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1. Introduction

Systems used in nonstationary 1D and 2D signals processing
are based on the developed mathematical methods (distribu-
tions), defined in their 1D, [1-7], and 2D, [8-19], form:s,
respectively. The short-time Fourier transform (STFT), its
energetic version-spectrogram (SPEC), and the Wigner
distribution (WD) are the conventional mathematical tools
commonly used in nonstationary signal analysis, [1-5, 8—
10, 20]. Having in mind the technology limitations in the
hardware design, the 1D systems based on these methods
are analyzed, usually in their single-clock-cycle (parallel)
implementation forms, [21-25]. However, conventional
methods exhibit serious drawbacks. 1D and 2D STFT and
the corresponding SPECs have a low concentration around
signals’ instantaneous and local frequency, respectively, [1-
5, 8-10, 20], whereas 1D and 2D WD generate emphatic
interference effects (cross-terms) in the case of multicom-
ponent signal analysis, [1-6, 10-16]. To deal with the
drawbacks of conventional methods, various mathematical
tools for nonstationary signal analysis have been defined
during the last two decades, [1-5, 10-12]. Some of them are
computationally quite complex and, therefore, sometimes

cannot be implemented in real time. For example, some
of the reduced interference methods, [1-4], are introduced
to suppress cross-terms in the case of multicomponent
signal analysis with preservation of marginal properties of
the WD. However, they are defined in the computationally
very intensive ways that result in the calculation of the 2D
convolution in the 1D signals case and the 4D convolution in
the 2D signal case. Quite computationally complex definition
of these methods seriously compromise possibilities of
their realization, [1, 3-5]. On the other side, the reduced
interference method proposed in [5], named the S-method
(SM), extended to the 2D form in [12] and frequently used,
[26-28], reduces cross-terms with preservation of the WD
autoterms. In addition, it is defined in a computationally
simple way that requires calculation of the 1D convolution
in the 1D signals case, [5], and the 2D convolution in the
2D signal case, [12]. In this way, it simultaneously enables
an efficient real time implementation. Parallel designs for 1D
signal analysis and time-varying filtering, based on the SM,
have been developed in [29-31]. But, parallel designs are
quite complex and require duplication of basic calculation
elements when they are employed more than once. Also,
they can process signals with the predefined duration only.



The 1D MCI hardware design with a fixed number of CLKs,
based on the SM, is recently developed, [32]. It overcomes
the drawbacks of parallel architectures, qualifying itself to be
an optimal solution for wide range of practical implemen-
tations. However, this solution significantly decreases the
processing speed, thus making it inconvenient in some other
applications. Further, in order to preserve each WD autoterm
separately, the SM based systems should correspond to
the widest signal component, [5, 12], that can negatively
influence the cross-terms reduction, calculation complexity,
and the processing speed, [29-32].

Corresponding 2D S/SF systems are more complex than
the 1D ones and sometimes their parallel implementation
forms, like the one based on the 2D SM, [33], could not
be implemented. Additionally, the chip dimensions, power
consumptions and cost are significantly increased, while the
processing speed is lowered, especially if the MCI designs of
such systems are preferred, [34]. Therefore, here we propose
a way to overcome the drawbacks of the 2D parallel imple-
mentation forms and the 2D MCI forms. For that purpose,
a special signal adaptive MCI hardware design for S/SF
analysis has been developed (and verified) based on a 2D
mathematical method for an improved S/SF representation
of analyzed 2D signals (also proposed here). The proposed
hardware design allows the implemented system to take a
variable number of CLKs in different frequency-frequency
points within the execution and, therefore, to produce a
pure cross-terms-free S/SF signal representation that retains
the desirable autoterms presentation of the 2D WD. In this
way, the design optimizes the execution time, overcoming
the main drawback of the MCI designs in comparison to
the parallel ones. In addition, the design optimizes the
hardware complexity of the implemented system, giving one
the possibility to implement it by using standard devices like
FPGA. Such a practical design with all implementation and
verification details is presented here.

The paper is organized as follows. In Section 2, the 2D
mathematical method for improved S/SF signal representa-
tion is proposed theoretically and compared with the com-
monly used S/SF distributions (S/SFDs) regarding the signal
presentation, calculation complexity and noise influence
suppression. The proposed method based hardware design
is developed in Section 3. Testing and verification results are
elaborated in Section 4. Trade-offs and comparisons of the
proposed design with other designs for S/SF analysis (the
parallel one and the MCI one with a fixed number of CLKs)
are discussed in Section 5.

2. Theoretical Background

As mentioned, the 2D STFT, its energetic version (2D SPEC)
and the 2D WD are conventional mathematical methods,
used in S/SF signal analysis. They are defined, in vector
notation, as [8-10, 12—16]

STFT(7, k)
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where w(m) = w(m,, m;) denotes a 2D, usually even and real-
valued lag-window of N X N duration, centered at the point
7 = (n1,ny) and used to truncate the analyzed signal f (7).
However, these S/SFDs exhibit drawbacks that seriously limit
their applicability. The 2D STFT and 2D SPEC have a low
concentration around signal’s local frequency [8-10, 12].
On the other hand, based on direct 2D STFT-to-2D WD
relationship, [12], readily following from (1)-(2):

WD(7, k) = >STFT(7, k + 1 )STFT* (7, k - 1)

- (STFT(H,TJ) \2

N/2 N/2
+23 > Re{STFT(7,ki +i1,ky + 1))

i1=01i=1
STFT* (1, ky — i1, ky — i2) }

N/2 N/2
+2> > Re{STFT(n, ki + i1, k» — i2)

i1=110=0

STFT* (7, ki — i1, ky + 1)},
(3)

the 2D WD significantly improves the 2D SPEC concentra-
tion (obtained from (3) for i; = i, = 0), reaching the max-
imum concentration of each signal component separately
and resulting in an optimal autoterms’ presentation [10, 12—
16]. However, based on the full frequency-frequency domain
2D convolution (3) of 2D STFT elements, the 2D WD
simultaneously generates emphatic cross-terms in the case
of multicomponent signals. Reduced interference S/SFDs
that preserve marginal properties suppress this problem.
However, as presented in the Introduction, they are defined
in the computationally very intensive ways, even in the
1D case [1-5], that seriously limit their applicability. The
2D SM, [12], reduces cross-terms with preservation of the
2D WD autoterms. However, in order to preserve each
autoterm separately, it should correspond to the widest signal
component. This can be inappropriate for most S/SF points
and can negatively influence the cross-terms reduction and
calculation complexity, [5, 12], as well as the noise influence
suppression, [7].

