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The function of the low-level image processing that takes place in the biological retina is to compress only the relevant visual
information to a manageable size. The behavior of the layers and different channels of the neuromorphic retina has been
successfully modeled by cellular neural/nonlinear networks (CNNs). In this paper, we present an extended, application-specific
emulated-digital CNN-universal machine (UM) architecture to compute the complex dynamic of this mammalian retina in video
real time. The proposed emulated-digital implementation of multichannel retina model is compared to the previously developed
models from three key aspects, which are processing speed, number of physical cells, and accuracy. Our primary aim was to build
up a simple, real-time test environment with camera input and display output in order to mimic the behavior of retina model
implementation on emulated digital CNN by using low-cost, moderate-sized field-programmable gate array (FPGA) architectures.
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1. Introduction

The most important sensory organ for both humans and
mammals is the retina, which is a sophisticated visual
preprocessor system. This well-known part of the eye sends
visual information to the higher brain center (visual cortex)
across several parallel stacked channels (visual pathway).
These parallel operating ganglion cell populations are feature
detectors (such as orientation or direction of movement, of
form, color, etc.) that are built from a series of complex
spatiotemporal transformations generated at different retinal
levels.

The retina contains a dense mosaic of light-sensitive cells:
the rod and the cone photoreceptors. The photoreceptors are
in the deepest layers of the retina, and the light must first
pass through rows of other transparent cell layers (ganglion,
amacrine, bipolar, and horizontal cells) before reaching the
receptors. Functionally, there are these five main cell types in
the retina, and in the retinal transmission of information the
receptors are the first units and the ganglion cells are the last

[1].

Several different retina models have been developed till
now: some are low-complexity black-box models [2], while
others are high-complexity detailed neuromorphic models
[3-5], from which one is described and implemented on
FPGA here. The cellular neural/nonlinear network- (CNN-)
based neuromorphic model of the vertebrate retina has been
continuously improved and refined through the years. First,
a number of highly complex space-time transformations
were unraveled [4] and only the outer retina functions were
explored. The main problems came from the lack of adequate
analyzing tools. The detailed framework of mammalian
retinal modeling via two-dimensional and multilayer CNN
was published in [5], which provides us suitable model back-
ground to the real-time implementation. Definition of the
neuromorphic model elements was based on retinal anatomy
and electrophysiology measurements. The complexity of this
channel-based model is moderate enough, therefore, it can
be adapted to different hardware implementations using the
CNN computational paradigm.

These CNN-based retina models can be realized in
different forms, such as software simulator, analog VLSI



chips, and emulated-digital hardware (ASIC or FPGA) [6,
7]. However, the determination of the model parameters
requires very high computing power and accurate solution.
On one hand, using the complex cell analog VLSI chips,
only the basic building blocks of the retina model can be
implemented [6]. On the other hand, the software simulators
provide high flexibility, but low computing speed [8, 9],
hence simulating these detailed neuromorphic structures
require powerful workstations, but simulations still require
several hours or days to complete.

By using an emulated-digital CNN universal machine
(CNN-UM) architecture on FPGA [10] we can overcome
the limitations of the analog VLSI CNN chips such as a few
numbers of layers (1-2), relatively small array size (128x128),
difficulties with implementing nonlinear templates, and low
accuracy (limited to 6-7 bit).

The emulated digital architectures based on CNN
computational paradigm can be used very efficiently for
two-dimensional, spatiotemporal signal processing, solving
partial differential equations (PDEs) and state equations of
complex dynamical systems [11] as well.

A neuromorphic two dimensional but multilayer retina
model was successfully developed and tested comparing the
computed and measured values. By using reconfigurable
FPGAs, we could handle the inherently multilayer struc-
ture of a retina model, and the parameters and values
can be represented with scalable accuracy [10, 11]. The
previously elaborated single-channel model [7] was extended
to a multichannel one with higher hardware requirements
and optimizations. The complete real-time system (about
30 frame/sec) based on FPGA, video camera, and monitor
was built up to verify the model’s behavior and to analyze
the effect of parameter accuracy.

