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1. Introduction

The Full-Range (FR) model of cellular neural networks
(CNNs) has been introduced in [1] in order to obtain
advantages in the VLSI implementation of CNN chips with
a large number of neurons. One main feature is the use
of hard-limiter nonlinearities that constrain the evolution
of the FR-CNN trajectories within a closed hypercube of
the state space. This improved range of the trajectories has
enabled us to reduce the power consumption and obtain
higher cell densities and increased processing speed [1–4]
compared to the original standard (S) CNN model by Chua
and Yang [5].

In several applications for solving signal processing tasks
in real time it is needed that a FR-CNN is convergent
(or completely stable), that is, each solution is required to
approach some equilibrium point in the long-run behavior
[5–7]. For example, given a two-dimensional image, a CNN
is able to perform contour extraction and morphological
operations, noise filtering, or motion detection, during the
transient motion toward an equilibrium point [8]. Other rel-
evant applications of convergent FR-CNN dynamics concern
the solution of optimization or identification problems or the
implementation of nonlinear electronic devices for pattern
formation [9, 10].

An FR-CNN is characterized by ideal hard-limiter non-
linearities with vertical segments in the i-v characteristic,
hence its dynamics is mathematically described by a differen-
tial inclusion, where a set-valued vector field models the set
of feasible velocities for each state of the FR-CNN. A recent
paper [11] has been devoted to the rigorous mathematical
foundation of the FR model within the framework of the
theory of differential inclusions [12]. The goal of this paper
is to extend the results in [11] by developing a generalized
Lyapunov approach for addressing stability and convergence
of FR-CNNs. The approach is based on a suitable notion
of derivative of a (candidate) Lyapunov function and a
generalized version of LaSalle’s invariance principle for the
differential inclusions modeling the FR-CNNs.

The Lyapunov method developed in the paper is for-
mulated in a general fashion, which makes it suitable to
check if a continuously differentiable (candidate) Lyapunov
function is decreasing along the solutions of a FR-CNNs,
and to verify if this property in turn implies convergence
of each FR-CNN solution. The applicability of the method
is demonstrated by obtaining a rigorous convergence proof
for the important and widely used class of symmetric FR-
CNNs. It is shown that the proof is more simple than the
proof of an analogous convergence result in [11], which
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is not based on an invariance principle for FR-CNNs. The
same proof is also much more simple than the proof of
convergence for symmetric S-CNNs. We refer the reader to
[13] for other applications of the method to classes of FR-
CNNs with nonsymmetric interconnection matrices used in
the real-time solution of some classes of global optimization
problems.

The structure of the paper is briefly outlined as follows.
Section 2 introduces the FR-CNN model studied in the
paper, whereas Section 3 gives some fundamental properties
of the solutions of FR-CNNs. The extended LaSalle’s invari-
ance principle for FR-CNNs and the convergence results for
FR-CNNs are described in Sections 4 and 5, respectively.
Section 6 discusses the significance of the convergence results
and, finally, Section 7 draws the main conclusions of the
paper.

Notation. Let Rn be the real n-space. Given matrixA ∈ Rn×n,
by A′ we mean the transpose of A. In particular, by En we
denote the n × n identity matrix. Given the column vectors
x, y ∈ Rn, we denote by 〈x, y〉 = ∑n

i=1xi yi the scalar product
of x and y, while ‖x‖ = √〈x, x〉 is the Euclidean norm of x.
Sometimes, use is made of the norm ‖x‖∞ = maxi=1,2,...,n|xi|.
Given a set D ⊂ Rn, by cl(D) we denote the closure of D,
while dist(x,D) = inf y∈D‖x − y‖ is the distance of vector
x ∈ Rn from D. By B(z, r) = {y ∈ Rn : ‖y − z‖ < r} we
mean an n-dimensional open ball with center z ∈ Rn and
radius r.

1.1. Preliminaries

1.1.1. Tangent and Normal Cones. This section reports the
definitions of tangent and normal comes to a closed convex
set and some related properties that are used throughout
the paper. The reader is referred to [12, 14, 15] for a more
thorough treatment.

LetQ ⊂ Rn be a nonempty closed convex set. The tangent
cone to Q at x ∈ Q is given by [14, 15]

TQ(x) =
{

v ∈ Rn : lim inf
ρ→ 0+

dist(x + ρv,Q)
ρ

= 0
}

, (1)

while the normal cone to Q at x ∈ Q is defined as

NQ(x) = {p ∈ Rn : 〈p, v〉 ≤ 0, ∀v ∈ TQ(x)
}
. (2)

The orthogonal set to NQ(x) is given by

N⊥
Q (x) = {v ∈ Rn : 〈p, v〉 = 0, ∀p ∈ NQ(x)

}
. (3)

From a geometrical point of view, the tangent cone is a
generalization of the notion of the tangent space to a set,
which can be applied when the boundary is not necessarily
smooth. In particular,TQ(x) is the closure of the cone formed
by all half lines originating at x and intersecting Q in at
least one point y distinct from x. The normal cone is the
dual cone of the tangent cone, that is, it is formed by all
directions with an angle of at least ninety degrees with any
direction belonging to the tangent cone. It is known that
TQ(x) and NQ(x) are nonempty closed convex cones in Rn,

which possibly reduce to the singleton {0}. Moreover, N⊥
Q (x)

is a vector subspace of Rn, and we have N⊥
Q (x) ⊂ TQ(x). The

next property holds [11].

Property 1. If Q coincides with the hypercube K = [−1, 1]n,
then NK (x), TK (x), and N⊥

K (x) have the following analytical
expressions.