2.1. New Method for Improved S/SF Representation. To
reduce 2D WD cross-terms (or, to completely eliminate
them in the case of non-overlapping signal’s components),
the 2D convolution in (3) must be terminated outside the
2D STFT autoterms’ domains, corresponding to regions of
support D;(7, k), i = 1,...,q of a g-component signal,
Figure 1. However, in order to preserve 2D WD autoterms



EURASIP Journal on Advances in Signal Processing

k> Ly(n, k,iit =0) k2
(k1,k2)
X
D; EIS .
........ & \.‘: é
) & =<
ﬁ N
D;j 2B;1 (koi2) H
: -
: 1=
2Bi(k2) K 5
- 7
Li(7, k) . "
Ly
/Ll(%’@
EN):
koi,1 ki

Figure 1: Illustration of the proposed 2D method calculation.

presentation, the 2D convolution should be performed inside
these regions, including only non-zero summation terms
from (3). For these purposes, (3) must be reordered and
limited as

CTFWD(T«',k)
STFT Vl k1+11,k2)STFT*(I’l k] —ll,kz)}

Ly(7, K i)
+2 Y Re[STFT(,ki +i1, ks +1z)

ir=1

x STFT* (7, ky — i1, ks — i2)}>

Ly(7,K)
Z (RE{STFT n, k1+11,k2)STFT*(1’l kl—ll,kz)}

Ly(7, K —ir)
+2 Z RC{STFT(I_’[,IQ +iy,ky — iz)

=1

X STFT* (7, ki —il,k2+iz)}),
(4)

where L (7, k) = (Li(7, k), Lo(7i, k,+i1)) < L, is the
signal adaptive width of the rectangular convolution 2D
window, centered at (ki,k»), ki,k; =_’0,...,N — 1 and
introduced to limit (3). It takes L (7, k) = (B;1(7,k;) —
lki — 011(”)| Biy(7, kl * 11) - |k2 koi2(7)|) inside the
region D;(71, k) and L(n k) = 0 elsewhere. 2B;, (7, ky),

2B;5(7,k, + i) denote widths of D;(7, k) (in k; and in
L7, k),
respectively, whereas L, is the maximum width of L (7, k),
determined by the widest Di(z, k), i=1,...

corresponding local frequency k o;, Figure 1. For each point
(k1, k3), this means the following.

k) for a given k; and a given k; + i;(i; = 0,...

,q> and its

(i) The summation in +i, (limited by Ly(7, k,+i1)),
for each i, iy = 0,...,Li(7, k), is performed
until |STFTL71’,k1 + iLky = )]*> < R i =
0,...,Ly(7, k,+i), is detected, resuming the sum-
mation in —i,. ( Reference level R? determines the
support regions D;,i = 1,...,q, in the manner that
2D STFTs whose absolute values are below R will be
neglected in calculation (4). )

(ii) The summation in —i, (limited by L,(7, k, —i1)),
for each iy, iy = 1,...,Li(7, k),
until |STFT(ﬁ,k1 + il,kz -+ i2)|2

S Ly(7, k,—iy), is detected, resuming the sum-
mation for the next i;.

(iii) The summation in i; is performed until
|STFT(7[,k1 + i1,k2)|2 < Rz, i = 0,...,L1(7’[, k),
is detected, corresponding to the detection of the
first zero summation term not multiplied by 2 and
resulting in completion of the calculation in the
observed point (k;, k).

is performed
< Rz, i =

Note that (4) includes variable number of summation
terms—the only necessary ones regarding the total energy of
each autoterm separately—in different points (ki, k2), k1, k2
=0,1,...,N — 1. In this s _way, (4) is reduced to the 2D

SPEC (1e, to |STFT(n, k)| ), outside regions D;(7, k)



i=1,...,q (where L(7n, k) = Ly(#n, k,+i;) = 0) and to
the 2D WD inside them, producing the 2D cross-terms-
free WD (2D CTFWD) signal representation. In addition,
the definition (4) includes, as special cases, the 2D SPEC

2D WD and 2D SM, that follow, respectlvely, for Li(7, k)
Lz(n k +i) = 0, L(7, k) = L,(7n, k +i1) = N/2,
Li(n, k)—Lz(n k +i)) = Ly, forall (7, k)

2.2. Reference Level R* Determination. Here, a reference level
R? will be determined based on a priori knowledge about the
signal’s range. It is especially applicable in the cases when
the signal is obtained as output of an A/D converter and
used in the hardware implementations of S/SF algorithms,
considered in the sequel. In this case the signal must be
within the a priori prescribed range, in order to optimally use
the available converter and hardware registers. Then, the R?
determination is possible on the a priori basis as a few percent
of the maximum expected 2D SPEC’s value.

Note that if the a priori knowledge about the signal’s
range is not reliable, then the reference level can be defined
as a few percent of the 2D SPEC’s maximum value at the
considered time instant 7, [30, 35]. The reference level can
also be calculated based on methods used in digital image
processing for similar reasons, [36]. Based on the extensive
experimental works, it has been shown that the method is
quite insensitive with respect to the reference level R>. We
have found that the R? values within the interval of the 0.1%—
10% of the maximum 2D SPEC’s value are quite appropriate.

