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1. Introduction

Allocating limited resources at medium access control
(MAC) layer and physical (PHY) layer among users (from
now on briefly scheduling) is a fundamental problem in
the design of next generation wireless systems. In general,
a scheduling problem can be formulated as some kind
of optimization problem, where the objective is to max-
imize/minimize some system performance measure under
PHY layer constraints as well as quality of service (QoS)
constraints on the MAC layer. One important performance
measure is the total system throughput and it is therefore
often considered as an objective of the optimization problem.
Throughput-optimal scheduling policies are the policies,
which can support any vector of arrival rates inside the
ergodic achievable rate region [1, 2]. There exist quite a
few scheduling policies which achieve this figure of merit
[1, 3–9].

An important observation is that even though two
different scheduling policies have the same throughput
performance, they might significantly differ in, for example,
their packet delay performance. Hence, in a system with

random packet arrivals stored temporarily in queues, an
enhanced performance criterion is to keep the queue lengths
as short as possible so that the average packet delay of each
user is minimized. One widely applied scheduling policy is
the maximum weight matching scheduling (MWMS) policy
which maximizes the sum of the rates weighted by the packet
queue length of each user [3, 4, 10–12]. It was shown in [12]
that the MWMS policy is delay-optimal for multiple-access
channels. However, this result is based on the polymatroidal
structure of the capacity region of multiple-access channels.
For broadcast channels (BCs), MWMS is not delay-optimal
even with symmetry assumptions. Motivated by this fact,
Seong et al. introduced in [9] another throughput-optimal
scheduling policy called queue proportional scheduling
(QPS) which provides superior delay and fairness properties
for the BC compared to MWMS. It minimizes the maximum
draining time of the queueing system without new arrival.
Based on the QPS policy, the delay region for such queueing
systems can be characterized if the channel state is quasistatic
[13].

A disadvantage of the approach in [9] is that the cost
function is not directly related to average packet delay which
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by Little’s law can be calculated as the average queue length
divided by the average arrival rate. Based on this expression,
a scheduling problem can be formulated as a cross-layer
optimization problem containing system parameters and
constraints in PHY layer and MAC layer. A direct solution
of such a problem involves a large number of optimization
variables and is intractable. The focus of this paper is to
provide a new approach to this problem.

Contributions. We first analyze some general characteristics
of throughput-optimal scheduling policies. It is shown that
they can be generally formulated as weighted sum rate
maximization problems differing only in the choice of the
weight factors. Furthermore, we prove that for throughput-
optimal policies the weight factors are independent of the
current channel state. Hence, the cross-layer scheduling
problem is decomposed into two separate optimization
subproblems:

(1) finding the optimal weight factors according to the
queue states;

(2) solving the weighted sum rate maximization problem
with respect to the instantaneous channel states.

Both subproblems are only coupled by the weight factors
in the maximization problem. Interestingly, it was pointed
out in [14, 15] that the solutions of such an optimization
problem itself exhibit a layered structure with only limited
degree of cross-layer coupling. Under some mild conditions,
the complete optimization problem can be decomposed into
several subproblems and the interfaces among them are
quantified as the optimization variables coordinating the
subproblems.

For Step 1 we introduce an iterative algorithm called
idle state prediction (ISP) algorithm to obtain the optimal
weight factors. This algorithm calculates the delay-optimal
weight factors under the assumption that no new arrivals
occur in the future by using the ergodic achievable rate
region and the current queue state. Obviously, since we
assume a dynamic scenario with random arrivals, the weight
factors have to be recalculated in each time slot according to
the updated queue state. Once the weight factors are fixed,
the actual resource allocation is determined by maximizing
the weighted sum of rates according to the instantaneous
channel state. Note that we do not further comment on
the weighted sum rate maximization problem in Step 2 for
which there exist already efficient algorithms (multiple input
multiple output (MIMO) [16–18], orthogonal frequency
division multiplex (OFDM) [19, 20]). Simulations show that
the delay performance can be significantly improved by the
introduced scheduling policy.

The rest of this paper is organized as follows. In
Section 2 we describe the system model and define the
stability and delay measurement used in this paper. The
characteristics of the throughput-optimal scheduling are
analyzed in Section 3. Based on these characteristics, we
introduce our parameter separation concept for the design
of throughput-optimal policies. In Section 4 we present our
scheduling policy for both static and dynamic channels.

The scheduler is evaluated through simulations in Section 5.
Finally, we conclude with Section 6.

Notations. We use boldface letters to denote vectors and
normal fonts with subscript are the elements of the vectors.
‖x‖ denotes the l1-norm of the vector x. The inequality
between two vectors x ≤ y stands for x being componentwise
smaller than or equal to y. Furthermore we use �x� to denote
the smallest integer larger than x and Ac is the complement
of a set A.