Considering the structure of this paper, in Section 2,
we show the computational background of the mammalian
retina model. Details about the optimized Falcon processor
and the distributed arithmetic unit of the multilayer retina
model architecture are introduced in Section 3. In Section 4
real-time image processing test systems are presented while
in Section 5 the device utilization and the speedup on
different FPGA architectures are analyzed. In Section 6
our results are compared to the original neurobiological
measurements and the implemented model is demonstrated
by an example. Finally, some conclusions are drawn in
Section 7.

2. Background: The Mammalian Retina Model

2.1. Governing Equations. The basic building blocks of the
biological retina model are the abstract neurons which
are organized into two-dimensional layers [2]. The model
seems to be complex in one hand, but can be decomposed
into multi-layer CNN structure and can be implemented
on a parallel processing array. The main components of
the abstract neuron are the cell body, the synapses, and
the output transfer function. The cell body has a first- or
second-order dynamics, which is described by the following
differential equations deduced from [5]:

EURASIP Journal on Advances in Signal Processing

Tah = —xh+ > Chxhgt D > frn(Goad)

kleSn VmeSyl kleSm
+ Z x:lm+ Z (lem_rxgm) _Sxfﬂ
VmeSy2 VmeSy3
(1)
i = —xh +xL, (2)
Vo= fi (%), (3)
1 2 1
cl=21(2 -12 2], (4)
1 2 1
o 1 —\/1*+j*/o
(5)

i =N o (r NS¢ >

TS e Gom( D
Ggl,—l G(il,O Gi1,1
G, Gy Gy, (6)
G, Gy G

where

(i) x., and xj, are the states of the second-order abstract
n
neuron,

(ii) y is the nonlinear output of the abstract neuron,

(iii) 7/ and 7/ are the time constants of the different layers
in various retina channels (see [5]),

(iv) f" and f° are the receptor and the output transfer
function,

(v) Sn and Sm are the local neighborhood of the neuron,

(vi) C is the diffusion type template (see (4)), receptive
field- (RF-) type spatial weighting at intralayer
synapses,

(vii) A is the coupling parameter (space constant) of a
given layer,

(viii) G is the Gauss-type template (see (5) and its
matrix-form (6)), RE-type spatial weighting at intra-/
interlayer synapses, where g is the gain parameter of
the receptor

(ix) o is the sigma (spatial property) parameter of the
receptor,

(x) Syl, Sy2, and Sy3 are the plain, delayed, and desensi-
tized receptor set, respectively,

(xi) r is the ratio parameter, and s is the feedback gain
(strength of the interaction).

Subsequent layers supply the input of the next layer
through synapses. The abstract neuron has receptors to
implement these synapses. The three different types of recep-
tors are plain, delayed, and desensitizing. The differential
equations of the receptors are the following:
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FIGURE 1: General neuromorphic structure of the light-adapted mammalian retina model. The horizontal lines represent different layers
showing their proper cell names and functions. The vertical dashed arrows denote the inhibitory synapses while continuous arrows show the
excitatory synapses. These connections can be varied for each specific retina channels. Each diffusion layer can be associated with a diffusion

constant (called space constant) and a local time constant.

where

(i) x7,, and x4, are the states of the receptor and the
desensitized receptor,

(ii) 7" and 7¢ are the delay and the desensitizing speed
(time constants) of the receptor.

2.2. Requirements. The light-adapted mammalian retina
model consists of several main parts. These main parts
are the outer retina model and the different ganglion
models. The outer retina is a 3-layered uniform block
(generally called outer plexiform layer), which transforms
the input stimulus to the different, parallel ganglion models
(channels).

The ganglion models contain three functional blocks:
the excitation pattern generator, the inhibitory subsystem,
and the ganglion cell model. This middle abstraction-level
model can be transformed into a low-level multilayer CNN
structure as shown in Figure 1. Each layer has its own time
constant and connection weights. The interlayer connections
are zero neighborhood neuron to neuron links that have
linear- or rectifier-type, nonlinear transfer functions.