Example. The proposed method has been verified by consid-
ering the 2D test signal:

filni,my) = cos[20m(m T = 0.75)° + 22m(n, T — 0.75)’

i[—100 T/2)+100 T/2
+ O.Sej[ cos(nn T/2) cos(mny )])

fn,ny) = cos{lOOOﬂ[(mT + 0.5)2 + (n, T — 0.5)2] }
(5)

This signal consists of dual components: infinite duration
fi(n1,n3), considered in the range |m T| < 0.75, |n,T| <
0.75, and f,(n;,n) having comparatively small domain
of |mT + n,T| < 0.1, |mT — mT — 1| < 0.1 (2D
Fourier transform of f,(#;,7,) is usually treated when one
analyses this component separately). Therefore, signal (5)
represents a very interesting, commonly considered 2D test
signal, [12, 34]. A sampling interval of T = 1/64, the
Hanning lag-window w(m), N = 64, maximum convolution
window width of L,, = 18 and the reference level R?
of the 1% of the SPEC’s maximum value are used in
simulations. Simulation results, computed at the point
(mT,nyT) = (—0.25,—0.25), are presented in Figure 2. Low
2D SPEC’s concentration, high 2D WD resolution, but with
the emphatic cross-terms presence, high quality 2D SM
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autoterms’ representation with the only partially suppressed
cross-terms, as well as the improved S/SF representation,
based on the proposed method, can be noticed from Figures
2(a)-2(d). Figure 2(f) readily proves the pure CTFWD signal
representation achieved by the proposed method.

2.3. Noisy Signal Analysis. In practice, signals are always
exposed to the additive noise influence. To evaluate noise
influence to the proposed method, let us consider the noisy
signal x(7) = f(n) + (1), where &(7) represents the
additive white Gaussian complex noise with variance o2.
The variance of the real-valued 2D CTFWD estimator (4) is
defined by

2 (7. k)
= var[ CTFWD, (7, k )]

- BfcTrwD? (7, ¥ )} - (E{cTRWD. (7, 7;)});)

It consists of two parts: the signal-and-noise-dependent
one, aj%e(ﬁ,k), existing only inside regions D,»(?z’,k), i
= 1,...,9, and the noise-only-dependent one, afs(ﬁ,k)
existing everywhere (in all frequency-frequency points),
02.(7i, k) = of.(n, k)+02 (7, k). Following the procedure
from the 1D noisy signal case, [7, 37, 38], after several

straightforward transformations, in the case of rectangular
lag-window w(), the variance (6) can be derived as

(7)

where oi(n, k) = N204[Zi1(1ﬁ’k)(1~2(7f,7<’,+i1) + Ly(7,
k,—i)) + Ly(7, k,0) + 1] and o(7, k) = N?¢? outside
regions of support Di( n,k),i=1,...,q (when Li(n, k)=
LZ(’_{) k > iil) = O)'
Note that by performing noisy signal analysis of the
proposed method, we have also unified the noisy signal

analysis of its special cases (2D SPEC for L(7, k) =
Ly(7n, k,+iy) = 0, 2D WD for Li(7, k) = Ly(7, k, +i1)
= N/2, and 2D SM for Li(7, k) = Ly(#n, k,+iy) = Ly,

for all (ﬁ,k)). Based on this observation, the following
conclusions can readily be derived.
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(1) The proposed method minimizes the estimator’s
variance 02,(7, k) outside regions Di(7, k), i =
1,...,q. Knowing that it also produces the opti-
mal autoterms presentation, the proposed method
optimizes the peak signal-to-noise ratio in (ki, k)
points existing outside regions of support. ( The peak
signal-to-noise ratio assumes the ratio of the squared
peak value of the S/SFD and estimator’s variance
02.(, k). This is required in many practical appli-
cations where the peak values of S/SFD are used to
estimate local frequency of an analyzed signal. In this
case, we are not interested in the local signal-to-noise
ratio, especially in the frequency-frequency points
existing outside regions of support (where S/SFDs are
equal to zero). In these points, the peak signal-to-
noise ratio represents the measure of possible false
peak detection (wrong local frequency estimation,
(7D.)

(2) The estimator’s variance (7) increases inside regions
Di(7n, k), i = 1,...,q. However, by taking optimal
number of summation terms in (4), the proposed
method decreases 02.(7, k ) and, therefore, improves
the peak signal-to-noise ratio regarding the 2D
WD and 2D SM in the frequency-frequency points
existing inside these regions.

(3) The 2D SPEC minimizes o2.(7, k) in the (ki, k)
points existing inside regions Di(n, k), i=1,..., q.
However, at the same time it produces low signal’s
concentration around local frequencies. Therefore,
the proposed method can improve 2D SPEC’s estima-
tion for the case of highly nonstationary 2D signals,
even in the regions of support points (ki, k).

These conclusions have been tested numerically. To this
end, signals (5) are exposed to the additive white Gaussian
noise with high variance 02 = 1. The same parameters
as in the noiseless case are used here. The considered S/SF
representations of the noisy signal are given in Figure 3. They
readily prove theoretically derived conclusions. Note that,
depending on the noise distribution and the R? selection,
there can exist particular frequency-frequency points outside
regions of support in which [STFT (7, k; + i1, k, + i,)|> > R?
and/or |STFT(E, kl;_"il, kz 1i2)|2 > Rz, ip =0,... ,Ll(ﬁ, k ),
iy = 0,...,Ly(", k,—i), are satisfied. This implies the

nonzero values of L;(7, k) and/or Ly(7, k,—i;) in these
points. However, it does not significantly influence the S/SF
representation based on the proposed method, Figures 3(d)
and 3(e). In line with this conclusion, note that greater values
of the reference level R* (about 5%-10% of the expected
2D SPEC’s maximum value) almost remove these effects,
Figure 3(e).