2. SystemModel

2.1. PHY Layer. We consider a single-cell downlink system
in which a base station simultaneously supplies M mobile
users. The channel between the base station and each user is
assumed to be constant within a time slot and varies from
one time slot to another in an i.i.d. manner. The channel
state of user m in the nth time slot is denoted as hm(n) ∈
S, where S is an arbitrary countable or uncountable set,
and all channel states of the user set M := {1, . . . ,M} are
collected in the vector h(n) ∈ SM . Here, the set S is used
to indicate that the general approach is not restricted to
a specific transmission scheme. For example, in an MIMO
system the channel state can be described as a matrix of
complex channel gains such that hm(n) ∈ Cnrnt where nr , nt
are the number of transmit and receive antennas at the base
station and mobiles, respectively. Likewise, for an OFDM
system the channel state can be defined as a vector of complex
channel gains on each subcarrier hm(n) ∈ CK , where K is
the number of subcarriers. In the nth time slot the data is
transmitted through the channel at rate r(n) ∈ RM

+ lying in
the achievable rate region denoted as C(h(n),P) with given
sum power budget P. For technical reasons we assume that
the transmit rates rm(n) are uniformly bounded by some real
constant cr > 0.

Note that it is not relevant for the purposes of this paper
in what way the achievable rate region is parameterized.
It is just assumed that we are able to solve the following
maximization problem:

r
(
μ, h(n)

)
:= arg max

r̃∈C(h(n),P),

μT r̃, (1)

where μ ∈ RM
+ is the set of weight factors. The solution of

(1) is a point on the convex hull of the achievable rate region
C(h(n),P). Observe that μ also represents the normal vector
of the convex hull at the point r(μ, h(n)) (see Figure 1). Then,
the ergodic achievable rate region is given by

Cerg
(
P
)

:=
⋂

‖μ‖=1

{
r̃1, . . . , r̃M : μT r̃ ≤ μTE

{
r
(
μ, h(n)

)}}
, (2)

which is a convex set [19, 20]. In this paper, we call the
achievable rate region in time slot n the instantaneous
achievable rate region or just achievable rate region which
is dependent on the current channel state h(n) and power
constraint P. The term ergodic achievable rate region is used
for the rate region defined in (2) which is averaged over all
channel states.



EURASIP Journal on Advances in Signal Processing 3

0 0.5 1 1.5 2 2.5 3

r1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r 2

μ

r(μ, h)

Convex hull of C(h,P)

Figure 1: Ergodic rate region and expected rate allocation in a 2-
user scenario. The solution of the weight maximization problem
(1) is a point on the convex hull of the achievable rate region
C(h(n),P). The vector of weight factors μ can be interpreted as the
normal vector of the convex hull at the obtained point.

In order to show the applicability of our approach let
us provide an example. We denote by COFDMA(h(n),P)
the achievable region of an orthogonal frequency division
multiple access (OFDMA) system, where each subcarrier is
exclusively assigned to one user. Due to the limited number
of coding and modulation schemes only certain rates are
achievable. Furthermore, there is a fixed power budget on
each subcarrier k denoted by pk and

∑
k pk ≤ P. The

achievable OFDMA region is defined as

COFDMA
(

h(n),P
)

≡
⋃

∑M
m=1 θm,k=1,∀k
θm,k∈{0,1}

{

r : rm =
K∑

k=1

r′m,k

(
ĥm,k, pk

)
θm,k

}

, (3)

where θm,k ∈ {0, 1} is the indicator if user m is mapped

onto subcarrier k and r′m,k(ĥm,k, pk) is the rate of user m
on subcarrier k with transmit power pk in one time slot

(e.g., 2 bits for QPSK). The parameter ĥm,k is the reported
(quantized) channel state of user m on subcarrier k. Due
to these practical constraints COFDMA(h(n),P) is a set of
discrete rate points, nevertheless the solution in (1) achieves
the points on the convex hull of COFDMA(h(n),P) and the
formulation of the ergodic achievable region Cerg(P) is still
valid. A detailed description of this region can be found in
[20].

2.2. MAC Layer. Assuming that the transmission is time-
slotted, data packets arrive randomly at the MAC and queue
up in a buffer reserved for each user m ∈M. Simultaneously
the data is read out from the buffers according to the system
state, that is, the random channel state and the current queue
lengths. Thus, the system can be modeled as a queueing

system with random processes reflecting the arrival and the
departure of data packets.

Denoting the queue state of the mth buffer in time slot
n ∈ N by qm(n) and arranging all queue states in the vector
q(n) ∈ RM

+ the evolution of the queueing system can be
written as

q(n + 1) = [q(n)− r(n) + a(n)
]+

, (4)

where [x]+
m = max{0, xm}, for all m ∈ M. a(n) ∈ RM

+
is a random vector denoting the amount of arrival packets
during the nth time slot and the vector r(n) ∈ RM

+ is the
amount of transmitted data. Without loss of generality we
set the length of a time slot T = 1, so that a(n) and r(n) are
equal to the arrival and transmit rate during the time slot
n. We assume that the size of a data packet is constant and
the sequence of arrival packets forms an i.i.d. sequence of
variables over time. To simplify the notation we set the packet
size to 1 without loss of generality. Further we make the
technical assumption that the maximum numbers of arrival
packets within one time slot are uniformly bounded by real
constant ca > 0. The vector of mean arrival rates is denoted
as ρ = E{a(n)} ∈ RM

