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This paper presents a novel approach for training a network intrusion detection system based on a query-based sampling
(QBS) filter. The proposed QBS filter applies the concepts of data quantization to signal processing in order to develop a novel
classification system. Through interaction with a partially trained classifier, the QBS filter can use an oracle to produce high-quality
training data. We tested the method with a benchmark intrusion dataset to verify its performance and effectiveness. Results show
that selecting qualified training data will have an impact not only on the performance but also on overall execution (to reduce
distortion). This method can significantly increase the accuracy of the detection rate for suspicious activity and can recognize rare
attacks. Additionally, the method can improve the efficiency of real-time intrusion detection models.
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1. Introduction

The Internet has become an important resource for infor-
mation access and a battlefield for business competition. A
critical issue arising from the rapid advance of the Internet is
information and communication security. Users, particularly
high volume users, are exposed to a wide range of security
threats through software or design vulnerabilities. Network
attacks can cause serious performance problems throughout
the network. These include common network attacks such as
denial of service (DoS), which either jam a network pathway
or exhaust available computer resources, thus disrupting
related network services.

In order to respond to this increasing threat, information
security technology provides a range of tools known as
intrusion detection systems (IDSs), and in its latest devel-
opment, IDS attempts to stop these attacks by scanning
network traffic for signatures, for policy anomalies, such
as variations in traffic or network protocol that can signal
impending illegal activity, and also for signs of unwarranted
activity that could point to attacks from inside or outside the
network. Figure 1 illustrates the intrusion detection system
and external/internal network intrusion attacks.

The main goal of an intrusion detection system is to
accurately detect anomalous network behavior or misuse of

resources, to differentiate true attacks from false alarms, and
subsequently to notify network administrators of the activity.
The intrusion detector learning task is to build a predictive
model (i.e., a classifier) capable of distinguishing between
malicious intrusions and normal connections. In typical
applications of machine learning algorithms (e.g., artificial
neural networks) to intrusion detection, detection models
are produced offline because the learning of algorithms
involves processing tremendous amounts of archived audit
data. These models can naturally be applied to offline intru-
sion detection (to analyze audit data offline after intrusions
have run their course). Effective intrusion detection should
happen in real time, as intrusions take place, to minimize
compromises of security. Therefore, their success usually
depends on the quality of the training data. If the data
contain extraneous and irrelevant information, machine-
learning algorithms may produce less accurate and less
understandable results. To address this shortcoming, we
classify extraneous and irrelevant data as noisy data and
utilize the concepts of signal processing techniques to filter
them out.

In our previous research [1, 2], we applied the query-
based learning concept to backpropagation neural networks
in a training procedure. It designed an oracle in the learning
loop. The oracle can actively and repeatedly add training
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Figure 1: The intrusion detection system and external/internal network intrusion attacks.

samples for better training. In this study, we explore the con-
cepts of data quantization for signal processing to develop
a novel classification system. Through interaction with a
partially trained classifier, the QBS filter can use an oracle
to produce high quality training data and then construct
backpropagation neural networks to predict attacks. By using
QBS for attack detection, the prediction model develops the
generalization capability from training data. The approach
is evaluated against the KDD Cup 1999 intrusion detection
evaluation data [3].

In addition to the introduction, there are four other
sections to this paper. Section 2 reviews related literature
and establishes the foundation of current knowledge. Topics
related to intrusion detection and neural networks are
introduced. Section 3 introduces a query-based method
that combines neural networks into one composite back-
propagation neural network. Section 4 discusses how to
increase the accuracy detection rate and how to improve the
efficiency of the intrusion detection models. We compare
the prediction performance of the developed QBS and
conventional stratified sampling. Section 5 summarizes all
findings in this study with suggestions for future study.

2. RelatedWorks

An intrusion is a set of actions that threaten the integrity,
availability, or confidentiality of a network resource. Intru-
sion detection generally refers to the process of monitoring
and analyzing the events occurring in a computer and/or
network system in order to detect signs of security problems.
Consequently, intrusion detection systems consist of soft-
ware that monitors, detects, identifies, assesses, and responds
to unauthorized or abnormal activities on a target system.
The major functions performed by intrusion detection
systems are as follows: (1) monitoring and analyzing user
and system activities, (2) assessing the integrity of critical

system and data files, (3) recognizing activity patterns
reflecting known attacks, (4) responding automatically to
detected activities, and (5) reporting the outcome of the
detection process [4]. Intrusion detection techniques can be
categorized into misuse detection and anomaly detection.
Misuse detection uses patterns of well-known attacks or
vulnerabilities to identify intrusions. For example, three con-
secutive login failures may be stored and used as the signature
of a password-guessing attack. However, only known attacks
that leave characteristic traces can be detected this way.
Anomaly detection to identify intrusions, attempts to deter-
mine whether deviations from normal usage patterns are
attacks. Any significant deviations from expected behavior
are reported as possible attacks. Although misuse detection
can achieve a low false-positive rate, minor variations of a
known attack are not always detected [5]. Anomaly detection
can detect novel attacks, yet it suffers a higher false-positive
rate.

