Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 786015, 13 pages
doi:10.1155/2009/786015

Review Article

The Emerging MVC Standard for 3D Video Services

Ying Chen,! Ye-Kui Wang,> Kemal Ugur,> Miska M. Hannuksela,” Jani Lainema,? and Moncef
Gabbouj’

I Department of Signal Processing, Tampere University of Technology, 33720 Tampere, Finland
2 Nokia Research Center, Visiokatu 1, 33720 Tampere, Finland

Correspondence should be addressed to Ying Chen, ying.chen@tut.fi
Received 1 October 2007; Revised 7 February 2008; Accepted 5 March 2008
Recommended by Aljoscha Smolic

Multiview video has gained a wide interest recently. The huge amount of data needed to be processed by multiview applications
is a heavy burden for both transmission and decoding. The joint video team has recently devoted part of its effort to extend the
widely deployed H.264/AVC standard to handle multiview video coding (MVC). The MVC extension of H.264/AVC includes a
number of new techniques for improved coding efficiency, reduced decoding complexity, and new functionalities for multiview
operations. MVC takes advantage of some of the interfaces and transport mechanisms introduced for the scalable video coding
(SVC) extension of H.264/AVC, but the system level integration of MVC is conceptually more challenging as the decoder output
may contain more than one view and can consist of any combination of the views with any temporal level. The generation of
all the output views also requires careful consideration and control of the available decoder resources. In this paper, multiview
applications and solutions to support generic multiview as well as 3D services are introduced. The proposed solutions, which have
been adopted to the draft MVC specification, cover a wide range of requirements for 3D video related to interface, transport of
the MVC bitstreams, and MVC decoder resource management. The features that have been introduced in MVC to support these
solutions include marking of reference pictures, supporting for efficient view switching, structuring of the bitstream, signalling of
view scalability supplemental enhancement information (SEI) and parallel decoding SEI.

Copyright © 2009 Ying Chen et al. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Three-dimensional video has gained significant interest
recently. Furthermore, with the advances in acquisition and
display technologies, 3D video is becoming a reality in
consumer domain with different application opportunities.
Given a certain maturity of capture and display technologies
and with the help of multiview video coding (MVC)
techniques, a number of different envisioned 3D video
applications are getting feasible [1]. 3D video applications
can be grouped under three categories: free-viewpoint video,
3D TV, and immersive teleconferencing. The requirements of
these applications are quite different and each category has its
own challenges to be addressed.

1.1. Application Scenarios. To illustrate these challenges,
consider Figure 1, where the end-to-end architecture of dif-
ferent applications is shown. In this illustration, a multiview
video is first captured and then encoded by a multiview

video coding (MVC) encoder. A server transmits the coded
bitstream(s) to different clients with different capabilities,
possibly through media gateways. The media gateway is an
intelligent device, also referred to as a media-aware network
element (MANE), which is in the signaling context and
may manipulate the incoming video packets (rather than
simply forward packets). At the final stage, coded video
is decoded and rendered with different means according
to the application scenario and capabilities of the receiver.
To provide smoothly immersive experience when a user
adjusting its viewing position, view synthesis [2, 3] may be
required at the client to generate “virtual” views of a real-
world scene. However, till now, this process is out of the scope
of any existing coding standard.

In free-viewpoint video, the viewer can interactively
choose his/her viewpoint in 3D space to observe a real-
world scene from preferred perspectives [4]. It provides
realistic impressions with interactivity, that is, the viewer
can navigate freely in the scene within a certain range, and

Server

&

Media
gateway

View 0
MVC
encoder
View 1)
~
View 2

MVC decoder
-— MV(Q decoder

View N Scenario y \
Wide view angle
& &

EURASIP Journal on Advances in Signal Processing

AVC decoder
Scenario (e) HDTV

Scenario (d)