+ .
The transmit rate r(n) is determined by the applied

scheduling policy. In this paper, we consider only stationary
scheduling policies which are the mappings

P : SM ×RM
+ 
−→ RM

+ ,
(

h(n), q(n)
)

� r(n). (5)

We further assume that the scheduling policies are only
dependent on the proportion of the individual queue
lengths and not dependent on the norm ‖q(n)‖; this covers
most existing policies. The rate allocation according to the
scheduling policy P is denoted as rP (h(n), q(n)). Since
both arrival rates a(n) and channel state h(n) are i.i.d.,
the evolution of the queueing system can be modeled as a
discrete-time Markov chain with general state space.

2.3. A Cross-Layer Performance Measure. The throughput
region is defined as the set of all arrival rate vectors for which
the Markov chain in (4) is stable in some sense [2]. There
exist several relevant stability measures for Markov chains
in literature, for example, strongly stable, weakly stable,
recurrent. In this paper we resort to the definition of weak
stability as in [21].

Definition 1. If for every ε > 0 there is B > 0 and N0(ε) such
that for all n > N0(ε), it follows Pr(‖q(n)‖ > B) < ε; then the
Markov chain is weakly stable.

In contrast the definition of an unstable Markov chain is
more subtle.

Definition 2. A Markov chain is said to be uniformly transient
if there is a countable cover of RM

+ with uniformly transient
sets, that is, there is C < ∞ with E(ηA) ≤ C for all x ∈ A,
where ηA =

∑∞
n=1 I(q(n) ∈A).

Let us introduce the following terminology: we call a
vector of mean arrival rates ρ stabilizable (not stabilizable)
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under a specific scheduling policy P when the corresponding
queueing system driven by P is weakly stable (uniformly
transient). It is well-known that any vector of arrival rates
inside the ergodic achievable rate region is stabilizable and all
other vectors of arrival rates are not stabilizable [1, 2]. Thus, a
scheduling policy is called throughput-optimal if it keeps the
system weakly stable for any vector of arrival rates ρ which
lies in the ergodic achievable rate region.

Having defined throughput-optimal scheduling poli-
cies we now introduce a relevant cross-layer performance
measure for average packet queueing delay. Consider the
following quantity:

D(N) = 1
M

M∑

m=1

Dm(N) = 1
MN

N∑

n=1

M∑

m=1

αmqm(n), (6)

where the natural number N ≥ 1 is the length of the
observation time window and α1, . . . ,αm are positive real
factors. If the factors are chosen such that αm := 1/ρm =
1/E{am(n)}, and the limit limN→+∞ (1/N)

∑N
n=1 αmqm(n)

exists and is equal to its stationary value, then Dm(N)
represents the average queueing delay of each packet of user
m as N → +∞ [22]. Note that even if the average arrival
rates ρm are not known a priori or they are approximately
estimated “on the fly,” so that αm /= 1/ρm, (6) still represents
a useful, measurable quantity for practical purposes. In this
case, D(N) is the weighted average delay where the weight
factor equals αmρm.

3. Parameter Separation Design of
Throughput-Optimal Scheduling Policies

In this section, we study some general characteristics of
throughput-optimal scheduling policies.

Theorem 1. A throughput-optimal policy always allocates the
rate vector on the convex hull of the instantaneous rate region.

Proof. If the scheduling policy P allocates a rate vec-
tor rP (h(n), q(n)) in the interior of the convex hull of
C(h(n),P), we have

μ∗TrP
(

h(n), q(n)
)
< max

r̃∈C(h(n),P)
μ∗T r̃ (7)

for some μ∗ ∈ RM
+ . Disregarding sets of measure zero and

since the policy is independent of time index n, the ergodic
achievable rate region CP

erg(P) of the policy P is smaller than

Cerg(P),

CP
erg(P) :=

⋃

‖q̃‖∈RM
+

{
r̃1, . . . , r̃M : r̃ ≤ E

{
rP
(

h, q̃
)}} ⊂ Cerg

(
P
)
.

(8)

Thus, the scheduling policy does not achieve the entire
ergodic rate region Cerg(P) and is not throughput-
optimal.

Theorem 1 is to be understood in the sense that if the
rates are not allocated on the convex hull of the instantaneous

rate region, some arrival traffic with ρ ∈ C(h(n),P) can
be constructed so that the queueing system is uniformly
transient. Since not all arrival rates with ρ ∈ C(h(n),P) can
be supported, the policy is not throughput-optimal.

Therefore, throughput-optimal scheduling policies can
be formulated as an optimization problem,

rP
(

h(n), q(n)
) = arg max

r̃∈C(h(n),P)

μP
(

h(n), q(n)
)T

r̃, (9)

where μP determined by scheduling policy P is a mapping
from the current channel state h(n) and the queue state q(n)
to the set of weight factors. Generally two mappings μP and
μ̃

P lead to the same rate point, where the convex hull has
no unique supporting hyperplane. In this case, we define
μP to be equivalent to μ̃

P if they lead to the same point.
The following theorem presents an important property of the
mapping μP .