A wide variety of techniques have been proposed for
anomaly detection. Further analyze different kinds of data
streams, such as data mining for network traffic [6], sequence
analysis for operating system calls [7], information retrieval
for audit trails [8], and inductive learning for sequential
patterns [9]. Statistical methods have been developed for
network anomaly detection [10, 11] and have been analyzed
for audit records [12]. Signal processing techniques have
been successfully applied to analyze network traffic logs and
to filter out noise instances for network intrusion detection.
In [13], a signal processing technique was shown to provide
a useful detection criterion by an adaptation of mutual
information when no other signature of the attack was
available. Reference [14] has proposed a statistical signal
processing technique based on abrupt change detection to
solve the problem of anomaly detection.

Recently, an increasing amount of research has been
conducted on applying neural networks to detect intrusions
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[15–17]. The goal in using ANNs for intrusion detection
is to be able to generalize from incomplete data and to be
able to classify online data as being normal or intrusive.
An ANN consists of a collection of processing elements
that are highly interconnected. Given a set of inputs and
a set of desired outputs, the transformation from input to
output is determined by the weights associated with the
interconnections among processing elements. By modifying
these interconnections, the network is able to adapt to
desired outputs. The ability of high tolerance for learning-
by-example makes neural networks flexible and powerful
in IDS. In [18], a statistical neural network classifier for
anomaly detection is developed. It can identify UDP flood
attacks. Comparing different neural network classifiers, the
backpropagation neural network has been shown to be more
efficient in developing IDS. However, a long time is required
to induce models from large datasets.

Pulse code modulation (PCM) is a digital technique
that involves sampling an analog signal at regular intervals
and coding the measured amplitude into a series of binary
values, which are transmitted by modulation of a pulsed,
or intermittent, carrier. It essentially consists of three
stages, namely, sampling of the analog signal, quantization,
and binary encoding. During sampling, the continuously
varying amplitude of the analog signal is approximated
by digital values; this introduces a quantization error, the
difference between the actual amplitude and the digital
approximation. A quantization error is apparent when the
signal is reconverted to analog form as distortion, a loss
in audio quality, and it can be reduced by increasing the
sample size; as allowing more bits per sample will improve
the accuracy of the approximation. The approximation
introduced by quantization manifests itself as a noise. Often,
for the analysis of sound-processing circuits, such noise
is assumed to be white and decorrelated with the signal,
but in reality it is perceptually tied to the signal itself, to
such an extent that quantization can be perceived as an
effect. Gold and Ur [18] reported an efficient error feedback
scheme for compensating the amplification of the noise
generated in the comb part of complex frequency sampling
FIR filters [19]. In this study, we apply the concept of signal
processing to develop a training samples filter for neural
networks.

3. Method

A learning machine consists of a learning protocol to specify
manner of achieving accumulation of information, and a
deduction procedure to learn the correct concept [17]. For
a learning protocol, the input information can be examples
that exemplify the concept to be learned, or oracles that,
when presented with data, tell whether or not the data
exemplify the concept. Therefore, we can apply not only the
samples present at hand, but also extra samples produced
by the oracle to train a system. When the point of query
is set as y, the oracle would respond with a(y). The pair
(y, a(y)) is called the queried sample. The sample query
[20] method is an incremental approach, which adaptively
changes the sample size taken from each class. Particularly
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Figure 2: Conjugate data pairs.

in machine learning (i.e., ANNs) applications, the source of
the training data can be modeled as an oracle. An oracle
has the ability, when presented with an example, to give
a correct classification [21]. The explanation capability of
ANNs not only serves for justification but also can be useful
in data theory induction, such as adding data to cover weakly
represented areas by using active learning techniques, such as
query-based learning [22].