MVC decoder
Stereoscopic display
= NT
Target o
Network — —?—ma
7 NTO‘g Viewer
I
: ’4""
Scenario (a)
" a
Narrow view angle
\ a

Scenario (c)

Figure 1: MVC system architecture.

analyze the 3D scene from different viewing angles. Such
a video communication system has been reported in [5].
Unlike holography, which generates 3D representation and
requires changing of the relative geometry position of a
viewer to switch view point, this scenario is actually realized
by switching between rendered view(s) using interface such
as remote controller. In case the desired viewpoint is not
available, interpolating a virtual view from other available
views can be employed. Scenario (a), in Figure 1, illustrates
this application, where there exist several candidate views
for the viewer, and one of them is selected as the target
view that is displayed (views that are not targeted and
thus are not outputted are denoted as “NT” for simplicity
in Figure 1). In this scenario, not all the candidate views
are required to be decoded, thus the decoder can focus
its resources only on decoding of the target view. For this
purpose, the target view needs to be efficiently extracted from
the bitstream and thus only the packets that are required
for successtully decoding the desired views are transmitted.
To enable navigation in a scene, important functionality
to be achieved by the system is efficient switching between
different views.

3D TV refers to the extension of traditional 2D TV
displays-to-displays capable of 3D rendering. In this appli-
cation, more than one view is decoded and displayed
simultaneously [6]. A simple 3D TV application can be
realized by stereoscopic video. Stereoscopic display can be
achieved by using data glasses or other means. However, it
is nicer for the user to get the 3D feeling directly through
3D appliances with added feature of rendering binocular
depth cures [7], which can be realized by autostereoscopic
displays. Advanced autostereoscopic displays can support
head-motion parallax, by decoding and displaying multiple

views from different viewpoints simultaneously. That is, a
viewer without extra facilities like data glasses can move
to different geometry angle ranges, each of which contains
typically two views rendered and shed by 3D displays. 3D
TV displays are discussed in [8]. The viewer then can
experience a slightly different scene by moving his/her head
(for example, user may look what is behind a certain object
in the scene). In this scenario, multiple views need to
be decoded simultaneously; therefore parallel processing of
different views is very important to realize this application.
In addition, displaying multiple views is important also to
realize wide viewing angle as shown in Figuer 1(b). This
scenario is also referred to as autostereoscopic 3D TV for
multiple viewers [7]. However, if the decoder capability is
limited or the transmission bandwidth decreases, the client at
a receiver may simply decode and render just a subset of the
views but still provide 3D display with a narrow view angle, as
shown in Figure 1(c). The media gateway plays an important
role to provide the adaptation functionality to support this
use case. Such 3D TV broadcast or multicast system must
then support flexible stream adaptation. Stream adaptation
can be achieved at the server or media gateway, where only
the sub-bitstreams, with less bandwidth and desired by the
client are transmitted and other packets are discarded. After
bitstream extraction, the sub-bitstream must be decodable
for by MVC decoders.

Free-viewpoint video focuses on its functionality in free
navigation while 3D TV emphasizes on 3D experience.
In immersive teleconference, both interactivity and virtual
reality may be preferred by the participants and thus
free viewpoint or 3DTV style can be both supported. In
the immersive teleconferencing, where there is interactivity
among viewers, immersiveness can be achieved either in

EURASIP Journal on Advances in Signal Processing

a free-viewpoint video or 3D TV manner. So, the problems
or requirements in free-viewpoint video or 3D TV are still
existing and valid.

Typically, two mechanisms can make people perceptually
feel immersed in a 3D environment. A typical technique,
known as head-mounted display (HMD), needs a device
worn on the head, as a helmet, which has a small display optic
in front of each eye. This scenario is shown in Figure 1(d).
Substitutions for HMD need to introduce head tracking [9]
or gaze tracking [10] techniques, as shown in the solutions
discussed in [7]. In 3D TV, however, each stereoscopic display
can have effect on a certain small range of a view angle, thus,
a viewer can change his/her viewing position when he/she is
trying to view the scene in another viewpoint, as if there was
a natural object.