2.4. Calculation Complexity of the Proposed Method and
Comparisons. In this subsection, the proposed method will
be compared, regarding the calculation complexity, with
the conventional S/SFDs (2D SPEC and 2D WD) and

TABLE 1: Numbers of complex operations by frequency-frequency
point required by the considered S/SFDs. (1) 2D WD (2) calculated
using the FFT routines, (2) 2D SM using the recursive 2D STFT
calculation (with 2 complex summations and a complex multipli-
cation, [12]), (3) Proposed method with the 2D STFT calculation
based on the FFT routines, (4) Proposed method using the recursive

2D STFT calculation, where L,(7, 7;) = ShOo 4, z,+i1) +

=1
Ly(7, k,—iy))/2. Multiplications by 2 are not considered, because
the time needed for their execution is much smaller than the time
needed for other operations.

S/SFD Additions Multiplications
1 4(log,N +1) 2(log,N +2)
2 2412+ Ly, L2, + Ly, +3/2
2log,N + L, + log,N + L, +
3 Li(7, k) + Li(7, k) +
Ly(7, k,0)/2 (Ly(7, k,0) +1)/2
4 2+fth1(ﬁ,?)+ Z2+L1£H,E)+

Ly(1, k,0)/2 Ly(7, k,0)/2+3/2

computationally the simplest reduced interference method
(2D SM, see the Introduction). The proposed method based
S/SE representation takes variable number of necessary
operations (regarding 2D WD autoterms quality) in different
frequency-frequency points (ki, k), ki, k, = 0,1,...,N — I:
the minimal one outside the regions of support (where a
great part of these points commonly lie), the higher one
inside these regions, and the possible maximum one only in
the central points of the widest region (see Figure 8 and the
discussion from Section 5). In this way, the method improves
the calculation complexity of the considered S/SFDs for
meang, k,-o,1,..N-1{L2(7, k) + Li(7, k) + Lo (7, k,0)/2} <
2log,N + 5/2, Table 1. For example, in the analyzed signal
(5) case and for L, = 18, N = 64, average number of
complex operations per frequency-frequency point, required
by the proposed method, are 30842/N? = 7.5 additions
and 28794/N? = 7 multiplications. Its complexity slightly
differ from the SPEC case (obtained from the proposed
method for Li(7, k) = Ly(#, k,+i;) = 0), but also
significantly improve calculation complexity of the 2D WD,
with 28 complex additions and 16 complex multiplications
per frequency-frequency point, and the 2D SM, with 344,
343.5 corresponding operations, Table 1. In addition, among
the considered S/SFDs, only the proposed one produces a
pure 2D CTFWD signal representation in the practically only
important case of multicomponent signals having different
autoterms widths, Figure 2. In line with these conclusions,
the 2D S/SFD having the same calculation complexity as the
proposed method is represented in Figure 2(e). However, it
produces only a low concentrated 2D signal representation,
very close to the 2D SPEC one.

Although the proposed method significantly improves
calculation complexity of the 2D SM and 2D WD, note
that it is also quite numerically intensive, Table 2. Generally,
all S/SFDs, beyond the 2D STFT, are numerically quite
complex and require significant execution time. This fact
makes these S/SFDs unsuitable for real time analysis and



seriously restrict their applicability. However, hardware
implementations (such as the one developed here), when
possible, can overcome this drawback, enabling application
of these S/SFDs in numerous additional problems in practice.

3. Signal Adaptive Hardware
Implementation Approach

2D CTFWD definition (4) adapted for real time imple-
mentation should include only real multiplications. To this
end, we express it as a sum of two computational lines,
CTFWD(#, k) = CTFWDg(#, k )+ CTFWD; (7, k), used
respectively for processing the real and imaginary parts of 2D
STFTs (from already available 2D STFT or 2D FFT modules,
[20-24, 31]). According to (4), these lines have identical

forms. CTFWDg( 7, 7{) is
CTFWD, (7, k)

Li(7,K)

-3

i1=0

(STFTRC(?i,kl + il,kz)STFTRe(z,kl — il,kz)

Lz(ﬁ,z,ﬂ'l)

+2 >

=1

STFTre (7, k1 + i1,k + i)

X STFTRe(ﬁ,kl — il,kz - lz))

Li(7,K)

2

ii=1

<STFTRQ(7{,k1 + i],kQ)STFTRe(H,kl — il,kz)

Lo(7i, K =i

+2 >

ir=1

STFTre (7, k1 + i1, ks — i)

X STFTRe(ﬁ,kl - il,kz + lz))
(8)

(STET(7, k) = STFTre(7i, k) + jSTFTm(7, k )), whereas
CTFWDj (7, k) is obtained by replacing the real parts of
the 2D STFTs with their imaginary parts in (8). Note that,
in different points (ki,kz), ki,ko = 0,1,...,N — 1, the

summation in (8) involve variable number of CN(7, 7{) =

SHOO (L, (7, Ky +i) + Lo(7, K, —in) +2) + Lo(7i, K ,0)+1
terms. They are obtained by multiplying 2D STFT elements,
symmetrically distributed around the observed point (ki, k»)
in the 2D frequency-frequency plane.

The 2D CTFWD hardware implementation will be pre-
sented through the implementation of its real computational
line and the control logic, Figures 4 and 5, since the
imaginary computational line is identical with the real one,
whereas the control units and configuration signals are
unique. The design principle follows the developed form
of (8), where each summation term is executed during
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TaBLE 2: Total numbers of complex additions and complex multi-
plications, required by the considered S/SFDs, for different N. (1)
2D SPEC (the proposed method with L, (7, 7{) =1L,(n, %, +ip) =
0), (2) 2D WD calculated using the FFT routines, (3) 2D SM using
the recursive 2D STFT calculation, (4) Proposed method using the
recursive 2D STFT calculation.