Constructing a single channel of the retina model at
least 10 vertically stacked CNN layers are required. The
whole structure cannot be directly implemented on the
two-layer complex-cell analog VLSI CNN-UM chip (e.g.,
CACE1k) [6]. Additionally, the size of the array is just
32 x 32 cells, which is not sufficient for most of practical
applications where larger image size is required (e.g., 174 X
144 sized cell array in QCIF format). Another analog
VLSI implementation is a handy camera exploration device
implemented on a stand-alone Bi-I system [12], which is
capable of computing four retina channels in real time.
However, the relatively low accuracy and moderate array size
of these analog chips (128 x 128) do not make it possible to

utilize their high computing power during the correct model
building and parameter tuning steps of the retina modeling.

3. Objective: Retina Model Implementation
on FPGA

The elaborated Falcon-multilayer (ML) emulated-digital
CNN-UM architecture based on FPGA can be used to
emulate a globally connected multilayer CNN network.
It has a modular structure, for example, the number of
layers and processors elements, the size and the number of
templates can be adjusted moreover, the bit widths of state,
constant, and template values are configurable [10]. Large
number of these parameters makes it easy to synthesize the
Falcon architecture, which is optimal for the retina channel
computations. The control unit can be tailored to these
configuration parameters.

The hardware complexity of Falcon-ML core increases
in quadratic manner as the number of layers is increased.
In the simplest case, for modeling one channel of the retina
at least 10 layers should be emulated which means that 100
inter and intralayer connections and 300 multipliers (in case
of nearest neighborhood templates where 3 multipliers are
used to compute the template operation in 3 clock cycles)
are required. Although implementing such a huge arithmetic
unit of the single-channel retina model is already possible on
the latest available reconfigurable FPGA chip, it consumes
a lot of dedicated resources, therefore, some optimizations
are required. This complex arithmetic unit can compute the
derivatives and update the cell’s state value in one clock cycle
but it requires pipelining to achieve high clock speeds.

The main blocks of the optimized p-layered Falcon-
ML architecture are shown in Figure 2. Depending on the
template size, each mixer unit stores the surrounding cells of
the currently processed one, while the memory units store
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FiGgure 2: The structure of the optimized multilayer Falcon-ML
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Figure 3: The block level structure of the optimized arithmetic
core.

a one or two row-high belt from the given layer. Using
this structure the 1/O requirements of the processor are
reduced to p load and p store operations per cell update. The
optimized template memory contains only the parameters
which are necessary to perform the computations, while the
modified arithmetic units make efficient computation of the
different type multilayer dynamics possible.

If we consider the different specific channels of the
mammalian retina model, most of the interlayer links are
zero, some of them are zero neighborhood templates and
only a few feedback connections require a nearest neighbor
template [5]. Additionally, the diffusion- and Gauss-type
templates (see (4) and (6)) are symmetrical, which makes
further optimizations possible. The block level structure of
the optimized arithmetic unit is shown in Figure 3. To reduce
the clock cycle time of the arithmetic unit, pipeline technique
is used. According to (1), (2), and (7) the computation of the
derivatives can be divided into the following three parts:

(i) computation with the zero neighborhood (intra- and
interlayer) connections,
(ii) computation with the diffusion-type template,
(iii) computation with the Gauss-type templates.

Each layer has a separated and optimized arithmetic core
which is connected to the mixer and memory units of the
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FIGURE 4: Structure of the optimized arithmetic unit to compute
the diffusion-type template (pipeline registers are not shown for
simplicity).

other layers according to the existing connections between
the layers (see Figure 1). The structure of the arithmetic unit
is shown in Figure 3.

The simplest element of the arithmetic unit is the
intralayer block, which computes the inter- and intralayer
zero neighborhood connections. This unit contains one
multiplier for each connection, and the multiplied values are
summed by an adder tree.