For rendering of 3D TV content or view synthesis, depth
information is needed. Depth-images storing the depth
information as a monoscopic color video can be coded with
existing coding standards, for example, as auxiliary pictures
in H.264/AVC [11].

As the normal 2D TV or HDTV applications are still
dominating the market, the MVC content will provide a way
for those 2D decoders, for example, H.264/AVC decoder in
the set-top box (STB) of digital TV to generate a display from
an MVC bistream, as shown in Figure 1(e). This requires
MVC bitstreams to be backward compatible, for example, to
H.264/AVC.

1.2. Requirements of MVC. Due to the huge amount of data,
particularly when the number of views to be decoded is
large, transmission of multiview video applications relies
heavily on the compression of the video captured by cameras.
Therefore, efficient compression of multiview video contents
is the primary challenge for realizing multiview video
services.

A natural way to improve compression efficiency of
multiview video content is to exploit the correlation between
views, in addition to the use of inter prediction in monoview
coding. This requires buffering of additional decoded pic-
tures. When the number of views is large, the required
memory buffer may be prohibitive. In order to make efficient
implementations of MVC feasible, the codec design should
include efficient memory management of decoded pictures.

The above challenges and requirements, among others
[12], are the basis of the objectives for the emerging MVC
standard, which is under development by the joint video
team (JVT), and will become the multiview extension of
H.264/AVC [11]. MVC standardization in the JVT started in
July 2006 and is expected to be finalized in mid-2008. The
most recent draft of MVC is available in [13].

In the MVC standard draft, redundancies among views
are utilized to improve compression efficiency compared to
independent coding of views. This is allowed with the so-
called interview prediction, in which decoded pictures of
other views can be used as reference pictures when coding a
picture as long as they all share the same capturing or output
time. View dependencies for interview prediction are defined
for each coded video sequence.

T0O T1 T2 T3 T4 T5 T6 T7 T8 T9 T10T11

FiESTY
‘, H}.ﬂ £
s:s:@axm I

T‘
(A EL

F1Gure 2: Typical MVC prediction structure.

With the exception of interview prediction, pictures of
each view are coded with the tools supported by H.264/AVC.
In particular, hierarchical temporal scalability was found to
be efficient for multiview coding [14]. A typical prediction
structure of MVC, utilizing both interview prediction and
hierarchical temporal scalability, is shown in Figure 2. It is
noted that the MVC standard provides a greater deal of
flexibility than depicted in Figure 2 for arranging temporal
or view prediction references [15].

Except the coding efficiency requirement, the following
important aspects of the MVC requirements [12] for the
design of the MVC standard are listed.

1.2.1. Scalabilities. View scalability and temporal scalability
are considered in the MVC design for the adaptation of user
preference, network bandwidth, and decoder complexity.
View scalability is useful in the scenario shown in Figure 1(c),
wherein some of the views are not transmitted and decoded.

1.2.2. Decoder Resource Consumption. In 3D TV scenarios,
as shown in Figures 1(b) and 1(c), a number of views are to
be decoded and displayed, an optimal decoder in terms of
memory and complexity is of vital importance to make the
real-time decoding of MVC bitstreams possible.

1.2.3. Parallel Processing. In the 3D TV scenarios, since
multiple views need to be decoded simultaneously, parallel
processing of different views is very important to realize this
application and to reduce the computation time to achieve
real-time decoding.

1.2.4. Random Access. Besides temporal random access, view
random access is to be supported to enable accessing a
frame in a given view with minimal decoding of frames
in the view dimension. For example, free-viewpoint video
described in Figure 1(a) needs advanced view random access
functionality to support smooth navigation.