N 1 2 3 4
Additions 8192 114688 1409024 30842
Multiplications 6144 65536 1406976 28794
128 Additions 32768 524288 5636096 86477
Multiplications 24576 294912 5627904 78285
256 Additions 131072 2359296 22544384 230630
Multiplications 98304 1310720 22511616 197860
Additions 524288 10485760 90177536 578450
Multiplications 393216 5767168 90046464 447380

the corresponding step which takes one CLK cycle. In
this way, we are able to balance the amount of work
done in each CLK, resulting in minimization of the CLK

cycle time. During the first CLK, when Z(?i, k) = 6,
the 2D SEEC is calculated from the 2D STFT element,
STFT(7, k), situated in the central point of the convolution
window, Figure 6(a). Residual summation terms, obtained
for the increased indexes i; and/or i, in subsequent CLKs
(second, third, ...) and existing only in regions of support
frequency-frequency points, are the conditional ones. They
are used to improve the S/SFD concentration with the goal
to achieve the 2D WD one. Therefore, the 2D CTFWD real
time implementation requires variable number of CLKs by
frequency-frequency point (i.e., by one convolution window
position) to be executed, where only 2D SPEC execution CLK
(the first one) remains the unconditional one in each point
(k1,k2), k1,ky =0,1,...,N — 1.

In general, each 2D CTFWD element is produced by
sliding 2D convolution window over the 2D STFT input
elements and by computing the 2D CTFWD output value
according to the input elements and the algorithm (8).
The obtained result is a 2D CTFWD element assigned
to the center of the 2D convolution window, Figure 6(a).
Following these observations, the architecture for real time
design of the 2D CTFWD real computational line consists
of several main functional units, Figure 4. The STFT-to-
CTFWD gateway, Figure 5, represents a functional kernel
of the proposed architecture. It is used to produce 2D
CTFWD outputs based on the 2D STFT input elements
obtained from the convolution window register block. The
(2L, + 1) X (2L,, + 1) convolution window register block
and 2L,, first-in-first-out (FIFO) delays mutually implement
the 2D convolution window function, presented in detail in
Figure 6. The convolution window register block determines
the address order of the 2D STFT input elements for which
the corresponding 2D CTFWD output will be computed
according to (8). FIFO delays provide sliding of the 2D
convolution window over 2D STFT input elements, as
presented in Figure 6.
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(c)

(e)

(d)

6% 10°

()

FIGURE 2: S/SF representations of signal (5): (a) 2D SPEC, (b) 2D WD, (c) 2D SM corresponding to the widest signal component, (d)
Proposed method based representation, (e) S/SF representation having the same calculation complexity as the proposed method, (f)

Difference between graphics (b), (d).

The operation principle can be described as follows.

(1) The STFT_IN elements are imported to the input
memory owing to each double CLK cycle, corresponding
to the minimal execution time required by a frequency-
frequency point (2D SPEC execution time). This period
simultaneously determines sampling rate of the analyzed
analogue 2D signal. By each STFT_Load cycle, an STFT_IN
element is moved from the input memory to the convolution
window area that is sliced over input 2D STFTs for one
position right, as shown in Figure 6.

(2) According to the actual convolution window position
and the algorithm (8), the corresponding 2D CTFWD output

element is calculated in CN(7, Z) + 1 CLKs. In the ith CLK

(i=1,...,CN(n, 7{)), the corresponding summation term
from (8) (the first input of the cumulative pipelined adder

CumADD) is produced, generating the CTFWD(T/[,E)
element at the CumADD output after CN(7, k) CLKs.

The (CN(7, 7{) + 1)st CLK is the completion one. There-
fore, the period of the STFT_Load cycle must be variable
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6% 10°

(d)

FIGURE 3: S/SEDs of noisy signal (5): (a) 2D SPEC, (b) 2D WD, (c) 2D SM corresponding to the widest signal component, (d), (e) proposed
method based S/SFDs corresponding to R? of 1% and 5% of the expected 2D SPEC’s maximum value.

(in different frequency-frequency points) and CN(7, k ) + 1
times greater than the CLK period.

(3) In the corresponding CLKs, signals X +j,
and  x.j 5, are generated as: Xiy.;, = 1 if
ISTET( 7, ky = iy, ky + 1'2)|2 > R? and x4, +;, = 0 otherwise,
that is, x.s,+5 = 1 if |STFT(7,ki =i, ko i2)]” > R?
and x.,7, = 0 otherwise. They, respectively, determine
nonzero values of STFT(7,k; + ik, = i) and of

STFT(7i,ky + it ky Fia)y iy = 0,1y Ly(7i, K )y ia = 0,1,

Ly(7, k,+i;) and simultaneously produce the RegionSup
control signal, RegionSup = xj, +j, * X_j, 5i,- Zero value
of the RegionSup signal implies following actions: (1)
Through the participation in the CumADD_CLK signal
generation, disables the corresponding term, non-existing
inside the regions of support domains, to enter the
summation (8), and (2) Through the participation in the
RESET_L and the High_Count_.CLK signals generation,
terminates the summation in +i, and in —i, (for each

i, ii = 0,1,...,L (7, k)), resuming the summation in
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(2L, + 1) X (2L, + 1) convolution window register block

STFTIN,[ Input |: :
%mgf]l(l)rye (kl +Lm;k2 +Lm)__"9 (kl + lm»kZ) T~ (kl + Im>k2 - Lm) -__E-% FIFO delay (N - (ZLm + 1)) ]
o : A X A X 1T
M T Y Y A S
g ; ;
& A (kbka+ L) H-1-of (kbk)  He-3  (kbka—Lm) H—--— FIFOdelay (N — (2L + 1)) +—
: 1 l [
: A ; ) ' A ' ~  TED
e~ e R N
s | | |
(ki = L, k2 + L) T 4Pkt = Lins k)= Pkt = Lo k2 = L) 1=
x ! x ! x ! ool Start_Process
............................ R R PN SRR S P FR ) il o Left Border
RN . -
STFT Load MCWW windowed convolution [0 5 =7
CLK DB and End_Proc
PR STFT-to-CTFWD gateway W padding borders