In the classical problem of learning pattern classification,
training samples are drawn randomly from the pattern
classes according to a priori probabilities. Suppose that the
learner has the freedom to query training samples according
to some arbitrary rule instead of randomly drawing them,
as above. According to [21, 23, 24], training samples from
the decision boundary produce the best training results. We
want to decide the points y to let a(y) = 0.5. Notably,
conventional approaches have assumed that, for each input
or output point, the oracle knows its input-output pattern.
Random selection of a boundary point P; then conjugation
of its data pair (points P+ and P−) can then be extracted
along the reverse boundary (Figure 2). Here, samples with
P, P+, and P− are arbitrary input-output patterns. However,
without experts or simulators, or the oracle for specifying the
correct output, this may be very expensive. To resolve this
drawback, we divide the training samples into one training
set and one query set. Then, an oracle is designed to follow
the self-regulation rule [23] to select samples (environment-
focus) that are close to the conjugate data pair (self-focus).
It provides the system with the ability to interact with the
environment to train the system by queried samples. As [25]
has reported, the system uses some particular samples in the
dataset to learn almost completely what the full dataset is
taught.

In this paper, we use an oracle regarded as a compounded
quantizer, which simulates the nonuniform quantization.
It is designed using approximation by quantization of the
filter process to achieve appropriate samples for the training
procedure. Thus, learning performance is improved by
labeling only those data that are expected to be informative
(excluding noise). In the proposed method, we first examine
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Figure 3: The framework of a QBS filter.

nontrained samples to detect whether they are put in the
right class. As the output also indicates the probability of
making a correct prediction to the samples, we can easily
store these correct samples in a priority queue (max-heap).
Then, the stored points that are the most correct predictions
are picked as the extra training samples. Figure 3 shows the
framework of a QBS filter.

A step-by-step description of the proposed algorithm
is shown as follows. The learning process is finished when
either the number of iterations is over the given threshold N
or the root of mean squared error obtained is under the given
threshold RMSE.
Step 1. Initialize all weights in the neural networks randomly.
Give the iteration threshold N and the error threshold RMSE.
Step 2. The dataset is S = {ai ∈ Rn} where n is the number
of selected attributes. Get the partial training samples SS ⊂ S
by stratified random sampling.
Step 3. Train the neural networks by SS. IF (the error E <
RMSE) or (the iteration number >N), then EXIT.
Step 4. Analyze the nontrained samples (S− SS).
Step 5. Add some samples of the most correct prediction to
SS.

The goal of learning intrusion detection is not to
obtain an exact representation of the training data but
rather to extract a “model” of attack function and how it
can effectively avoid those caused by noise. The ability to
generalize is very important in making good predictions
about unseen attacks. As in the real world, a passive learner
will simply learn the samples. However, an active learner will
explore the unknown portion of the environment to learn
extra information. The proposed method with an ability to
generalize is highly suitable for learning network intrusion.
Even though the data is largely redundant and noisy. The
selection of concise subsets of training data can reduce the
training time.

4. Results

In this paper, we used the dataset applied in the KDD Cup
1999 intrusion detection contest to evaluate the performance
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Figure 4: Distribution for the DARPA training set.

of our approach. This dataset is a version of the DARPA
intrusion detection evaluation dataset prepared and man-
aged by MIT’s Lincoln Laboratory. Researchers set up an
environment to acquire 9 weeks of raw TCP dump data
for a local-area network (LAN) simulating a typical U.S.
Air Force LAN. They operated the LAN as if it were a
true Air Force environment but peppered it with multiple
attacks. A standard set of data to be audited, which includes
a wide variety of intrusions simulated in a military network
environment, was provided. Its objective was to survey and
evaluate research in intrusion detection. These intrusions fall
into four main categories: denial of service (DoS), probe,
remote to user (R2L), and user to root (U2R). In order
to compare various sampling techniques, our experiment is
conducted using Weka’s implementation, a popular machine
learning environment [26].

In the KDD dataset, the training set contains 494021
samples, and the test set contains 311029 samples. Figure 4
shows the data distribution of the DARPA data attack
category breakdown of the training set. Nearly 80% of the
samples are DoS attacks. Samples of normal connection are
about 20%. Other types of attack samples, including U2R
(0.011%), R2L (0.228%), and Probe (0.831%), are quite rare.
It is important to note that the test data are not from the same
probability distribution as the training data. The test data
includes 17 specific attack types that are not in the training
set. This makes the dataset more realistic. Figure 5 shows the
data distribution of every attack type breakdown of the test
set.

Network intrusion detection is a two-class classification
problem. Its effectiveness can be defined as the ability to
make correct class predictions for the samples. For each
single prediction, there are four different outcomes (known
as the confusion matrix in Tables 2 and 3). The true positives
and true negatives are correct classifications. A false positive
occurs when the system classifies an action as anomalous (a
possible intrusion) when it is a legitimate action. Although
this type of error may not be completely eliminated, a good
system should minimize its occurrence to provide useful
information to users. A false negative occurs when an actual
intrusive action has occurred but the system allows it to pass
as nonintrusive behavior. In other words, malicious activity
is not detected and alerted. It is a more serious error. Notably,
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Figure 5: The data distribution of every attack type breakdown in the test set.