For any x ∈ K we have

NK (x) = H(x) = (h(x1),h(x2), . . . ,h(xn))′, (4)

where

h(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−∞, 0], ρ = −1,

0, ρ ∈ (−1, 1),

[0, +∞), ρ = 1,

(5)

whereas

TK (x) = HT(x) = (hT(x1),hT(x2), . . . ,hT(xn))′, (6)

with

hT(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[0, +∞), ρ = −1,

(−∞, +∞), ρ ∈ (−1, 1),

(−∞, 0], ρ = 1.

(7)

Finally, for any x ∈ K we have

N⊥
K (x) = H⊥(x) = (h⊥(x1),h⊥(x2), . . . ,h⊥(xn))′, (8)

where

h⊥(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, ρ = −1,

(−∞, +∞), ρ ∈ (−1, 1),

0, ρ = 1.

(9)

The above cones, evaluated at some points of the set K =
[−1, 1]2, are reported in Figure 1.

Let Q ⊂ Rn be a nonempty closed convex set. The
orthogonal projector onto Q is a mathematical operator
which associates to any x ∈ Rn the set PQ(x), composed by
the points of Q that are closest to x, namely,

‖x −PQ(x)‖ = dist(x,Q) = min
y∈Q

‖y − x‖. (10)

Under the considered assumptions, PQ(x) always contains
exactly one point. The name derives from the fact that x −
PQ(x) ∈ NQ(x).

2. CNNModels andMotivating Results

The dynamics of the S-CNNs, introduced by Chua and
Yang in the fundamental paper [5], can be described by the
differential equations:

ẋ(t) = −x(t) + AG(x(t)) + I , (S)
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Figure 1: Set K = [−1, 1]2 and cones TK , NK , and N⊥
K at points a, b,

and c of K (the cones are shown translated into the corresponding
points of K). Point a belongs to the interior of K , and hence TK (a)
is the whole space R2, while NQ(a) reduces to {0}. Point b coincides
with a vertex of K , and so TK (b) corresponds to the third quadrant
of R2, while NK (b) corresponds to the first quadrant of R2. Finally,
point c belongs to the right edge of the square and, consequently,
TK (c) coincides to the left half plane of R2, while NK (c) coincides
with the nonnegative part of x1 axis.

where x ∈ Rn is the vector of neuron state variables; A ∈
Rn×n is the neuron interconnection matrix; I ∈ Rn is the
constant input; G(x) = (g(x1), g(x2), . . . , g(xn))′ : Rn → Rn,
where the piecewise-linear neuron activation g is given by

g(ρ) = 1
2

(|ρ + 1| − |ρ− 1|) =

⎧
⎪⎪⎨

⎪⎪⎩

1, ρ > 1,

ρ, −1 ≤ ρ ≤ 1,

−1, ρ < −1,

(11)

see Figure 2(a). It is convenient to define

A = A− En, (12)

which is the matrix of the affine system satisfied by (S) in the
linear region |xi| < 1, i = 1, 2, . . . ,n.

The improved signal range (ISR) model of CNNs has
been introduced in [1, 2] with the goal to obtain advan-
tages in the electronic implementation of CNN chips. The
dynamics of an ISR-CNN can be described by the differential
equations:

ẋ(t) = −x(t) + AG(x(t)) + I −mL(x(t)), (I)

where m ≥ 0, L(x) = (�(x1), �(x2), . . . , �(xn))′ : Rn → Rn

and

�(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ− 1, ρ ≥ 1,

0, −1 < ρ < 1,

ρ + 1, ρ ≤ −1,

(13)

see Figure 2(b). When the slope m of the nonlinearity m�(·)
is large, m�(·) plays the role of a limiter device that prevents
the state variables xi of (I) from exceedingly enter the
saturation regions where |xi(t)| > 1. The larger m, the
smaller the neighborhood of the hypercube:

K = [−1, 1]n, (14)

where the state variables xi are constrained to evolve for all
large t.

A particularly interesting limiting situation is that where
m → +∞, in which case m�(·) approaches the ideal hard-
limiter nonlinearity h(·) given in (5); see Figure 2(c). The
hard-limiter h(·) now constrains the state variables of (F) to
evolve within K , that is, we have |xi(t)| ≤ 1 for all t and for
all i = 1, 2, . . . ,n. Since for x ∈ K we have x = G(x), (I)
becomes the FR model of CNNs [1, 2, 11]:

ẋ(t) ∈ −x(t) + Ax(t) + I −H(x(t)), (F)

where H(x) = (h(x1),h(x2), . . . ,h(xn))′, and h is given in (5).
From a mathematical viewpoint, h(ρ) is a set-valued

map assuming the entire interval of values [0, +∞) (resp.,
(−∞, 0]) at ρ = 1 (resp., ρ = −1). As a consequence, the
vector field defining the dynamics of (F),−x+Ax+I−H(x), is
a set-valued map assuming multiple values when some state
variable xi is saturated at xi = ±1, which represent the set
of feasible velocities for (F) at point x. An FR-CNN is thus
described by a differential inclusion as in (F) [11, 12] and
not by an ordinary differential equation.

In [16], Corinto and Gilli have compared the dynamical
behavior of (S) (m = 0), with that of (I) (m � 0)
and (F) (m → +∞), under the assumption that the three
models are characterized by the same set of parameters
(interconnections and inputs). It is shown in [16] that there
are cases where the global behavior of (S) and (I) is not
qualitatively similar for the same set of parameters, due to
bifurcations in model (I) occurring for some positive values
of m. In particular, a class of completely stable, second-order
S-CNNs (S) has been considered, and it has been shown
that, for the same parameters, (I) displays a heteroclinic
bifurcation at some m = mβ > 0, which leads to the birth
of a stable limit cycle for any m > mβ. In other words, (I) is
not completely stable for m > mβ, and the same holds for (F),
which is the limit of (I) as m → +∞.