Configuration registers

FIFO delay (FD)

Start convolution (SC)

—>[Max. con. win. width (MCWW)

Down border (DB)

End of process (EOP)

L]

Address T

Enable (EN)

CTFWD_OUT

FIGURE 4: Proposed signal adaptive hardware design. In registers, the S/SF position of the stored 2D STFT element is denoted.
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F1GUrE 5: STFT-to-CTFWD gateway architecture with the necessary control logic for the signal adaptive real time design.
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Algorithm (8)
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2D STFT elements-inputs of the STFT-to-CTFWD getaway

FIGURE 6: (a) Procedure of 2D convolution window sliding and of 2D CTFWD producing; (b) Actual convolution window position
corresponding to the point (k;,k,) (thick solid line) and its next position (thick dashed line); (c) Actual convolution window position
(thick solid line) and its next-left border-position (thick dashed line); (d) Convolution window function, implemented in real time. Cells
correspond to the 2D STFT elements, denoted by their position in frequency-frequency plane.
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—i and for the next i, respectively. Further, zero value
of the RegionSup signal, reached in the CLK cycle when
SHLorNo=0 (corresponding to the first zero summation
term from (8) not multiplied by 2), terminates the
summation (8) in 7;, resulting in the calculation completion
(in the next CLK) for the observed point (kj,k;). In that
line, the RS signal, RS = inv(RegionSup), participates in the
STFT_Load/CTFWD _Store, CumADD_clear/RESET signals
generation. With a latency of half of a CLK, the system is
reset and the execution for the next frequency-frequency
point begins. In this way, the RegionSup signal allows
the proposed design to optimize the number of CLKs
taken in different frequency-frequency points within the
execution. The SPEC_EN signal provides execution of the
unconditional (2D SPEC execution) cycle, even if xo = 0.

A look-up table memory (LUT), Table 3, manages the
execution. Its locations consist of the 4-bit control signals
area and MUX addresses. Functions of generated control
signals are given in Table 4. Binary counter Low_Bin_Count
generates LUT’s low addresses, controlling the summation
(8) in +i; and in —i,. Binary counter High_Bin_Count sets
LUT’s high addresses, controlling the summation (8) in i;.
Operations at the bordering positions, as well as the whole
S/SF process, are managed by the Start_Process, Left_Border,
Bottom_Border and End_Process signals, Table 4. These signals
are generated by considering input parameters from the
Configuration registers, Table 5, as well as the synchroniza-
tion conditions related to the CLK and STFT_Load cycles.
They are produced in the modules that consist of variable
length up-down binary counters and binary magnitude
comparators whose binary references are parameters from
the Configuration registers.

The longest path that determines the fastest CLK cycle
time corresponds to the generation of the RegionSup signal
in a half of a cycle, through a multiplier, an adder and a com-
parator (T./2 = Ty + Ty + Teomp, Where T¢, Trny Tay Teomp are
CLK cycle, multiplication, addition, and comparison times,
resp.). In this way, we enable participation of the RegionSup
signal in the CumADD_CLK signal generation in the second
half of the same CLK (see timing diagram from Figure 8).
Maximum output register lengths for each used digital unit
are given in Table 6. They are derived as functions of the 2D
STFT data length (I), maximum convolution window width
(Ly) and the number of frequency points (N). Note that
critical point is the width of the CumADD/OutREG. The
longest path depends on the 2D STFT data length only.

4. Testing and Verification of
the Proposed Design

The proposed system for S/SF analysis has been verified with
an FPGA device real time design. The FPGA implementation
approach is chosen in line with the fact that recently high
performance devices for solving practical problems in signal
processing tend to be implemented in an FPGA, instead of
in a DSP, chip. This is possible because the gate densities
available in FPGAs now allow fairly sophisticated DSP
algorithms to be implemented within a single chip, [39, 40].
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31

31

Ficure 7: S/SF representation of the analyzed signal (5) in
(mT,n,T) = (=0.25,-0.25), obtained by using the proposed
hardware design with L,, = 5, implemented in FPGA device.

Additionally, languages used for the hardware description
of FPGA chips provide a high level behavioral design
methodology, requiring high flexibility from the targeted
device, so that the synthesis tool will be able to produce
both efficient device utilization and high performance. Also,
usage of recent FPGA chips with huge internal memory
blocks is considered to be a powerful tool for implementation
of convolution and delay operators that are of essential
importance in implementation of DSP algorithms.
Hardware realization of the proposed system with L,, =
5 is performed by using the EP2S15F672C5 device from
the Stratix II family. Rates of utilization of device’s silicon
resources are given in Table 7. Before programming the
selected FPGA device, the compilation and simulation have
been performed by processing the test signal (5). The 2D
STFT elements (their real and imaginary parts), numerically
computed in Section 2, normalized to the range [0 255], and
rounded to the 8-bit integers, are imported to the designed
system input. Results of the real time implementation are
presented in Figure 7. Accuracy of these results can easily be
checked by comparison with the numerical results given in
Figure 2(d). Also, the obtained results can be readily proven
by analyzing simulation results given in Figure 8. In line with
the simulation results analysis, note that the developed signal
adaptive system with L,, = 5 requires convolution window
register blocks (for storing the real and imaginary parts of
the input 2D STFT elements) of (2L,, + 1) X (2L, + 1) =
121 parallel-in-parallel-out registers. However, presentation
of the content of all these registers in a single figure
is impossible. Therefore, in Figure 8 we present contents
of the central registers and their neighborhood registers,
named in line with their relative position with respect to
the central ones. For example, in the first marked instant,
corresponding to the outside regions of support frequency-
frequency point, CTFWD_OUT = 2D SPEC = (-3)* + 9 =
90 has been derived from (8) in two CLKs, since xp = 0
(32 + 9% = 90 < R?> = 94). Note that multiplication and
shift operations are parallel, while adding has a latency of
half of a CLK. In the second marked instant, corresponding
to the marginal frequency-frequency point from the detected
region of support, CTFWD_OUT = 12 + (~11)* = 122 has
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TasLE 3: Content of LUT memory locations for given L,,. ADDy,, denotes address of central element of the convolution window register
block, symbol < denotes shift left logical operation and r= Length(SelSTFT_1). Control signals area contains following bits: (1) SHLorNo,
(2) Completion_Cond, (3) Termination, (4) Completion.