Table 1: Summary of results.

Training dataset Test dataset

QBS StRS QBS StRS

Accuracy rate ∗98.98% 98.57% ∗91.55% 91.40%

Correctly classified instances 488 964 486 941 284 735 284 286

Incorrectly classified instances 5057 7080 26 294 26 743

Kappa statistic ∗0.9695 0.958 ∗0.797 0.793

Mean absolute error ∗0.0062 0.007 ∗0.036 0.042

Root mean squared error ∗0.0595 0.071 ∗0.178 0.186

Table 2: The confusion matrix of the training dataset.

Predicted Actual
Normal Probe DoS R2L U2R

QBS StRS QBS StRS QBS StRS QBS StRS QBS StRS

Normal 93339 94000 87 683 398 96 2308 1801 846 698

Probe 42 36 4001 4056 18 1 15 9 31 5

DoS 284 2505 167 1148 390483 387763 262 34 262 8

R2L 9 15 0 0 1 0 1093 1073 23 38

U2R 0 0 0 0 0 0 4 3 48 49

Table 3: Detailed accuracy by class of the training dataset.

Class
TP rate FP rate Precision Recall F-measure ROC area

QBS StRS QBS StRS QBS StRS QBS StRS QBS StRS QBS StRS

Normal 0.960 0.966 0.001 0.006 0.996 0.974 0.960 0.966 0.978 0.97 0.998 0.992

Probe 0.974 0.988 0.001 0.004 0.878 0.689 0.974 0.988 0.924 0.812 0.992 0.998

DoS 0.998 0.991 0.004 0.001 0.999 1.000 0.998 0.991 0.998 0.995 0.999 0.997

R2L 0.971 0.953 0.005 0.004 0.297 0.367 0.971 0.953 0.455 0.530 0.990 0.971

U2R 0.923 0.942 0.002 0.002 0.04 0.061 0.923 0.942 0.076 0.115 0.999 1.000
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Table 4: The confusion matrix of the test dataset.

Predicted Actual
Normal Probe DoS R2L U2R

QBS StRS QBS StRS QBS StRS QBS StRS QBS StRS

Normal 58464 58903 992 518 256 693 546 203 335 276

Probe 471 546 3283 3284 14 84 182 171 216 81

DoS 5964 7571 30 122 222725 221899 2047 1791 689 72

R2L 13377 14219 6 0 2 0 172 140 1030 228

U2R 33 55 0 14 0 0 104 99 91 60

Table 5: Detailed accuracy by class of the test dataset.

TP rate FP rate Precision Recall F-measure ROC area

QBS StRS QBS StRS QBS StRS QBS StRS QBS StRS QBS StRS

Normal 0.965 0.972 0.079 0.089 0.747 0.725 0.965 0.972 0.842 0.830 0.973 0.978

Probe 0.788 0.788 0.003 0.002 0.762 0.834 0.788 0.788 0.775 0.810 0.916 0.968

DoS 0.962 0.959 0.003 0.010 0.999 0.997 0.962 0.959 0.980 0.977 0.969 0.982

R2L 0.012 0.010 0.010 0.008 0.056 0.058 0.012 0.010 0.020 0.016 0.293 0.372

U2R 0.399 0.263 0.007 0.002 0.039 0.084 0.399 0.263 0.070 0.127 0.623 0.957

Table 6: Keeping FP rate constant to demonstrate QBS outperforms
StRS.

TP rate (FP rate = 0.05) TP rate (FP rate = 0.01)

QBS StRS QBS StRS

Normal 0.968 0.968 0.965 0.962

Probe 0.856 0.832 0.825 0.818

DoS 0.973 0.960 0.972 0.959

R2L 0.015 0.013 0.012 0.010

U2R 0.643 0.357 0.399 0.263

in a real-world system, the effect of incorrectly detecting
abnormal network behavior (false negative) is different from
that of incorrectly predicting normal classification outcome
(false positive). These two kinds of errors will generally have
different costs; likewise, the two types of correct classification
will have different benefits.

The major objectives performed by detecting network
intrusion are as follows: (1) recognizing rare attack types
such as U2R and R2L, (2) increasing the accuracy detection
rate for suspicious activity, and (3) improving the efficiency
of real-time intrusion detection models.