Theorem 2. The mapping μP which characterizes a through-
put-optimal scheduling policy is independent of the current
fading state h(n).

Proof. We choose arbitrarily a weight vector μ∗ correspond-
ing to a fixed boundary point r∗ of the ergodic achievable
rate region, hence μ∗ is independent of the instantaneous
channel state. According to Theorem 1 we have for the

channel state ĥ and the queue state q̂

rP
(

ĥ, q̂
) = arg max

r∈C(ĥ,P)

(
μP
(

ĥ, q̂
))T

r. (10)

Thus, for fixed q̂ ∈ RM
+ , we have

μ∗TE
{

rP
(

ĥ, q̂
)|q̂} = E

{
μ∗T arg max

r∈C(ĥ,P)

(
μP
(

ĥ, q̂
))T

r|q̂
}

≤ E
{

max
r∈C(ĥ,P)

μ∗Tr
}

= μ∗Tr∗.
(11)

Equality holds if and only if μP (ĥ, q̂) = μ∗ and the
boundary point is achieved by the scheduler P , otherwise
the scheduling policy gives a rate vector in the interior of
the ergodic rate region. Therefore, if μP is dependent of the
instantaneous channel state, we can choose an arrival process
whose mean rate ρ∗ fulfills

max
q̂∈RM

+

μ∗TE
{

rP
(

ĥ, q̂
)|q̂} < μ∗Tρ∗ < μ∗Tr∗. (12)

Define a bounded positive function with x ∈ RM
+

V(x) = 1− 1
μ∗Tx + 1

, (13)
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we have

ΔV = E
{
V
(

q(n + 1)
)−V(q(n)

)|q(n)
}

= E

{
μ∗T

[
q(n)−r(n)+a(n)

]+−μ∗Tq(n)
(
μ∗T

[
q(n)−r(n)+a(n)

]+
+1
)(
μ∗Tq(n)+1

) |q(n)

}

� E

{
μ∗Ta(n)− μ∗Tr(n)

(
μ∗T

(
q(n) + a(n)

)
+ 1
)
(μ∗Tq(n) + 1

) |q(n)

}

,

(14)

if ‖q(n)‖ is sufficiently large. Since the arrival rate is bounded
am(n) < ca < +∞, for all m ∈M, it holds

ΔV > E

{
μ∗Ta(n)− μ∗TrP

(
h(n), q(n)

)

(
μ∗Tq(n) + ca

∥∥μ∗
∥∥ + 1

)(
μ∗Tq(n) + 1

) |q(n)

}

= μ∗Tρ∗ − μ∗TE
{

rP
(

h(n), q(n)
)|q(n)

}

(
μ∗Tq(n) + ca

∥
∥μ∗

∥
∥ + 1

)(
μ∗Tq(n) + 1

)

> 0.
(15)

Since the last inequality holds for any q(n), according to [23,
Theorem 8.4.2] the queueing system is uniformly transient.

As we introduced in Section 1, cross-layer design usually
improves the system performance at the cost of high com-
putational complexity. The optimization problem involves
variables and constraints from both PHY and MAC layer.
The resources, which can be dynamically adapted, are not
only limited to transmit power, but can also be extended to
code, frequency, and space according to the applied physical
model. At the same time, the scheduler must consider
the possible evolution of the queue states in subsequent
time slots. However, following the result in Theorem 2,
we can define the weight vector μP (q) of a throughput-
optimal policy as a function only determined by queue
state q. In this way, the classical cross-layer optimization
problem can be divided into two subproblems: finding
the optimal weight vector μP (q) according to the queue
states; solving the resource allocation problem (9) with the
given weight vector. By the separation of the optimization
parameters, the complexity of the optimization problem
is largely reduced. Since the second subproblem can be
efficiently solved for various physical models, the scheduling
design problem reduced to find the optimal weight vector
for the optimization problem. Particularly for the considered
delay optimization problem, the interface between the two
subproblems is the weight factor μP (q). An illustration of the
scheme is shown in Figure 2. The average packet delay D(N)
is dependent on the rate allocation rP , which is controlled
by the weight factor μP . Thus in Subproblem 1 we aim
to find the optimal weight factor which minimize averaged
delay D(N). The obtained weight factor μP is then used in
Subproblem 2 to calculate the rate allocation r. The details of
this scheduling algorithm is introduced in the next section.

Subproblem 1

Priority management: μP = arg minD(N)
μ

μP

Subproblem 2

Resource allocation: r = arg max
r̃∈C
(

h(n),P
)μ

PT r̃

Figure 2: Illustration of parameter separation. The suboptimiza-
tion problems are coupled by the weight factor μP .

4. Scheduling Design

In this section, we introduce our scheduling policy. First, we
solve the delay-optimization problem for a queueing system
with a static channel and no new packet arrivals. Then, we
adapt the scheduling policy to the queueing system with
dynamic channels and random packet arrivals.