1.2.5. Robustness. When transmitted in a lossy channel, the
MVC bitstream will have error resiliency capabilities. There
are error resilient tools in H.264/AVC which can benefit the

MVC applications. Other techniques, which are designed
only for MVC and discussed later, can also be utilized to
improve error resilience of MVC bitstreams.

1.3. Contributions of this Paper. JVT has recently finalized
the scalable extension of H.264/AVC, also known as scalable
video coding (SVC) [16]. MVC shares some design principles
with SVC, such as backward compatibility with H.264/AVC,
temporal scalability, and network friendly adaptation, and
many features in SVC have been reused in MVC.

However, new mechanisms are needed in MVC at least
related to view scalability, interview prediction structure,
coexisting of decoded pictures from multiple dimensions
(i.e., both the temporal and view dimensions) in the decoded
picture buffer, multiple representations in the display, and
parallel decoding at the decoder.

These mechanisms cover the challenges and require-
ments, identified above, for 3D video services, except for
the compression efficiency challenge. In this paper, we will
describe how these mechanisms are realized in the existing
draft MVC standard.

The main MVC features discussed in this paper include
reference picture management to achieve optimal memory
consumption at the decoder, time-first coding to support
consistent system level design, SEI messages, and other
features for view and scalability information provisioning,
adaptation, random access, view switching, and reference
picture list construction.

The rest of this paper is organized as follows. In
Section 2, we discuss the MVC bitstream structure and the
backward compatibility which is mentioned in Scenario (e).
In Section 3, with a typical application scenario, we discuss
how adaptation works when connectivity between server
and client or decoder capacity varies. Then, view scalability
information SEI message, which is designed to facilitate
the storage, exaction, and adaptation of MVC bitstream,
is reviewed. The features discussed in this section are of
importance for efficient file composition, bitstream exaction,
and stream adaptation in intermediate media gateways,
which has been mentioned in Scenario (c). Random access
and view switching functionalities are described in Section 4,
which is desirable in Scenario (a). In Section 5, the decoded
picture buffer management is discussed. This topic is crucial
to enable a system to minimize the required memory
for decoding MVC bitstreams. In Section 6, the parallel
decoding SEI message, which is important for real-time
MVC decoder solutions, is discussed. Other related issues
are summarized in Section 7. Finally, Section 8 concludes the

paper.

2. Structure of MVC Bitstreams

This section reviews the concept of network abstraction layer
units (NAL units) and summarizes how the NAL unit types
defined in H.264/AVC and SVC are reused for MVC. Syntax
elements in the NAL unit header in the MVC context are also
discussed.

In H.264/AVC, the coded video bits are organized into
NAL units. NAL units can be categorized to video coding

EURASIP Journal on Advances in Signal Processing

layer (VCL) NAL units and non-VCL NAL units. The
supported VCL NAL unit types and non-VCL NAL units in
H.264/AVC are defined in [11] and well categorized in [17].

In MVC, there is a base view, which is coded indepen-
dently and is compliant with H.264/AVC, this meets the
requirement in Scenario (e) of the MVC system architecture,
as shown in Figure 1. Consequently, coded picture informa-
tion for the base view is included in the VCL NAL units
specified in H.264/AVC. A new NAL unit type, called coded
slice of MVC extension, is used for containing coded picture
information for nonbase views. When an MVC bitstream
containing NAL units of the new NAL unit type is fed to an
H.264/AVC decoder, NAL units of any new NAL unit type
can be ignored and the decoder only decodes the bitstream
subset containing NAL units of the existing NAL unit types
defined in H.264/AVC.

There are useful properties of the coded pictures in the
H.264/AVC-compliant base view, such as temporal level,
which are not indicated in the VCL NAL units of H.264/AVC.
To indicate those properties for the base view-coded pictures,
the prefix NAL unit, of another new NAL unit type, has
been introduced. Note that prefix NAL unit is also specified
in SVC. A prefix NAL unit precedes each H.264/AVC
VCL NAL unit and contains its essential characteristics in
multiview context. As H.264/AVC decoders ignore prefix
NAL units, the backward compatibility to H.264/AVC is still
maintained.