The result in [16] has the important consequence that in
the general case the stability of model (F) cannot be deduced
from existing results on stability of (S). Hence, it is needed
to develop suitable tools, which are based on the theory of
differential inclusions, for studying in a rigorous way the
stability and convergence of FR-CNNs.

The goal of this paper is to develop an extended
Lyapunov approach for addressing stability and convergence
of FR-CNNs. The approach is based on a suitable notion
of derivative and an extended version of LaSalle’s invariance
principle for the differential inclusion (F) modeling a FR-
CNN.
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Figure 2: Nonlinearities used in the CNN models (S), (I), and (F).

3. Solutions of FR-CNNs

To the authors knowledge, [11] has been the first paper
giving a foundation with the theory of differential inclusions
of the FR model of CNNs. One main property noted in [11]
is that we have

H(x) = NK (x), (15)

for all x ∈ K , that is, H(x) coincides with the normal cone to
K at point x (cf. Property 1). Therefore, (F) can be written as

ẋ(t) ∈ −x(t) + Ax(t) + I −NK (x(t)), (16)

which represents a class of differential inclusions termed
differential variational inequalities (DVIs) [12, Chapter 5].

Let x0 ∈ K . A solution of (F) in [0, t̃ ], with initial
condition x0, is a function x satisfying [12]: (a) x(t) ∈ K
for t ∈ [0, t̃ ] and x(0) = x0; (b) x is absolutely continuous
on [0, t̃ ], and for almost all (a.a.) t ∈ [0, t̃ ] we have ẋ(t) ∈
−x(t) + Ax(t) + I − NK (x(t)). By an equilibrium point (EP)
we mean a constant solution x(t) = ξ ∈ K , t ≥ 0, of (F).
Note that ξ ∈ K is an EP of (F) if and only if there exists
γξ ∈ NK (ξ) such that 0 = −ξ + Aξ + I − γξ , or equivalently,
we have (A− En)ξ + I ∈ NK (ξ).

By exploiting the theory of DVIs, the next result has been
proved in [11].

Property 2. For any x0 ∈ K , there exists a unique solution x
of (F) with initial condition x(0) = x0, which is defined for
all t ≥ 0. Moreover, there exists at least an EP ξ ∈ K of (F).

We will denote by E /=∅ the set of EPs of (F). It can be
shown that E is a compact subset of K .

It is both of theoretic and practical interest to compare
the solutions of the ideal model (F) with those of model
(I). The next result shows that the solutions of (F) are the
uniform limit, as the slope m → +∞, of the solutions of
model (I).

Property 3. Let x(t), t ≥ 0, be the solution of (F) with initial
condition x(0) = x0 ∈ K . Moreover, for any m = k =
1, 2, 3, . . . , let xk(t), t ≥ 0, be the solution of model (I) such

that xk(t) = x0. Then, xk(·) converges uniformly to x(·) on
any compact interval [0,T] ⊂ [0, +∞), as k → +∞.

Proof. See Appendix A.

4. LaSalle’s Invariance Principle for FR-CNNs

Consider the system of ordinary differential equations:

ẋ = f (x), (17)

where x ∈ Rn, and f : Rn → Rn is continuously differ-
entiable. Let φ : Rn → R be a continuously differentiable
(candidate) Lyapunov function, and consider the vector field:

δ(x) = 〈 f (x),∇φ(x)〉, (18)

for all x ∈ Rn. From the standard Lyapunov method for
ordinary differential equations [17], it is known that for all
times t the derivative of φ along a solution x of (17) can be
evaluated from δ as follows:

d

dt
φ(x(t)) = δ(x(t)). (19)

Such a treatment cannot be directly applied to the
differential inclusion (16) modeling the dynamics of a FR-
CNN, since the vector field at the right-hand side of (16)
assumes multiple values when some component xi of x
assumes the values ±1. In what follows our goal is to
introduce a suitable concept of derivative, which generalizes
the definition of δ, for evaluating the time evolution of
a candidate Lyapunov function along the solutions of the
differential inclusion (16). Then, we prove a version of
LaSalle’s invariance principle generalizing to the differential
inclusions (16) the classic version for ordinary differential
equations [17]. In doing so, we need to take into account
that the limiting sets for the solutions of (16) enjoy a weaker
invariance property with respect to the solutions of the
standard differential equations defined by a continuously
differentiable vector field.

We begin by introducing the following definition of
derivative.
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Figure 3: Vector fields involved in the definition of the derivative
Dφ for a second-order FR-CNN. Let f (x) = Ax + I . We have
PTK (x) f (x) ∈ N⊥

K (x), hence Dφ(x) is a singleton, when x is one of
the points a,d, e ∈ K . On the other hand, PTK (x) f (x) /∈N⊥

K (x) and
then Dφ(x) = ∅, when x is one of the points b, c ∈ K .

Definition 1. Let φ : Rn → R be a continuously differen-
tiable function in Rn. The derivative Dφ(x) of function φ at
a point x ∈ K is given by

Dφ(x) = 〈PTK (x)(Ax + I),∇φ(x)
〉
, (20)

if PTK (x)(Ax + I) ∈ N⊥
Q (x), while

Dφ(x) = ∅, (21)

if PTK (x)(Ax + I) /∈N⊥
K (x).

We stress that, for any x ∈ K , Dφ(x) is either the empty
set or a singleton. These two different cases are illustrated
in Figure 3 for a second-order FR-CNN. Moreover, if ξ ∈
E, then we have Dφ(ξ) = 0. Indeed, we have Aξ + I ∈
NK (ξ), and then PTQ(ξ)(Aξ + I) = 0 ∈ N⊥

Q (ξ). Moreover,
〈PTQ(ξ)(Aξ+I),∇φ(ξ)〉 = 〈0,∇φ(ξ)〉 = 0 and so Dφ(ξ) = 0.