. Address Ctrl Signals Area SelSTFT 1 SelSTFT 2
High Low 3 4
0 1 1 1 0 0 ADDM,M+1 <r ADDM,M,1
: : 1 0 0 0 : :
0 L, 1 0 1 0 ADDM,M+Lm <r ADDM,M*Lm
1 0 0 0 0 0 ADDM.H,M <r ADDM,LM
1 1 1 1 0 0 ADDMH,MH <r ADDM—I,M—I
: 1 0 0 0 : :
L, 1 0 1 0 ADDM+1,M+]_m <r ADDM*],M*Lm
0 0 0 0 0 ADDM+1,M <r ADDM,LM
1 1 1 0 0 ADDMH,M—I <r ADDM—],MH
: : 1 0 0 0 : :
2 L, 1 0 1 0 ADDM—H,M—Lm <r ADDM—I,M+Lm
2L, —1 0 0 0 0 0 ADDM+Lm,M <r ADDM*Lm,M
2L, — 1 1 1 1 0 0 ADDM+Lm,M+1 <r ADDM—Lm,M—l
: : 1 0 0 0 ;
2L, —1 L, 1 0 1 0 ADDM+Lm,M+Lm <r ADDM*Lm,MfLm
2L, 0 0 0 0 0 ADDM+Lm,M <r ADDM*Lm,M
2L, 1 1 1 0 0 ADDM+Lm,M71 <r ADDM,L%MJFI
: : 1 0 0 0 : :
2L, L,, 0 1 0 ADDM#—Lm,M*Lm <r ADDM*Lm,M+Lm
2L, +1 0 0 0 0 1 0 0

TaBLE 4: Function of control signals generated by the Main Ctrl and the ctrl of windowed convolution and padding borders.

Control signal

Effect

SelSTFT_1,2

SHLorNo

Completion_Cond

Termination&
Completion

Left_Border&
Bottom_Border

Enable sharing of the STFT-to-CTFWD gateway for different 2D STFT inputs in different CLKs within the

execution in the observed frequency-frequency point

Provides multiplication by 2 of the partial product term according to (8)

Allows the RS signal to produce the completion CLK from the conditional one

Provide termination of the summation (8) in +i, and in —#, and its completion, respectively, in

frequency-frequency points in which the RegionSup signal cannot achieve zero value and, therefore, cannot
assume the role described in the operation principle 3. ( In practical implementations, the relatively small L,,
values, 5 < L,, < 7, are usually applied. They provide the desired—2D WD—concentration (compare the
representation from Figure 2(d), obtained for L,, = 18, with the representation from Figure 6, obtained for

L,, = 5), but also significantly simplify hardware implementation (see Table 8). However, a predefined
maximum convolution window width corresponding to these L, values can be smaller than the theoretically
required one in the points (k;, ky) existing around the local frequency. Therefore, in these points, the RegionSup
signal cannot achieve zero value, needed for the termination of the summation (8) in +i, and in —i, and its
completion, according to the principle 3 of the hardware operation.)

Through the participation in the RegionSup signal generation, allow padding the left and bottom borders with
2L, 2D SPECs (in accordance to the principles shown in Figure 6(c)).
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TABLE 5: Parameters from configuration registers, expressed by the number of needed STFT_Load cycles.

Configuration register Parameter specified and its description Parameter’s value

Start Convolution (SC) Start of the convolution window operation L,N+L,
FIFO Delay (FD) Delay for generating data in row’s time index N-Q2L,+1)
Conv. Win. Size (CWS) Size of convolution window 2L, +1
Bottom Border (BB) Bottom border position N X (N-1)
End of Frame (EOF) End of frame position NXN-1

TasBLE 6: Output registers lengths for used digital units depending on the parameters [, L,,, and N.

Length of MUXs MULTs ADD Shleft CumADD, OutREG
Parameters [, L,,, N I 2.1 CEIL(log,(2 - (2% - 1))) 2-1+1 CEIL(log, ((2%! — 1) x (2L2,+ 3L, + 1))
TaBLE 7: Summarized resource utilization for real device and L,, = 5, N = 64 and 2D STFT data length [ = 8.

Chip Family Recommended Device Logic utilization Combinational ALUTs  Dedicated logic registers Total registers

Stratix IT EP2S15F672C5 19% 1,027/12,480 (8%) 1,905/12,480 (15%) 1905

Total I/O Total virtual Total block memory DSP block 9-bit Total Total

Pins used pins used bits used elements PLLs DLLs

345/367 (94%) 0 75,066/419,328 (18%) 2/96 (2%) 0/6 (0%) 0/2 (0%)
TaBLE 8: Hardware complexity of the considered implementations of 2D systems.

Implementation No. of used functional units No. of memory locations

No. of adders No. of multipliers No. of shift left reg.

Parallel (when it is possible) 412 +4L, + 1 412 +4L, +2 412 +4L,, 4NL,, +4L,, + 8
MCI with a fixed number of CLKs 3 2 2 4NL,, +2L2 + 6L, + 10
Proposed signal adaptive 5 6 2 2N? +4NL,, +2L2, + 8L, + 10

TaBLE 9: CLK cycle times and execution times (by frequency-frequency point) of the considered implementations of 2D systems. Tcp, Tcsr,
Tesa are CLK cycle times in the cases of the parallel design, MCI one with a fixed number of CLKs and the signal adaptive one, respectively,
whereas T is the 1-bit shift time. Execution time of the proposed design has been calculated for the considered signal (5) and N = 64, L,,
= 5. Total number of CLKs taken by the proposed design is 35326, whereas the average number of CLKs by frequency-frequency point is
35326/64% = 8.6245.