Due to the symmetry properties of the diffusion-type
template (see (4)), the computation can be performed by the
optimized circuit shown in Figure 4.

Multiplication with 2 and —12 is carried out by shifting
operations and only one multiplier is required to compute
the 3 x 3 template operation. This solution reduces the
number of required multipliers from 3 to 1. Additionally,
the number of clock cycles required to compute a new value
is also reduced from 3 to 1 clock cycle, which significantly
increases the computing performance of the processor.

The Gaussian template (see (6)) is also symmetrical but
the ratio of the coefficient values is not an integer number.
Therefore, at first the equally weighted state values are
summed then these partial results are multiplied; finally the
multiplied values are summed again. By using this optimized
circuit shown in Figure 5, the number of multipliers is still
three but the length of the computation cycle is reduced to
one clock cycle.

The optimized Falcon-ML processor uses the discretized
Forward-Euler method to compute the dynamics in each
layer of the retina model. The Iterate block of the arithmetic
unit (in Figure 3) sums the computed parts of the derivative
and computes the new state value of each cell. The time-
step value h is restricted to be an integer power of two. This
method allows us to perform the multiplication with 4 by
shifts and does not require an additional multiplier.

Implementing process and testing the previously
described arithmetic unit can be very time consuming,
but using rapid prototyping techniques and high-level
hardware description languages (such as Handel-C [13]
from Agility Inc.) makes it possible to implement the
optimized arithmetic units within shorter development



EURASIP Journal on Advances in Signal Processing

Yitl,j+1 Yitl,j-1 Yi-1,j+1 Yi-1,j-1 Yij+1 YVij-1  Yitl,j YVi-1,j Vi,
ES e T e N e
o0
()
; ; :
Gl1,nm Glo,nm E
— — 17
* * Gg(),nm
—

o !
Z CH
kleSm

FIGURE 5: Structure of the optimized arithmetic unit to compute
the Gauss-type template (pipeline registers are not shown for
simplicity).
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FIGURE 6: Test environment for RC2000 prototyping board.

time compared to the conventional HDL-based RTL level
approaches, where the entire model hierarchy should be
treated.

4. Real-Time Test Environments

The proposed specialized Falcon-ML architecture with
single-channel and the extended multichannel model were
implemented both on the RC2000 prototyping board (in
Figure 6) from Agility Inc. [13] and on the XUPV2P
development board (in Figure 7) from Digilent Inc. [14].

The PCI-based RC2000 board contains a Virtex-II FPGA
(XC2V6000) and 24 MB ZBT SSRAM memory, which is
organized in six 36-bit wide independent banks [13]. Indi-
rectly, a simple web camera can be connected to the host PC
with a USB cable and it can communicate with the RC2000
board across the PCI-64 bit/66 MHz bus. Alternatively, using
the XRM CameralLINK module, we can attach an external
digital camera directly to the standard XRM-CL interface.
This test environment is represented in Figure 6.

Our another experimental system was the XUPV2P
prototyping board based on Virtex-II Pro FPGA (XC2VP30)
which is supplied with 256 MB DDR SDRAM memory [14].
Using the Digilent VDECI video decoder add-on board [15]
makes it possible to connect an NTSC camera directly to the
FPGA board and it sends input video frames to the processor
with 25 fps, shown in Figure 7.
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FiGURE 7: XUPV2P-based experimental system.

TaBLE 1: General single-channel retina model requirements and
available resources on different FPGAs.

Device 1-channel (10  Available  Available .

e . . Available on
utilization layer) retina on on XC5SX240T
and speed  model @ 22 bit XC2V6000 XC2VP30
Num. of
occupied 8496 33792 13 696 37440*
slices
Num. of .
BRAM 69 144 136 516
Num. of N
MULTSs 35 144 136 1056
Max. Core
Freq. [MHz] 220 280 550

*Virtex-5 FPGAs are differently organized: a slice contains four 6-input
LUT, 4-bit carry logic, and four registers; size of the Virtex-5 BRAM is
36 Kbit and the multipliers (DSP48E slice) are 25 x 18-bit wide.