4.1. Scheduling Policy for a Static Channel. Consider a static

channel ĥ and the initial queue states q(n = 1), we assume
there is no packet arriving after n = 1 and we choose a
sufficiently large observation time window N with qm(N) =
0, for all m ∈ M, so that the buffers are completely emptied
within the time window. Thus, the scheduling policy can be
written as the solution of the optimization problem:

min
M∑

m=1

Dm(N) ≡ min
N∑

n=1

M∑

m=1

αmq
n
m

s.t. qn+1
m = qnm − rnm,

rn ∈ C(ĥ,P),

qnm − rnm ≥ 0, ∀m ∈M, n ∈ [1, . . . ,N],
(16)

where qnm, rnm denote the queue length and transmit rate
of user m in time slot n. For convenience, we also use
the superscript to denote the time slot in the following.
Extending the problem (16) to each queue state qn we have
the equivalent optimization problem

min
N∑

n=1

( M∑

m=1

αmq
1
m −

M∑

m=1

(N − n)αmrnm

)

s.t. rn ∈ C
(
ĥ,P

)
,

q1
m −

n∑

t=1

rtm ≥ 0, ∀m ∈M, n ∈ [1, . . . ,N].

(17)

The problem (17) states a convex optimization problem
and we can solve it using standard “ready-to-use” methods.
However, this problem involves parameters over N time slots
and M users, which is very complicated, especially if N is
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(1) Set μ(0)
m = αm, for all m ∈M and calculate r(0) = arg maxr∈C(h,P)μ

(0)Tr.
(2) Initialize the length of non-idle state η(0)

m = minm∈M(q1
m/r

(0)
m ), for all m ∈M.

(3) Set the order π so that q1
π(1)/r

(0)
π(1) ≥ q1

π(2)/r
(0)
π(2) ≥ · · · ≥ q1

π(M)/r
(0)
π(M).

(4) Set t = 0.
repeat

(5.1) Set η(t+1) = η(t)

for m = 1 to M do
(5.2.1) η′ = η(t+1)

repeat
(5.2.2.1) Increase η′π(m) and calculate μn by setting η∗π(m) = η′π(m) in (19).
(5.2.2.2) Solve the maximization problem (20) and calculate the evolution of the queue state.

if q
�η′π(m)�
π(m) ≥ 0 then

η(t+1)
π(m) = η′π(m)

end if

until q
�η′π(m)�
π(m) < 0

end for
t = t + 1

until η(t)
m − η(t−1)

m < ε, for all m ∈M
(6) η∗ = η(t)

ε is the predefined error tolerance of ηm.

Algorithm 1: Idle state prediction algorithm.

large. Therefore, we introduce in the following an iterative
algorithm called idle state prediction algorithm to solve the
problem.

Formulating the Lagrangian function of (17)

L(rn, λn) =
N∑

n=1

M∑

m=1

αmq
1
m −

N∑

n=1

M∑

m=1

(N − n)αmrnm

−
N∑

n=1

M∑

m=1

λnm

(

q1
m −

n∑

t

rtm

)

.

(18)

Denote η∗m = αmN −
∑N

t=1 λ
t
m, if η∗m is known, we can get the

optimal μnm with

μnm =
⎧
⎨

⎩

αm
(
η∗m − n + 1

)
n ≤ η∗m,

0 n > η∗m,
(19)

and the delay-optimization problem is transformed into

max
N∑

n=1

μnTrn

s.t. rn ∈ C
(

ĥ,P
)
,

(20)

where μn is the vector of weight factors in the nth time slot.
The parameters η∗m in (19) can be interpreted as the

expected service time of user m if the optimal solution is
applied. In the time slots n > η∗m the buffer of user m is
emptied and the corresponding transmitter is in idle state.
Based on this property, η∗ is obtained with an iterative
approach given in Algorithm 1.

Theorem 3. η(t) obtained in Algorithm 1 converges to the to η∗

which gives the optimal μni for the delay-optimization problem
(16).

Proof. In any time slot n > η∗m, we have μnm = 0 which means
the buffer of ith user is empty at the nth time slot. In any n ≤
η∗m, the mth buffer must be nonempty. Therefore, if η(t) =
η∗, we have qm(�η∗m�) = 0, for all m ∈ M, and η(t+1) =
η∗ = η(t). The break condition in Step (6) is fulfilled and the
algorithm stops at the optimum.

For two users i, j ∈ M, if η∗i ≥ η∗j , the optimal weight
factors

μni
μnj
= αi

(
η∗i − n + 1

)

αj
(
η∗j − n + 1

) >
αi
αj
= μ(0)

i

μ(0)
j

, n ∈ [1, . . . ,
⌈
η∗j
⌉]
.