Clock cycle time Execution time
Tep = 2T+ (L% + 2L, +2)T, + T Teop
TcSF = Tm + ZTa + Ts (ZL%H + 2Lm + 2)TcSF

TcSA =2T, + 2T, + 2Tcomp 8.6245 X TcSA

Implementation

Parallel (when it is possible)
Serial with a fixed number of CLKs
Proposed signal adaptive

been derived from (8) in four CLKs, since xp 1 =0 ((=3)*492
=90<R*=94)and x_10 =0 (12+ 1> =2 < R> =94). In the
third marked instant, corresponding to the region of support
frequency-frequency point, CTFWD_OUT = (—10)* + 10% +
2% (10 X1+ (=10) x (=11)) = 440 has been derived from
(8) in five CLKs, since xp, > = 0 ((—3)* + 9> = 90 < R* = 94)
and x_19 =0 (1> + 12 = 2 < R?> = 94). Variable number of
CLKs, taken by the proposed design in different frequency-
frequency points, can easily be observed by considering the
period of the STFT_Load cycle, or the period of the RESET

cycle in Figure 8. Illustration of the number of taken CLKs
in the corresponding frequency-frequency points is given by
the gray-scale shaded graph in Figure 9.

5. Comparative Analysis

The proposed MCI signal adaptive design will be compared
with the other implementations of systems for S/SF signal
analysis: the possible parallel one with a fixed CLK cycle,
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FiGure 8: Illustration of the simulation results around the frequency-frequency instant when the region of support is detected.
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Figure 9: Mlustration of the number of CLKs taken by the proposed design in corresponding frequency-frequency points during the
execution. Different numbers of CLKs are illustrated by gray-scale shaded points, where the white ones denote minimal number of 2 CLKs,
whereas the black ones denote maximum number of 2L2 + 3L, + 2 = 67 CLKs.

[33], and the existing MCI one with a fixed number of
CLKs, [34]. Trade-offs and comparisons of the considered
implementation approaches are summarized in Tables 8 and
9. In general, MCI designs imply both minimal hardware
requirements and much shorter CLK cycle time in com-
parison to the parallel design. Note that the minimal total
number of used memory locations in parallel design is
the consequence of the LUT memory absence in this case
(i.e., absence of LUTs of 2L2, + 3L, + 2 locations and of
212, + 2L, + 2 locations in the cases of the proposed signal
adaptive design, Table 3, and the MCI design with a fixed
number of CLKs, [34], resp.). Also, the proposed signal
adaptive design includes two input memories, capacity of
maximum N? locations, used to store real and imaginary

parts of input 2D STFT elements and to allow importing
(in process) of these elements with a variable (STFT_Load)
cycle. Input memories additionally allow the fastest possible
sampling interval of the analyzed analogue 2D signal in all
considered implementation cases. However, observe that the
total number of used memory locations remains quite small
in all these cases.

On the other side, MCI designs generally require
longer execution time. However, the proposed signal adap-
tive design allows the implemented S/SF system to take
variable number of CLKs (the only necessary ones that
provide CTFWD signal representation quality) in differ-
ent frequency-frequency points within the execution: the
minimal one outside regions of support (where the greater
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part of total frequency-frequency points commonly lie), the
higher one inside these regions, and the possible maximum
one only around the central points of each region of
support, Figure9. In this way, the proposed design can
significantly improve the execution time with respect to the
other designs, removing the main drawback of the MCI
architectures in comparison to the parallel ones, [34]. For
example, in the analyzed signal (5) case, when L,, = 5, N
= 64 are applied, the proposed design improves execution
time in comparison to the other corresponding designs
for Ts, Tecomp < Ty < 2.935 x T,, Table 9. Finally, only
the proposed design produces a pure 2D CTFWD signal
representation, optimizing both the calculation complexity
and the noise influence suppression. Non-adaptive systems
cannot produce so high S/SF representation quality, Figures
2,3, and 6.

In accordance with the design principle considered here,
the number of CLKs taken in different frequency-frequency
points corresponds to the number of real summation terms
(or to the number of real multiplications) in (8) incremented
for the completion CLK and, in some cases (region of sup-
port points that include non-maximum number of summa-
tions), for some termination CLKs. Therefore, Figure 9 can
simultaneously approximate the distribution of the number
of necessary operations taken by frequency-frequency point.
In line with this notation, observe that, in this case, white
shaded frequency-frequency points correspond to 2 complex
additions (used in the recursive 2D STFT calculation, [12],
since 2D SPEC calculation includes only one summation
term and does not include summation execution) and
3/2 complex multiplications (2 real multiplications-used,
according to (8), in real and in imaginary computational
line-corresponding to a half of a complex multiplication
and a complex multiplication for the recursive 2D STFT
calculation, [12]). In addition, note that this observation is in
a full correspondence with theoretical analysis, summarized
in Table 1.

6. Conclusion

Signal adaptive multiple-clock-cycle hardware design for
S/SF signal analysis has been developed, based on the
2D method for improved S/SF signal representation, also
proposed here. The proposed design optimizes critical design
performances, related to hardware complexity, making it
possible to perform S/SF analysis by using standard devices
like FPGA. Allowing the developed 2D system to take a
variable number of CLKs in different frequency-frequency
points, the signal adaptive design optimizes the execution
time, significantly improving it in comparison to the other
designs (the parallel one and the existing MCI one with
a fixed number of CLKs). In this way, the design simul-
taneously produces the optimal—2D WD—presentation of
autoterms, as well as the pure cross-terms-free S/SF signal
representation in the practically only important case of
the nonstationary multicomponent signals having different
widths of autoterms.
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