In both cases a monitor displays the computed results of
the various channels of retina model.

5. Device Utilization and Performance

The available resources and the device utilizations for some
different FPGA processors are summarized in Table 1. The
single-channel retina model implementation consume large
amount from the available chip resources, even at 22-bit
state precision. This is the required accuracy to provide
qualitatively correct responses for input stimulus (as we will
see in Section 7).

Architecture of the Xilinx Virtex-5 devices is different
from the previous Virtex families, therefore, area require-
ments of the retina model implementation is smaller on these
devices. Additionally, these new devices have considerably
more general logic and dedicated resources. Due to these
considerations, the number of implementable Falcon-ML
processor elements can be increased, which makes it possible
to emulate multiple retina-channels in video real time.

As can be seen in Figure 8, the logic resource occupancy
of the Xilinx Virtex-II Pro-30 FPGA is between 35.1% and
73.6% depending on the computing precision, while the
Xilinx Virtex-II 6000 has significantly more logic resources
and only 14.2% to 29.8% of the device is consumed by the
single-channel retina model. These moderate-sized FPGAs
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have similar amount of dedicated resources and about 50%
of Multl8 x 18 components and about 25% of BRAM18k
blocks are required for the implementation as shown in
Figure 9, considering the qualitatively correct 22—24 bit state
precision.

If we use the state-of-the-art Virtex-5 SX240T, DSP-
specialized FPGA, only a small fraction of the available
resources are used at 22-24bit precision: 8.2% of slices,
3.4% of BRAM36Ks block memories, and 4% of DSP48E
multipliers are utilized.

The number of the implementable processor cores is
strongly related to the resource occupancies for different
reconfigurable Xilinx chips. This is summarized in Figure 10.
By using our Virtex-II Pro30 and Virtex-II 6000 moderate-
sized, low-cost (below $1.000) FPGAs only 1-2 processor
core(s) of the general, single-channel, multilayer retina
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model can be implemented at acceptable precision (~22-
24 bit) that provides qualitatively correct output results. The
main limitations in these two cases are the moderate number
of dedicated multiplier (signed, 18-bit 2’s complement
MUILT18 x 18) resources.

However, constructing a specific retina model for each
different channel instead of using the general model, we
can save additional resources by eliminating some unwanted
connections. On the currently available largest Virtex-5
FPGA (XC5VSX240T) which is optimized for DSP- and
memory-intensive applications even 17 Falcon-ML proces-
sor cores can be implemented to speed up the compu-
tations [16]. In this case, the number of available logical
slices determines the number of implementable Falcon-ML
processor elements. Since Virtex-5 family contains a huge
number of 25x 18-bit wide DSP48E multiplier blocks (1056),
therefore, in the optimized arithmetic core of the Falcon-ML
processor only a few number of dedicated multiplier blocks
are required at the 22-24 bit precision. For this reason, more
(or all) channels of the CNN-based mammalian retina model
can be emulated simultaneously.

The performance of the elaborated architecture is scaled
linearly according to the number of the processors. Comput-
ing performance compared to the speed of an Intel Core2
Duo T7200 [17] microprocessor running on 2 GHz clock
frequency is shown in Figure 11. During the comparison
proprietary-optimized software was run on the micropro-
cessors which directly solved (1), (2), and (7) using the
discretized Forward-Euler method.

The results of the general retina model show that even
in the case of the moderate sized XC2V6000 FPGA at least
150 times higher computing performance can be achieved at
the adequate 22-24-bit precision compared to the software
simulation. If the state-of-the-art specialized XC5VSX240T
FPGA is used, the computations can be carried out more
than 3200 times faster.

The processing time increases in linear manner as the
number of pixels is increased. The maximum size of the
processed image is determined by the available on-chip
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FIGURE 11: Performance of different implementations compared to
an Intel Core2 Duo processor running on 2 GHz.