Definition 2. Let φ : Rn → R be a continuously differ-
entiable function in Rn. We say that φ is a Lyapunov function
for (F), if we have Dφ(x) = ∅ or Dφ(x) ≤ 0, for any x ∈ K .
If, in addition, we have Dφ(x) = 0 if and only if x is an EP of
(F), then φ is said to be a strict Lyapunov function for (F).

The next fundamental property can be proved.

Property 4. Let φ : Rn → R be a continuously differentiable
function in Rn, and let x(t), t ≥ 0, be a solution of (F). Then,
for a.a. t ≥ 0 we have

d

dt
φ(x(t)) = Dφ(x(t)). (22)

If φ is a Lyapunov function for (F), then for a.a. t ≥ 0 we
have

d

dt
φ(x(t)) = Dφ(x(t)) ≤ 0, (23)

hence φ(x(t)) is a nonincreasing function for t ≥ 0, and there
exists the limt→+∞φ(x(t)) = φ∞ > −∞.

Proof. The function φ(x(t)), t ≥ 0, is absolutely continuous
on any compact interval in [0, +∞), since it is the compo-
sition of a continuously differentiable function φ and an
absolutely continuous function x. Then, for a.a. t ≥ 0 we
have that x(·) and φ(x(·)) are differentiable at t. By [12, page
266, Proposition 2] we have that for a.a. t ≥ 0

ẋ(t) ∈ PTK (x(t))(Ax(t) + I). (24)

Let t > 0 be such that x is differentiable at t. Let us show
that ẋ(t) ∈ N⊥

K (x(t)). Let h > 0, and note that since x(t) and
x(t + h) belong to K , we have

dist(x(t) + hẋ(t),K) ≤ ‖x(t) + hẋ(t)− x(t + h)‖. (25)

Dividing by h, and accounting for the differentiability of x at
time t, we obtain

lim
h→ 0+

dist(x(t) + hẋ(t),K)
h

= 0, (26)

and hence we have ẋ(t) ∈ TK (x(t)).
Now, suppose that h ∈ (−t, 0). Since once more x(t) and

x(t + h) belong to K , we have

0 ≤ dist(x(t) + (−h)(−ẋ(t)),K)
−h

≤ ‖(x(t) + hẋ(t)− x(t + h)‖
−h .

(27)

Let ρ = −h. Then,

lim
ρ→ 0+

dist(x(t) + ρ(−ẋ(t)),K)
ρ

= 0, (28)

and hence, by definition, −ẋ(t) ∈ TK (x(t)). Now, it suffices
to observe that TK (x) ∩ (−TK (x)) = N⊥

K (x) for any x ∈ K .
In fact, if v ∈ TK (x) ∩ (−TK (x)) and p ∈ NK (x), then
〈v, p〉 ≤ 0 and 〈−v, p〉 ≤ 0. This means that 〈v, p〉 = 0,
that is, v ∈ N⊥

K (x). Conversely, if v ∈ N⊥
K (x) and p ∈

NK (x), then we have 〈v, p〉 = 0 and 〈−v, p〉 = 0. Hence
v ∈ TK (x)∩ (−TK (x)).

For a.a. t ≥ 0 we have

d

dt
φ(x(t)) = 〈ẋ(t),∇φ(x(t))〉

= 〈PTK (x(t))(Ax(t) + I),∇φ(x(t))
〉
,

(29)

and hence, by Definition 1,

d

dt
φ(x(t)) = Dφ(x(t)). (30)
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Now, suppose that φ is a Lyapunov function for (F).
Then, for a.a. t ≥ 0 we have

d

dt
φ(x(t)) = Dφ(x(t)) ≤ 0, (31)

and hence φ(x(t)), t ≥ 0, is a monotone nonincreasing
function. Moreover, φbeing a continuous function, it attains
a minimum over the compact set K . Since we have x(t) ∈ K
for all t ≥ 0, the function φ(x(t)), t ≥ 0, is bounded from
below, and there exists the limt→+∞φ(x(t)) = φ∞ > −∞.

It is important to stress that, as in the standard Lyapunov
approach for differential equations, Dφ permits to evaluate
dφ(x(t))/dt for a.a. t ≥ 0 directly from the vector field Ax+I ,
without involving integrations of (F) (see Property 4).

We are now in a position to prove the next extended
version of LaSalle’s invariance principle for FR-CNNs.

Theorem 1. Let φ : Rn → R be a continuously differentiable
function in Rn, which is a Lyapunov function for (F). Let
Z = {x ∈ K : Dφ(x) = 0}, and let M be the largest
positively invariant subset of (F) in cl(Z). Then, any solution
x(t), t ≥ 0, of (F) converges to M as t → +∞, that is,
limt→+∞dist(x(t),M) = 0.

Proof. Consider the differential inclusion

ẋ ∈ Fr(x) =Ax + I − [NK (x)∩ cl(B(0, r))], (32)

where +∞ > r > supK‖Ax + I‖ and Fr from K into Rn

is an upper-semicontinuous set-valued map with nonempty
compact convex values. By [11, Proposition 5] we have that
if x(t), t ≥ 0, is a solution of (F), then x is also a solution of
(32) for t ≥ 0.

Denote by ωx the ω-limit set of the solution x(t), t ≥
0, that is, the set of points y ∈ Rn such that there
exists a sequence {tk}, with tk → +∞ as k → +∞,
such that limk→+∞x(tk) = y. It is known that ωx is a
nonempty compact connected subset of K , and x(t) → ωx

as t → +∞ [18, pages 129, 130]. Furthermore, due to
the uniqueness of the solution with respect to the initial
conditions (Property 2), ωx is positively invariant for the
solutions of (F) [18, pages 129, 130].