(21)

The rate allocation is determined by the given weight factor,
thus

rni
rnj

>
r(0)
i

r(0)
j

, n ∈ [1, . . . ,
⌈
η∗j
⌉]

(22)

follows.
From (22), we have

r(0)
i

r(0)
j

≤
∑�η∗j �

n=1 rni
∑�η∗j �

n=1 rnj
≤
∑�η∗j �

n=1 rni +
∑�η∗i �

n=�η∗j �+1 r
n
i

∑�η∗j �
n=1 rnj

= q1
i

q1
j

, (23)

and it holds

q1
i

r(0)
i

≥
q1
j

r(0)
j

. (24)
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Therefore, π in Step (3) gives also the order of η∗ so that
η∗π(i) ≥ η∗π( j), if i < j.

For the π(M)th user with η∗π(M) = mini∈Mη∗π(i), we have

μnπ(M)

μni
=

απ(M)
(
η∗π(M) − n + 1

)

αi
(
η∗i − n + 1

) ≤ απ(M)

αi
=

μ(0)
π(M)

μ(0)
i

,

∀n ∈ [1, . . . ,
⌈
η∗π(M)

⌉]
, ∀i ∈M, i /= π(M).

(25)

It follows rnπ(M) ≤ r(0)
π(M), for all n ∈ [1, . . . ,

⌈
η∗π(M)

⌉
]. Hence,

in the initial state η(0)
π(M) ≤ η∗π(M) and further η(0)

m = η(0)
π(M) ≤

η∗m, for all m ∈ M, m /= π(M). In each iteration step, if the

optimum η∗ is not achieved, η(t+1)
m can always be increased

so that η(t+1)
m > η(t)

m , for all m ∈ M. Hence, the convergence
of the algorithm is proven.

4.2. Scheduling Policy for Dynamic Channels. It is worth
noting that if channel state h(n) varies over time and the
base station has the knowledge of each channel state in
advance, the algorithm in the previous subsection can also
be used in this case with some modifications. However, such
a noncausal scheduler is not realizable. The base station has
usually only the current channel state information and the
statistical knowledge of the channel. In this case, the optimal
weight factors are calculated by the ergodic achievable rate
region and under the assumption that there is no new packets
arrival. In the next time slot, the weight factors must be
recalculated according to the new queue state.

If no new packet arrives after the time slot n = 0, the
expected delay for a given policy P is

1
M

E

{ M∑

m=1

Dm(N)

}

= 1
M

E

{ N∑

n=1

( M∑

m=1

αmq1
m −

M∑

m=1

(N − n)αmrPn
m

)}

,

(26)

where rPn
m is the rate allocated by the policy P for the mth

user at nth time slot. From Theorem 2, we know that if P is
a throughput-optimal policy, then

E
{

rP
(

hn, qn
)} = arg max

r∈Cerg(P)

(
μP
(

qn
))T

r, (27)

where μP is independent of the current channel state. Hence,
the optimization problem is equivalent to

min
N∑

n=1

( M∑

m=1

αmq
1
m −

M∑

m=1

(N − n)αmr̃nm

)

s.t. r̃n ∈ Cerg(P),

q1
m −

n∑

t=1

rtm ≥ 0, ∀m ∈M, n[∈ 1, . . . ,N].

(28)

Then, the optimization problem can be solved using
Algorithm 2.

In the system with new packet arrivals, the weight vector
μ̃ should be recalculated according to the new queue state
and the rate allocation is determined by μ̃ and the current
channel state h(n).

As we introduced in Section 2, if we chose the factor αm =
1/ρm, the limit limN→+∞ D(N) represents the average delay
of each packet. Average arrival rates ρm can be estimated by
previous arrival processes. However, even if the estimation
deviates from the actual arrival rate, limN→+∞ D(N) can still
be considered as a useful delay measurement.

The ergodic achievable rate region is also estimated based
on the history. The ergodic region is calculated from a
number of sampled fading states, thus the computational
complexity might be very high. In [9], a method is intro-
duced to approximate the boundary surface of Cerg(P) by
utilizing a hypersphere. Only M + 1 boundary points on
Cerg(P) are necessary to characterize the hypersphere so that
the complexity is significantly reduced.

In order to prove the throughput-optimality of the
policy, we need some technical propositions. The following
propositions show the scheduling behavior as the queue
length in the system increases. Supposing that the queue
length of some users are bounded by some constant c ≥ 0,
while the sum of queue length ‖q‖ is increasing, we denote
the set of these users as G1 := {m | qm ≤ c, m ∈M} and the
remainder as G2 =M/G1.

Proposition 1. If qi is bounded, i ∈ G1, and qj is unbounded,
j ∈ G2 while ‖q‖ is increasing, there exists some B > 0, so that

ηi
ηj

< ε1, ∀‖q‖ > B (29)

for arbitrary ε1 > 0.

Proof. We denote the expected service time for user i, j as ηi,
ηj and η′i , η

′
j where the initial queue length of user i is fixed

to qi and the queue length of user j is increased such that
q′j > qj .

Suppose

η′i
η′j
≥ ηi

ηj
, (30)

then the weight factor

μn′i
μn′j

= αi
(
η′i − n + 1

)

αj
(
η′j − n + 1

) ≥ αi
(
ηi − n + 1

)

αj
(
ηj − n + 1

) = μni
μnj

,

∀n ∈ [1, . . . , �ηi�
]
.