BRAM memories on a given FPGA. In case of single-
channel retina model and without using external memory
the maximum size of the processed images can reach 64 x 64
on Virtex-II and Virtex-II Pro FPGA, while about 256 X
256 on the Virtex-5 FPGA architecture. To process high-
resolution images the external onboard memory is required
to store the state values of the retina model. So the processing
time will be about an order of magnitude slower due to the
memory bandwidth limitation.

The high computing performance of the largest available
XC5VSX240T FPGA makes video real-time emulation of
multiple retina channels possible. The clock frequency of the
architecture is 550 MHz and only one clock cycle is required
to compute a new cell value. The cumulative performance
of the 17 implementable processor cores at qualitatively
acceptable 22-24bit precision can reach 9.35 billion cell
iteration/sec. The high performance of this processor is
capable of computing 256 X 256-sized cell array in real-time
(at 30 frames/sec) and the different channels of the retina can
be emulated by using 277 millisecond timestep.

Additionally, the large number of implementable Falcon
processors makes it also possible to emulate more than
one specific channel of the retina. In this case only one
three-layered, uniform outer retina block is required and
the processor is extended to emulate additional excitation,
inhibition, and ganglion blocks. The modular structure of
the memory and the arithmetic unit makes this extension
possible easily. The Handel-C [13] high-level hardware
description language makes implementation process and
testing of the new processor much faster and simpler than
the conventional RTL-based HDL level approaches.

Unfortunately, expansion of the neuromorphic retina
model with any new layer increases the required I/O
bandwidth significantly and several clock cycles are necessary
to load the state values and save the results. Although the
arithmetic unit can update a value in every clock cycle this
high computing power cannot be utilized because several
dummy cycles must be inserted until the I/O operations
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Ficure 12: Differences of the 64 bit floating-point and the fixed-
point result of the various retina channels.

are carried out. Due to the architectural properties of
the moderate sized Virtex-II and Virtex-II Pro FPGAs the
memory units must be configured 1024 element-wide. In
most cases much smaller cell array size is required hence the
memory unit is also underutilized. To improve the utilization
of the memory and the arithmetic unit virtual processors are
implemented. These virtual processors are chained one after
another and each of them works on different Forward-Euler
iteration. In case of the memory unit the data of the different
virtual memory units are stored on subsequent addresses.
Similarly the arithmetic unit is used by the different virtual
arithmetic units in subsequent clock cycles. Implementation
of the virtual processors incurs minimal overhead in area.
In most cases only shift registers are required, which can be
very efficiently implemented on the FPGA. By using virtual
processors the utilization of the memory and the arithmetic
unit can be improved which results in higher performance.

6. Accuracy and Results

Performance of the processor can be significantly improved
by decreasing the computational precision, but low precision
gives inaccurate solution. We should find a balance between
computing precision and solution accuracy. The results of
the different fixed-point computations are compared to the
64-bit floating point results. Not knowing the exact analytical
solution of a complex numerical problem, the double
precision floating point implementation is considered as
the accurate solution. The absolute maximum difference
between the different solutions is represented in Figure 12.

A simple test case is computed by using different
computing precision to approximate the accuracy of the
results as it can be seen in Figure 13.

In case of very low precision, under 14bit, the error
values for all retina channels are very high because the model
does not respond to the input. At least 16—18 bit precision
is required to get some response on the output of the
model. If the precision is improved further, the error of the
solution decreases quickly (see Figure 12). If the dynamics of
the retina model should be computed accurately, 28-30 bit
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horizontally while space is on the vertical axes. The total examined time period is 2 seconds, where the flashing white stimulus is “turned-on”

for 1 second.

precision is required while qualitatively correct results can
already be obtained by using 22-24 bit precision. Input test
stimulus of the model is the commonly used white flashed
square, where the square is white for 1 second and uniform
gray for 1 second. During the simulation the responses
of different channels are computed by an FPGA of our
experimental systems and finally the results are projected on
the monitor. The spatiotemporal distributions of activity at
different computing precisions are shown in Figure 13. The
results qualitatively reproduce the inhibition, excitation, and
spiking patterns of the neurobiological measurements for the
flashed square stimulus.