Now, it suffices to show that ωx ⊆ M. It is known from
Property 4 that φ(x(t)), t ≥ 0, is a nonincreasing function
on [0, +∞) and φ(x(t)) → φ(∞) > −∞ as t → +∞. For
any y ∈ ωx, there exists a sequence {tk}, with tk → +∞
as k → +∞, such that x(tk) → y as k → +∞. From the
continuity of φ, we have φ(y) = limtk→+∞φ(x(tk)) = φ(∞),
hence φ is constant on ωx.

Let y0 ∈ ωx and let y(t), t ≥ 0, be the solution of (F)
such that y(0) = y0. Since ωx is positively invariant, we
have y(t) ⊆ ωx for t ≥ 0. It follows that φ(y(t)) = φ(∞)
for t ≥ 0 and hence, by Property 4, for a.a. t ≥ 0 we have
0 = dφ(y(t))/dt = Dφ(y(t)). This means that y(t) ∈ Z for
a.a. t ≥ 0. Hence, y(t) ∈ cl(Z) for all t ≥ 0. In fact, if we had
y(t∗) /∈ cl(Z) for some t∗ ≥ 0, then we could find δ > 0 such
that y([t∗, t∗ + δ))∩ Z = ∅, which is a contradiction. Now,
note that in particular we have y0 = y(0) ∈ cl(Z). y0 being an
arbitrary point of ωx, we conclude that ωx ⊂ cl(Z). Finally,
since ωx is positively invariant, it follows that ωx ⊆M.

5. Convergence of Symmetric FR-CNNs

In this section, we exploit the extended LaSalle’s invariance
principle in Theorem 1 in order to prove convergence of FR-
CNNs with a symmetric neuron interconnection matrix.

Definition 3. The FR-CNN (F) is said to be quasiconvergent
if we have limt→+∞dist(x(t),E) = 0 for any solution x(t), t ≥
0, of (F). Moreover, (F) is said to be convergent if for any
solution x(t), t ≥ 0, of (F) there exists an EP ξ such that
limt→+∞x(t) = ξ.

Suppose that A = A′ is a symmetric matrix, and consider
for (F) the (candidate) quadratic Lyapunov function

φ(x) = −1
2
x′Ax − x′I , (33)

where x ∈ Rn.

Property 5. If A = A′, then for function φ as in (33) we have

Dφ(x) = −∥∥PTK (x)(Ax + I)
∥
∥2 ≤ 0, (34)

if PTK (x)(Ax + I) ∈ N⊥
K (x), while

Dφ(x) = ∅, (35)

if PTK (x)(Ax + I) /∈N⊥
K (x). Furthermore, Dφ(x) = 0 if and

only if x is an EP of (F), that is, φ is a strict Lyapunov function
for (F).

Proof. Let x ∈ K and suppose that PTK (x)(Ax + I) ∈ N⊥
K (x).

Observe that ∇φ(x) = −(Ax + I). Moreover, since NK (x) is
the negative polar cone of TK (x) [12, page 220, Proposition
2], we have [12, page 26, Proposition 3]

Ax + I = PTK (x)(Ax + I) + PNK (x)(Ax + I), (36)

with 〈PTK (x)(Ax + I), PNK (x)(Ax + I)〉 = 0.
Accounting for Definition 1, we have

Dφ(x) = 〈PTK (x)(Ax + I),∇φ(x)
〉

= 〈PTK (x)(Ax + I),−PTK (x)(Ax + I)
〉

+
〈
PTK (x)(Ax + I),−PNK (x)(Ax + I)

〉

= −∥∥PTK (x)(Ax + I)
∥
∥2 ≤ 0.

(37)

Hence, φ is a Lyapunov function for (F). It remains to show
that it is strict. If x is an EP of (F), then we have PTK (x)(Ax +
I) = 0 and hence Dφ(x) = 0. Conversely, if Dφ(x) = 0, then
we have ‖PTK (x)(Ax + I)‖ = 0. Thus, x is an EP for (F).

Property 5 and Theorem 1 yield the following.

Theorem 2. Suppose that A = A′. Then, (F) is quasiconver-
gent, and it is convergent if the EPs of (F) are isolated.

Proof. Since φ is a strict Lyapunov function for (F), we have
Z = E. Let M be the largest positively invariant set of (F)
contained in Z. Due to the uniqueness of the solutions for
(F) (Property 2), it follows that E ⊆ M. On the other hand,
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E is a closed set and hence E = cl(E) = cl(Z) ⊇ M.
In conclusion, M = E. Then, Theorem 1 implies that any
solution x(t), t ≥ 0, of (F) converges to E as t → +∞.
Hence (F) is quasiconvergent. Suppose in addition that the
equilibrium points of (F) are isolated. Observe that ωx is a
connected subset of M = E. This implies that there exists
ξ ∈ E such that ωx = ξ. Since x(t) → ωx, we have x(t) → ξ
as t → +∞.

6. Remarks and Discussion

Here, we discuss the significance of the result in Theorem 2
by comparing it with existing results in the literature on
convergence of FR-CNNs and S-CNNs. Furthermore, we
briefly discuss the possible extensions of the proposed
Lyapunov approach to neural network models described by
more general classes of differential inclusions.

(1) Theorem 2 coincides with the result on convergence
obtained in [11, Theorem 1]. In what follows we point out
some advantages with respect to that paper. It is stressed
that the proof of Theorem 2 is a direct consequence of the
extended version of LaSalle’s invariance principle in this
paper. The proof of [11, Theorem 1], which is not based on
an invariance principle, is comparatively more complex, and
in particular it requires an elaborate analysis of the behavior
of the solutions of (F) close to the set of equilibrium points
of (F). Also the mathematical machinery employed in [11] is
more complex than that in the present paper. In fact, in [11]
use is made of extended Lyapunov functions assuming the
value +∞ outside K and a generalized version of the chain-
rule for computing the derivative of the extended-valued
functions along the solutions of (F). Here, instead, we have
analyzed convergence of (F) by means of a simple quadratic
Lyapunov function as in (33).