(31)

The rate allocation rni and rn′i are determined by the
weight factor μni , μn′i , then it holds

rn′i ≥ rni , ∀n ∈ [1, . . . , �ηi�
]
. (32)

Further, we have

qi =
�η′i �∑

n=1

rn′i >
�ηi�∑

n=1

rn′i ≥
�ηi�∑

n=1

rni = qi, (33)
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for each time slot n, do
(1) Calculate η∗ according to current queue state q using Algorithm 1, where the static rate

region C(ĥ,P) is replaced with the ergodic achievable rate region Cerg(P).
(2) Calculate the weight factor μ̃m = αmη∗m, for all m ∈M for the current time slot.
(3) Calculate the current rate allocation

r∗ = arg max
r∈C(hn ,P)

(
μ̃
)T

r,

where hn is the current channel state.
end for

Algorithm 2

and reach a contradiction. Therefore, it is shown that if qi is
fixed, ηi/ηj monotonously decreases with growing qj as long
as ηi/ηj > 0 and the proof follows.

Proposition 2. If qi, qj are unbounded, i, j ∈ G2, while ‖q‖ is
increasing such that qi = γi‖q‖, qj = γj‖q‖, for some γi, γj >
0, there exist some B > 0, so that

∣
∣
∣∣
∣1− ηi

ηj

∣
∣
∣∣
∣ < ε2, ∀‖q‖ > B (34)

for arbitrary ε2 > 0.

Proof. Consider two queue state q and q′, ‖q′‖ = θ‖q‖ for
some θ > 1. The estimated service time for queue state q and
q′ is denoted as η, η′ and the expected rate allocation at the
nth time slot is rn and rn′. Without loss of generality, we set
ηi/ηj > 1. Suppose

η′i
η′j
≥ ηi

ηj
, (35)

it holds
(
1/η′i

)∑�η′i �
n=1 r

n′
i

(
1/η′j

)∑�η′j�
n=1 r

n′
j

=
(
1/η′i

)
q′i(

1/η′j
)
q′j
=
(
1/η′i

)
γi(

1/η′j
)
γj

>

(
1/ηi

)∑�ηi�
n=1 r

n
i

(
1/ηj

)∑�ηj�
n=1 r

n
j

=
(
1/ηi

)
qi(

1/ηj
)
qj
=
(
1/ηi

)
γi(

1/ηj
)
γj

,

(36)

then ηi/ηj > η′i /η
′
j follows which leads to the contradiction

to (35). Hence, ηi/ηj decreases with ‖q‖ as long as ηi/ηj > 1
and the proof follows.

Theorem 4. The proposed scheduling policy keeps the system
stable for any set of arrival rates of which the expected value ρ
lies inside the ergodic achievable rate region.

Proof. For the proof of weak stability it is sufficient to show
that for any ρ ∈ Cerg(P), the Lyapunov drift ΔV is negative
for some lower bounded function V : RM

+ → R+ [21, 23].
Supposing that there are i ∈ G2 whose queue lengths are
unbounded, we choose

V(q) =
∑

i∈G2

αiqi. (37)

Since qi is unbounded while ri < cr , for all i ∈ G2, the
drift

ΔV = E

{
∑

i∈G2

αi
[
qni + ani − rni

]+ −
∑

i∈G2

αiq
n
i

∣∣
∣
∣
∣qn

}

= E

{
∑

i∈G2

αi
(
ani − rni

)|qn

}

.

(38)

Choose arbitrary j ∈ G2 and according to Propositions 1
and 2, we have

ΔV ≤ E

{
∑

i∈G2

αi

(
ηi
ηj

+ ε2

)
(
ani − rni

)
∣
∣
∣
∣∣qn

}

≤ 1
ηj

∑

i∈G2

αi
(
ηiρi − E

{
rni |qn

})
+
∑

i∈G2

ε2αi
(
ca + cr

)

≤ 1
ηj

∑

i∈M

αiηi
(
ρi − E{rni |qn}) +

∑

i∈G2

ε2αi
(
ca + cr

)

+
∑

i∈G1

ε1αi
(
ca + cr

)
.

(39)

Define β = maxr∈Cerg(P) mini∈M (ri − ρi), we have

ΔV ≤ 1
ηj

∑

i∈M

αiηi(−β) +
∑

i∈G2

ε2αi
(
ca + cr

)

+
∑

i∈G1

ε1αi
(
ca + cr

) (40)

≤ −β
∑

i∈M

αi + ε2β
∑

i∈G2

αi + ε2

∑

i∈G2

αi
(
ca + cr

)

+ ε1

∑

i∈G1

αi
(
ca + cr

)
.

(41)

Since the first addend in (41) is constant and the last three
addends vanish by increasing ‖qn‖, the drift ΔV < 0 for
‖qn‖ > B if B is sufficiently large. Hence, the Markov chain is
weakly stable and the proof follows.

