent development from random matrix theory known as
the Tracy-Widom (TW) law.

The TW law was introduced as a simple means of
approximating the distribution for the largest eigenvalue
of a covariance matrix from the output signal of an array
containing only white noise. It was shown that the TW
law allows the largest sample eigenvalue to be expressed in
a standardized form whose distribution is independent of
the sample size or array size. For a wide range of array
and sample sizes, it was shown that the TW distribution
approximates the right-hand tail of the true distribution for
the largest sample eigenvalue to within 1%. These results set
the TW distribution apart from other distributions used for
the largest noise eigenvalue, which are either based on large
sample sizes [17], require the use of lookup tables that are
functions of both K and N [18], or are numerically difficult
to evaluate [19].

We analyzed the performance of the AIC and MDL
for small sample sizes under the condition that the noise
variance is known. A general information criterion appli-
cable to both the MDL and AIC was derived under this
condition. Using the approximation that the FAR for M
sources can be estimated as the probability of the single
event that the IC estimates M + 1 sources present, we
derived the criteria for FAR when M = 0 and when
M = 1 in terms of the sample eigenvalues. It was shown
that the FAR for M = 0 could be approximated as the
probability that the largest noise eigenvalue exceeded a
critical value. The critical value was the zero of a nonlinear
equation having one real root, and its value could easily
be obtained numerically. In this case, the FAR could be
directly estimated using the TW distribution. Because the
TW predicted FARs were always overestimates of the true
FAR, the FARs obtained using the TW distribution will be
conservative estimates of the true FAR. Our computation and
simulation results demonstrate that the agreement between
the estimated FAR using the TW distribution and with the
simulated FARs improved uniformly with increasing K. The
TW approximated FAR and the FAR estimated by simulation
showed better agreement with the MDL than for the AIC.
This was due in part to the fact that the FARs for the MDL
were smaller than the AIC and could therefore be better
approximated using the TW distribution.

For the case where there is one external source in the
receiver input (M = 1), an estimate for the FAR was derived
based on the eigenvalue inclusion principle. It was shown

that the eigenvalue inclusion principle and the use of the
TW distribution both contribute to the overestimation in the
FAR. Thus, FAR estimates obtained with the TW distribution
when sources are present will always be upper bounds for the
true FAR. Similar to the FAR for the M = 0 case, it was shown
that this upper bound becomes uniformly tighter as the array
size increases. For the AIC, for example, it was shown that as
the array size increased from K = 3 to K = 9, the relative
difference between the true and upper bound FAR uniformly
decreased from 20% to 10%.

Recent developments in random matrix theory should
allow for further improvements in the FAR estimates using
the TW law and also the possibility that the TW law can
be used to estimate missed detection probabilities. Recent
analyses have shown that the TW law can be generalized to
non-central white Wishart distributions using a standardized
test statistic similar to that used in the TW distribution for
white Wishart distributions [29, 30]. There is evidence based
on empirical studies in the engineering literature [12] that
support the notion that such an approach is possible. These
results, while still preliminary, would allow the TW law to
be extended so that it could be directly applied to signal
eigenvalues and not just noise eigenvalues, thereby making
the use of the eigenvalue inclusion principle unnecessary.
Since the use of eigenvalue inclusion principle artificially
inflates the FAR estimates obtained, this approach would
produce tighter bounds for the FAR and also allow for more
precise statistical analyses.
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