(2) Consider the S-CNN model (S) and suppose that the
neuron interconnection matrix A = A′ is symmetric. It has
been shown in [5] that (S) admits the Lyapunov function:

ψ(x) = −1
2
G′(x)(A− En)G(x)−G′(x)I , (38)

where x ∈ Rn. One key problem is that ψ is not a strict
Lyapunov function for the symmetric S-CNN (S), since in
partial and total saturation regions of (S) the time derivative
of ψ along solutions of (S) may vanish in sets of points that
are larger than the sets of equilibrium points of (S). Then, in
order to prove quasiconvergence or convergence of (S), it is
needed to investigate the geometry of the largest invariant
sets of (S) where the time derivative of ψ along solutions
of (S) vanishes [7]. Such an analysis is quite elaborate and
complex (see [19] for the details). It is worth to remark
once more that, according to Theorem 2, φ as in (33) is a
strict Lyapunov function for a symmetric FR-CNN, hence the
proof of quasiconvergence or convergence of (F) is a direct
consequence of the generalized version of LaSalle’s invariance
principle in this paper.

(3) The derivative Dφ in Definition 1 and the extended
version of LaSalle’s invariance principle in Theorem 1 have
been inspired by analogous concepts previously developed by

Shevitz and Paden [20] and later improved by Bacciotti and
Ceragioli [21].

Next, we briefly compare the derivative Dφ with the
derivative D̃φ proposed in [21]. If we consider that φ is
continuously differentiable in Rn, then we have

D̃φ(x) = {〈v,∇φ(x)〉, v ∈Ax + I −NK (x)
}

, (39)

for any x ∈ K . Note that D̃φ is in general set valued, that is,
it may assume an entire interval of values. Since PTK (x)(Ax+
I)∩N⊥

K (x) ⊆ PTK (x)(Ax + I) ⊆Ax + I −NK (x), we have

Dφ(x) ⊆ D̃φ(x), (40)

for any x ∈ K . An analogous inclusion holds when
comparing Dφ with the derivative in [20].

Consider now the following second-order symmetric FR-
CNN:

ẋ = −x + Ax + I −NK (x) = f (x)−NK (x), (41)

where x = (x1, x2)′ ∈ R2,

A =

⎛

⎜
⎜
⎝

2 −1
2

−1
2

1

⎞

⎟
⎟
⎠, I =

⎛

⎜
⎝

0

2
3

⎞

⎟
⎠, (42)

whose solutions evolve in the square K = [−1, 1]2. Also
consider the candidate Lyapunov function φ given in (33),
namely,

φ(x) = −1
2
x′Ax − I′x = −1

2
x1(x1 − x2)− 2

3
x2. (43)

Simple computations show that, for any x = (x1, x2)′ ∈
K such that x2 = 1, it holds PTK (x) f (x) ∈ N⊥

K (x). As
a consequence, if a solution of the FR-CNN (41) passes
through a point belonging to the upper edge of K , then the
solution will slide along that edge during some time interval.

Now, consider the point x∗ = (0, 1)′, lying on the
upper edge of K . We have f (x∗) = (−1/2, 2/3)′, ∇φ(x∗) =
− f (x∗) = (1/2,−2/3)′ and, from Definition 1,

Dφ(x∗) = 〈PTK (x∗)( f (x∗)),∇V(x∗)
〉

=
〈(

− 1
2

, 0
)

,
(

1
2

,
2
2

)�

= −1
4
< 0.

(44)

On the other hand, we obtain

D̃φ(x∗) = {〈v,∇φ(x∗)〉, v ∈ f (x∗)−NK (x∗)
}

=
[

− 25
36

, +∞
)

.
(45)

It is seen that D̃φ(x∗) assume both positive and negative
values; see Figure 4 for a geometric interpretation.

Therefore, by means of the derivative Dφ we can
conclude that φ as in (33) is a Lyapunov function for the
FR-CNN, while it cannot be concluded that φ is a Lyapunov
function for the FR-CNN using the derivative D̃φ.
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f (x∗)

PTK (x∗)( f (x∗))

x2

x∗

∇φ(x∗)

f (x∗)− γ0

f (x∗)− γ+ K

x1

N⊥
K (x∗)

Figure 4: Comparison between the derivative Dφ in Definition 1,
and the derivative D̃φ in [21], for the second-order FR-CNN (41).
The point x∗ = (0, 1)′ lies on an edge of K such that TK (x∗) =
{(x1, x2) ∈ R2 : −∞ < x1 < +∞, x2 ≤ 0}, NK (x∗) = {(x1, x2) ∈
R2 : x1 = 0, x2 ≥ 0} and N⊥

K (x∗) = {(x1, x2) ∈ R2 : −∞ <
x1 < +∞, x2 = 0}. We have PTK (x∗) f (x∗) ∈ N⊥

K (x) and Dφ(x∗) =
〈PTK (x∗) f (x∗),∇φ(x∗)〉 = −1/4 < 0. The derivative D̃φ(x∗) is
given by D̃φ(x∗) = {〈v,∇φ(x∗)〉, v ∈ f (x∗) − NK (x∗)} =
[−25/36, +∞), hence it assumes both positive and negative values.
For example, the figure shows a vector γ0 ∈ NK (x∗) such that we
have D̃φ(x∗) � 0 = 〈 f (x∗) − γ0,∇φ(x∗)〉, and a vector γ+ ∈
NK (x∗) for which we have D̃φ(x∗) � 〈 f (x∗)− γ+,∇φ(x∗)〉 > 0.