5. Numerical Evaluations

In order to evaluate the delay performance of the intro-
duced ISP policy, we compare our policy with two other
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Figure 3: Ergodic achievable rate region of an OFDMA system for 2
users. 7 sets of arrival rates (x-marks in the figure) are chosen from
the inside/outside of the rate region to test the throughput and delay
performance of the system.

throughput-optimal policies: MWMS [3] and QPS [9].
MWMS uses the queue length as the weight factor in the
maximization problem:

rP (hn, qn) = arg max
r∈C(hn,P)

qnTr. (42)

For the QPS policy, the weight vector is chosen as the norm
at the boundary point of Cerg(P), where E{rP (hn, qn)|qn} is
proportional to qn,

E
{

rP
(

hn, qn
)} = qn max

xqn∈Cerg(P)
x,

s.t. rP
(

hn, qn
) ∈ C

(
hn,P

)
,

(43)

where x is a scalar.
The performance of the three schedulers are compared

for an OFDMA system as described in [20]. The system
has 250 orthogonal subcarriers and an entire bandwidth
of 2.5 MHz. The multipath channel is modeled as i.i.d
block fading and the length of channel impulse response
Lm = 4, for all m ∈ M. The length of a time slot T
is 2 milliseconds and in every slot 27 OFDM symbols are
transmitted per subcarrier. The modulation is adapted to
the different channel states on each subcarrier and can be
chosen from QPSK, 16QAM, 64QAM. The source data is
coded at rate 2/3, so that the decoding error probability at
the receiver is lower than 1e-3. For an average receive SNR
of 15 dB the ergodic achievable rate region for two users is
shown in Figure 3. Note that the small number of users is
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Figure 4: Delay performance of the OFDMA system driving by
MWMS, QPS, and the introduced ISP scheduling policy. The sets
of average arrival rates in the system are indexed by the arrival rate
of user 2.

not a limitation but facilitates the description of the ergodic
achievable rate region.

We choose arrival rate ρ1 = [366, 488, 610, 732, 854, 977,
977] packet/s and ρ2 = [732, 976, 1220, 1464, 1708, 1954,
2440] packet/s for user 1 and 2, respectively, where the size
of a packet is 512 bytes. In Figures 3 and 4, the arrival rates
are converted to Mbit/s for convenience. In order to verify the
stability properties of the system the last set of arrival rates is
chosen to lie outside the ergodic achievable rate region.

The average packet delay in the system with the selected
sets of arrival rates is shown in Figure 4. It can be seen that
for the sets of arrival rates inside the ergodic rate region the
system is kept stable in the sense that the average packet
delay is finite. For the arrival rates ρ = [977; 2440] packet/s
the packet delay tends to go to infinity. All three scheduling
policies are throughput-optimal. Compared to the other two
scheduling policies, the introduced scheduling policy has the
best delay performance and achieves a significant gain. Note
that in order to show the rapid growth of the delay time by
increased arrival rates, the y-axis is logarithmically scaled.

In Figure 5, we compare the delay performance with
respect to the number of supported users in the system. The
number of users is increased from M = 2 to M = 16, while
the sum of expected arrival rate remains the same. Denote
the sum of expected arrival rate by Sρ, we set ρi = 2Sρ/3M
for i ∈ M, if i is odd and ρi = 4Sρ/3M for i ∈ M,
if i is even. The other physical parameters are the same
as in Figures 3 and 4. Figure 5 shows the average packet
delay in the system resulting from the different scheduling
policies. Solid lines are simulated by arrival rate set 1 with
Sρ = 1098 packet/s. Dotted lines are simulated by arrival rate
set 2 with Sρ = 1830 packet/s. Dashed lines are simulated
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Figure 5: Delay performance of MWMS, QPS, and ISP scheduling
policy with respect to number of supported users in the system.
Solid lines are simulated by arrival rate set 1. Dotted lines are
simulated by arrival rate set 2. Dashed lines are simulated by arrival
rate set 3.

by arrival rate set 3 with Sρ = 2196 packet/s. Same as in
Figure 4, it can be observed that the delay increases with
increasing Sρ. Fixing Sρ, the delay decreases with the number
of users due to multiuser diversity. At the same time, because
of higher flexibility in resource allocation, ISP scheduler
provides even more performance gain in delay than the other
two schedulers. In case of M = 6, ISP scheduler achieves
about 30% reduction in averaged delay compared to QPS.

6. Conclusion

In this paper, we presented a concept to design throughput-
optimal scheduling policies for cellular BC systems. In
general it is shown that the scheduling problem can be
formulated as a weighted sum rate maximization problem,
where the characteristics of the scheduling policy is deter-
mined by the choice of weight factors in the maximization
problem classifying all throughput-optimal policies. Based
on this concept, a throughput-optimal policy is developed to
achieve low delay performance. The weight factors achieving
the minimum averaged delay are obtained by an iterative
procedure, called idle state prediction (ISP) algorithm. The
convergence of the algorithm as well as the throughput-
optimality of the scheduling policy are proven. Numerical
results show that ISP reduces significantly average packet
delay compared to other existing scheduling policies. In
systems with larger number of users, this advantage becomes
even more noticeable due to higher flexibility in resource
allocation.
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