Extracting a model of attack from a large dataset of
daily security logs is computationally inefficient. Using a
sample from the original data can speed up the modeling
process, but this is only acceptable if it does not reduce
the quality of the information. Nevertheless, using a simple
random sample may not obtain satisfactory results because
such a sample may not adequately represent the large and
noisy dataset due to its blind approach in selecting samples.
However, we can divide a stratified sample by sampling
frames into nonoverlapping groups. That is, a sample is taken
from each stratum, and when this sample is a simple random
sample, it is referred to as stratified random sampling.
It ensures better coverage of the population than simple
random sampling.

In this paper, we apply the concepts of quantization of
signal processing techniques to develop a QBS filter and
explore backpropagation neural networks to predict attacks.
The prediction model of using QBS for neural networks is
to develop a generalization capability from training data.
In order to assess the predictive ability of the different
models, we compared stratified random sampling (StRS) for
neural networks, and we chose 500 instances as training
samples from the KDD training dataset. In the first place,
we examined the predicted accuracy of both estimated
models by calculating the accuracy rate, Kappa statistic,
mean absolute error (MAE), and root of mean squared
error (RMSE). Table 1 summarizes the average classification
accuracy achieved by these algorithms using 10-fold cross-
validation as well as the best parameters for each algorithm.
The QBS achieves a significantly better accuracy rate than the
StRS approach in the training and test dataset, respectively.
Moreover, as a result, the QBS is still considered to be a good
fit due to the very low MAE and RMSE values.

A confusion matrix for a training dataset describes the
pattern of mistakes made by the classifier (Table 2). The
top-left element of the confusion matrix shows that 93339
of the QBS actual “normal” test examples were predicted
to be normal. In Table 3, the precision column indicates
that in total 99.6% of the actual “normal” examples were
recognized correctly. The recall column shows that 96.0% of
the test examples said to be “normal” were indeed “normal”
in reality. Clearly, both QBS and StRS approaches produce
predictive capabilities that are very close to the actual values.
Note, however, that the StRS seems to perform poorly when
it comes to the test cases.

This result of the confusion matrix derived from the test
dataset is shown in Tables 4 and 5. The middle element of
the confusion matrix shows that 222725 of the QBS actual
“DoS” test examples were predicted to be DoS. In Table 5,
the precision column indicates that in total 99.9% of the
actual “DoS” examples were recognized correctly. The recall
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column shows that 96.2% of the test examples said to be
“DoS” were indeed “DoS.” Thus, QBS correctly recognized
284735 out of 311029 test examples (91.55%), and StRS
correctly recognized 284286 out of 311029 test examples
(91.40%). A comparison of the true-positives (TP) rate is
the ratio of low weight cases predicted correctly to the total
of positive cases [26] between the two models; the QBS is
slightly better than the StRS. However, in this dataset, U2R
and R2L are rare classes so they are major indicators to
see whether and how much the QBS method and the StRS
method help classifiers reduce the number of false positives
and false negatives in these classes. An analysis of rare classes
shows that the majoritybelongs to the infrequent attack types
that were not in the training data. QBS achieves significantly
higher correct “hits” than StRS in recognizing the U2R and
R2L, respectively. In Table 6, we try to keep FP rate constant
to demonstrate that QBS outperforms StRS. Experiments
show that, under the same FP rate, QBS is better than StRS
in TP rate for all test classes.

5. Conclusion

In this paper, we proposed that a QBS filter can apply
the concepts of data quantization to signal processing to
develop a novel classification system. Through interaction
with a partially trained classifier, the QBS filter can efficiently
use an oracle to produce high quality training data. We
test the proposed method through a benchmark intrusion
dataset to verify its performance and effectiveness. Results
show that selecting qualified training data will have an
impact on not only the performance but also the overall
execution efficiency (to reduce the distortion). The proposed
method can significantly increase the accuracy detection
rate for suspicious activity and recognize rare attack types.
Additionally, it can improve the efficiency of real-time
intrusion detection models. Experiments show that the
proposed method could gain effective classification. It is
flexible and powerful. Intrusion detection systems must
be capable of distinguishing between normal (not security
critical) and abnormal user activities, to discover malicious
attempts in time. However, translating user behavior (or a
complete user-system session) in a consistent security-related
decision is often not that simple—many behavior patterns
are indistinguishable and unclear. If uncertain behavior is
not considered anomalous, intrusion activity may not be
detected. If uncertain behavior is considered anomalous,
system administrators may be alerted by false alarms. Our
future work is to extend this concept to develop more
learning methods for more real-world applications.
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