(4) The Lyapunov approach in this paper has been
developed in relation to the differential inclusion modeling
the FR model of CNNs, that is, a class of DVIs (16) where
the dynamics defined by an affine vector field Ax + I are
constrained to evolve within the hypercube K = [−1, 1]n.
The approach can be generalized to a wider class of DVIs, by
substituting K with an arbitrary compact convex set Q ⊂ Rn,
or by substituting the affine vector field with a more general
(possibly nonsmooth) vector field. In the latter case, it is
needed to use nondifferentiable Lyapunov functions and a
generalized nonsmooth version of the derivative given in
Definition 1. The details on these extensions can be found
in the recent paper [13].

7. Conclusion

The paper has developed a generalized Lyapunov approach,
which is based on an extended version of LaSalle’s invariance
principle, for studying stability and convergence of the FR
model of CNNs. The approach has been applied to give a
rigorous proof of convergence for symmetric FR-CNNs.

The results obtained have shown that, by means of the
developed Lyapunov approach, the analysis of convergence

of symmetric FR-CNNs is much more simple than that of the
symmetric S-CNNs. In fact, one basic result proved here is
that a symmetric FR-CNN admits a strict Lyapunov function,
and thus it is convergent as a direct consequence of the
extended version of LaSalle’s invariance principle.

Future work will be devoted to investigate the possibility
to apply the proposed methodology for addressing stability
of other classes of FR-CNNs that are used in the solution of
signal processing tasks in real time. Particular attention will
be devoted to certain classes of FR-CNNs with nonsymmetric
interconnection matrices. Another interesting issue is the
possibility to extend the approach in order to consider the
presence of delays in the FR-CNN neuron interconnections.

Appendices

A. Proof of Property 3

Let Mi =
∑n

j=1(|Aij| + |Ii|), i = 1, 2, . . . ,n, and M =
max{M1,M2, . . . ,Mn} ≥ 0. We have ‖Ax + I‖∞ ≤ M + 1
for all x ∈ K .

We need to define the following maps. For k = 1, 2, 3, . . . ,
let Hk(x) = (hk(x1),hk(x2), . . . ,hk(xn))′, x ∈ Rn, where

hk(ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−M − 1, if
ρ < −1− (M + 1)

k
,

k�(ρ), if
|ρ| ≤ 1 + (M + 1)

k
,

M + 1, if
ρ > 1 + (M + 1)

k
,

(A.1)

and �(·) is defined in (13). Then, let H∞(x) =
(h∞(x1),h∞(x2), . . . ,h∞(xn))′, x ∈ Rn, where

h∞(ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(M + 1), if ρ < −1,

[−M − 1, 0], if ρ = −1,

0, if |ρ| < 1,

[0,M + 1], if ρ = 1,

M + 1, if ρ > 1.

(A.2)

Finally, let BM(x) = (bm(x1), bm(x2), . . . , bm(xn))′, x ∈ Rn,
where

bm(ρ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−(M + 1), if ρ < −(1 + M),

ρ, if |ρ| ≤ 1 + M,

M + 1, if ρ > 1 + M.

(A.3)

The three maps hm,h∞ and bm are represented in Figure 5.
The proof of Property 3 consists of the three main steps

detailed below.

Step 1. Let x(t), t ≥ 0, be the solution of (F) such that x(0) =
x0 ∈ K . We want to verify that x is also a solution of

ẋ(t) ∈ −BM(x(t)) + AG(x(t)) + I −H∞(x(t)), (A.4)
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hk(ρ)

M + 1

−1− M + 1
k −1

ρ

1
1 +

M + 1
k

−M − 1

(a)

h∞(ρ)

M + 1

−1 ρ

1

−M − 1

(b)

bm(ρ)

M + 1

−1−M ρ

1 + M

−M − 1

(c)

Figure 5: Auxiliary maps (a) hm, (b) h∞, and (c) bm employed in the proof of Property 3.

for t ≥ 0, where G(x) = (g(x1), g(x2), . . . , g(xn))′, x ∈ Rn,
and g(·) is given in (11).

On the basis of [12, page 266, Proposition 2], for a.a. t ≥
0 we have

ẋ(t) = PTK (x(t))(Ax(t) + I))

= −x(t) + Ax(t) + I −PNK (x(t))(Ax(t) + I),
(A.5)

where PNK (x(t))(Ax(t) + I) ∈ NK (x(t)) [12, page 24,
Proposition 2; page 26, Proposition 3]. Since for any t ≥ 0
we have ‖Ax(t) + I‖∞ ≤ M + 1, by applying the result in
Lemma 1 in Appendix B, we obtain PNK (x(t))(Ax(t) + I) ∈
H∞(x(t)). Furthermore, considering that for any t ≥ 0 we
have x(t) ∈ K , it follows that BM(x(t)) = x(t) = G(x(t)). In
conclusion, for a.a. t ≥ 0 we have

ẋ(t) ∈ −BM(x(t)) + AG(x(t)) + I −H∞(x(t)). (A.6)

Step 2. For any k = 1, 2, 3, . . . , let xk(t), t ≥ 0, be the
solution of (I) such that xk(0) = x0 ∈ K . We want to show
that xk is also a solution of

ẋ(t) ∈ −BM(x(t)) + AG(x(t)) + I −Hk(x(t)), (A.7)

for t ≥ 0. For any i ∈ {1, 2, . . . ,n} and t ≥ 0 we have from [2,
equation 12]

|xki (t)| ≤ M + k

k + 1
+
(

1− M + k

k + 1

)

exp(−(k + 1)t)

= 1 +
M − 1
k + 1

(1− exp(−(k + 1)t))

≤ 1 +
|M − 1|
k + 1

≤ 1 + min
{

M,
M + 1
k

}

.

(A.8)

Then, BM(x(t)) = x(t) = G(x(t)) and Hk(x(t)) = kL(x(t)),
for t ≥ 0.