The main goal of our emulated-digital implementation
is to reproduce the results of neurobiological measurements
and we are not focused on solving the computation of the
dynamics as accurately as possible. The integration step size
(h) is tightly related to the timing parameters (7) and to the
accuracy of the solution. Proper settings of the 7 parameters
are deduced from [5] (the details are shown in Table 1).
The timing parameters can be of very different values of the
subsequent layers within a unique retina channel and the
smallest one will determine the value of the time-step.

Several higher order numerical methods are examined
during the computation of the CNN dynamics and summa-
rized in [18, 19]. On the one hand, if we use the higher-order
Runge-Kutta (RK-4) formula the step-size can be doubled
compared to the Forward-Euler method, but it requires four

times more computations as the explicit Euler formula. It will
imply that the Falcon architecture based on the higher-order
Runge Kutta method requires four times more multiplier
blocks, therefore, the area occupancy on FPGA will also be
significantly increased. So this method is not worth to be
implemented on an FPGA in the case of the retina model
computations, because four-time larger area, which results
in four-time smaller performance, is required to halve the
number of steps.

On the other hand, during our computations the
Forward-Euler method is used which is commonly applied
in the calculations of the CNN dynamics. Although the
Forward-Euler method employed in the Falcon-ML architec-
ture computes the dynamic with smaller and fixed step-size
as the Runge Kutta-4 method and it has a limited precision,
the computations will be numerically stable if the step-size is
selected carefully.

7. Example

Multiple channels of the neuromorphic, multilayer retina
model can be implemented on our experimental systems.
The incoming video flow (at 25 fps) is captured frame-by-
frame by a standard camera, then these frames are processed
according to the various retina channels of the model in real-
time by using FPGA, and finally are displayed on a monitor.
Snapshot of the output of the system for two different retina
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FiGUurg 14: In this example two different (ON-, and OFF-type)
retina channels are computed in video real-time by using our
experimental system.

channels is shown in Figure 14. The size of the processed
picture is set to 64 X 64, while time-step value h is adjusted as
277 millisecond. Row (a) shows the natural input stimulus
captured by a camera. Row (b) denotes the first retina
channel called OnBiStratified, while Row (¢) demonstrates
the second channel called OffBrisk-Linear. Each column
represents the biologic name of the cells: bipolar excitation,
inhibition, and ganglion cell output (spiking), respectively.

8. Conclusion

Our experimental systems with extended emulated-digital
CNN-UM architecture based on the optimized Falcon-
ML processor core were successfully designed to solve the
state equations of the multilayer retina model. Due to
the modular structure, it rapidly provides implementable
specialized processors to emulate different retina models and
multiple retina channels on the low-cost (referring to the
ASIC implementations), moderate-sized FPGA prototyping
boards as well. The computing precision of the processor
is configurable in wide range making a trade-off between
area and performance. Even using moderate precision (at 22—
24 bit) the fixed-point results are very close to the floating-
point result, which is considered as analytical result. If the
precision is increased further to 30-bit, the accuracy of the
fixed-point solution is comparable to the accuracy of the
floating-point result. This provides for using our proposed
architecture during the rapid model building and parameter
tuning steps of various retina modeling where fast and
accurate solution of the model is required.

On the currently available largest FPGAs these computa-
tions can be performed approximately three orders of magni-
tude faster than an Intel Core2 Duo microprocessor running
at 2 GHz clock frequency. On the proposed architecture the
cumulated performance of the Falcon-ML processors makes
video real-time emulation possible in case of multiple retina-
channels and large-sized (e.g., 256 X 256) cell arrays.

To sum it up, our proposed emulated-digital implemen-
tation on FPGA, based on CNN framework of the mam-
malian retina model, is capable of reproducing qualitatively
the same full set of space-time activity patterns as the living
retina in response to the different input stimulus.
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