Step 3. Consider the map Φ∞(x) = −BM(x) + AG(x) +
I − H∞(x), x ∈ Rn, and for k = 1, 2, 3, . . . , the maps
Φk(x) = −BM(x) + AG(x) + I − Hk(x), x ∈ Rn, which are
upper semicontinuous in Rn with nonempty compact convex
values.

Let graph(H∞) = {(x, y) ∈ Rn × Rn : y = H∞(x)} and
graph(Hk) = {(x, y) ∈ Rn × Rn : y = Hk(x)}. Given any
δ > 0, for sufficiently large k, say k > kδ , we have

graph(Hk) ⊆ graph(H∞) + B(0, δ). (A.9)

By applying [12, page 105, Proposition 1] it follows that for
any ε̃ > 0, T > 0, and for any k > kδ , there exists a solution
x̂k(t), t ∈ [0,T], of (A.4), such that max[0,T]‖x̂k(t)−xk(t)‖ <
ε̃.

Choose ε̃ = ε exp(−‖A‖2T/2)/2, where ε > 0, ‖A‖2 =
(λM(A′A))1/2 and λM(A′A) denotes the maximum eigenvalue
of the symmetric matrix A′A. Then, we obtain

‖x̂k(0)− x(0)‖ = ‖x̂k(0)− xk(0)‖
≤ max

[0,T]
‖x̂k(t)− xk(t)‖

<
ε
2

exp(−‖A‖2T).

(A.10)

By Property 6 in Appendix C we have max[0,T]‖x̂k(t) −
x(t)‖ < ε/2. Then,

max
[0,T]

‖xk(t)− x(t)‖ ≤ max
[0,T]

‖x̂k(t)− x(t)‖

+ max
[0,T]

‖x̂k(t)− xk(t)‖

<
ε
2

+
ε
2
= ε,

(A.11)

for all t ∈ [0,T].

B. Lemma 1 and Its Proof

Lemma 1. For any x ∈ K , and any v ∈ Rn such that ‖v‖∞ ≤
M + 1, we have PNK (x)(v) ∈ H∞(x).

Proof. For any i ∈ {1, 2, . . . ,n} we have

[
PNK (x)(v)

]
i =

⎧
⎨

⎩

vi, if |xi| = 1, xivi > 0,

0, otherwise.
(B.1)
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If PNK (x)(v)i = 0, we immediately obtain [PNK (x)(v)]i ∈
h∞(xi). If xi = 1 and xivi > 0, we may proceed as follows.
We have h∞(xi) = h∞(1) = [0,M + 1]. On the other hand,
0 < vi ≤M+1 and so [PNK (x)(v)]i = vi ∈ [0,M+1] = h∞(xi).
We can proceed in a similar way in the case xi = −1 and
xivi > 0.

C. Property 6 and Its Proof

Property 6. Let ε > 0. For any y0, z0 ∈ Rn such that

‖z0 − y0‖ < ε exp
(

− ‖A‖2T

2

)

, (C.1)

we have max[0,T]‖z(t) − y(t)‖ < ε, where y and z are the
solutions of (A.4) such that y(0) = y0 and z(0) = z0,
respectively.

Proof. Let ϕ(t) = ‖z(t)− y(t)‖2/2, t ∈ [0,T]. Due to (C.1),
for a.a. t ∈ [0,T] we have

ϕ̇(t) = 〈z(t)− y(t), ż(t)− ẏ(t)〉
= −〈z(t)− y(t),BM(z(t))− BM(y(t))〉

+ 〈z(t)− y(t),A(G(z(t))−G(y(t)))〉
− 〈z(t)− y(t), γy(t)− γz(t)〉,

(C.2)

where γy(t) ∈ H∞(y(t)) and γz(t) ∈ H∞(z(t)). It is seen that
BM is a monotone map in Rn [12, page 159, Proposition 1],
that is, for any x, y ∈ Rn and any γx ∈ BM(x), γy ∈ BM(y),
we have 〈x− y, γx − γy〉 ≥ 0. Also H∞ is a monotone map in
Rn. Then, we obtain

ϕ̇(t) ≤ 〈z(t)− y(t),A(G(z(t))−G(y(t)))〉

≤ ‖A‖ ‖z(t)− y(t)‖2

= 2‖A‖ϕ(t).

(C.3)

Gronwall’s lemma yields ϕ(t) ≤ ϕ(0)e‖A‖T , and so

‖z(t)− y(t)‖ =
√

2ϕ(t) ≤
√

2ϕ(0)e‖A‖T < ε, (C.4)

for t ∈ [0,T].

Acknowledgment

The authors wish to thank the anonymous Reviewers
and Associate Editor for the insightful and constructive
comments.

References

[1] A. Rodrı́guez-Vázquez, S. Espejo, R. Domı́nguez-Castro, J. L.
Huertas, and E. Sánchez-Sinencio, “Current-mode techniques
for the implementation of continuous- and discrete-time
cellular neural networks,” IEEE Transactions on Circuits and
Systems II, vol. 40, no. 3, pp. 132–146, 1993.

[2] S. Espejo, R. Carmona, R. Domı́nguez-Castro, and A.
Rodrı́guez-Vázquez, “A VLSI-oriented continuous-time CNN
model,” International Journal of Circuit Theory and Applica-
tions, vol. 24, no. 3, pp. 341–356, 1996.

[3] G. L. Cembrano, A. Rodrı́guez-Vázquez, S. E. Meana, and R.
Domı́nguez-Castro, “ACE16k: a 128 × 128 focal plane analog
processor with digital I/O,” International Journal of Neural
Systems, vol. 13, no. 6, pp. 427–434, 2003.

[4] A. Rodrı́guez-Vázquez, G. Liñán-Cembrano, L. Carranza, et
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