Non-VCL NAL units include parameter set NAL units
and SEI NAL units among others. Parameter sets contain the
sequence-level header information (in sequence parameter
sets (SPS)) and the infrequently changing picture-level
header information (in picture parameter sets (PPS)). With
parameter sets, this infrequently changing information needs
not to be repeated for each sequence or picture, hence coding
efficiency is improved. Furthermore, the use of parameter
sets enables out-of-band transmission of the important
header information, avoiding the need of redundant trans-
missions for error resilience. In “out-of-band” transmission,
parameter set NAL units are transmitted in a more different
channel than the ones for transmission of other NAL units.
More discussions on parameter sets can be found in [18].

In MVC, coded pictures from different views may use
different sequence parameter sets. An SPS in MVC can
contain the view dependency information for interview
prediction. This enables signaling-aware media gateways to
construct the view dependency tree. Therefore, each view can
be mapped to the view dependency tree and view scalability
can be fulfilled, without any extra signaling inside NAL unit
headers [19].

The scalable nesting SEI message [19], which was also
introduced in SVC with the same name, is set apart from
other SEI messages in that it contains one or more ordinary
SEI messages, but in addition it indicates the scope of views
or temporal levels for which the messages apply. In doing so,
it enables the reuse of the syntax of H.264/AVC SEI messages
for a specific set of views and temporal levels.

Some of the other SEI messages specified in MVC are
related to the indication of output views, available operation
points, and information for parallel decoding.

EURASIP Journal on Advances in Signal Processing

In H.264/AVC, an NAL unit consists of a 1-byte header
and an NAL unit payload of varying size. In MVC, this
structure is retained except for prefix NAL units and
MVC-coded slice NAL units, which consist of a 4-byte
header and the NAL unit payload. New syntax elements
in MVC NAL unit header include priority_id, temporal_id,
anchor_pic_flag, view_id, idr_flag and inter_view_flag.

anchor_pic_flag indicates whether a picture is an anchor
picture or nonanchor picture. Anchor pictures and all the
pictures succeeding in output order (i.e., display order) can
be correctly decoded without decoding of previous pictures
in decoding order (i.e., bitstream order) and thus can be used
as random access points. Anchor pictures and nonanchor
pictures can have different dependencies, both of which are
signaled in the sequence parameter set.

More discussions on anchor pictures will be given in
Section 4. idr_flag is introduced in Section 4, inter_view_flag
is discussed in Section 5, and the other new MVC NAL unit
header fields are introduced in Section 3.

3. Extraction and Adaptation of
MVC Bitstreams

MVC supports temporal scalability and view scalability. A
portion of an MVC bitstream can correspond to an operation
point that gives output representation for a certain frame rate
and a number of target views. Data representing higher frame
rate, views closer to the leaves of the dependency tree, or
views that are not preferred by the client can be truncated
during the stream bandwidth adaptation at the server or
media gateway, or ignored at the decoder for complexity
adaptation.

The bitstream structure defined in MVC is characterized
by two syntax elements: view_id and temporal_id. The syntax
element view_id indicates the identifier of each view. This
indication in NAL unit header enables easy identification of
NAL units at the decoder and quick access of the decoded
views for display. The syntax element temporal_id indicates
the temporal scalability hierarchy or, indirectly, the frame
rate. An operation point including NAL units with a smaller
maximum temporal_id value has a lower frame rate than an
operation point with a larger maximum temporal_id value.
Coded pictures with a higher temporal_id value typically
depend on the coded pictures with lower temporal_id values
within a view, but never depend on any coded picture with
higher temporal_id.

The syntax elements view_id and temporal_id in the NAL
unit header are important for both bitstream extraction and
adaptation. Another important syntax element in the NAL
unit header is priority_id [19], which is mainly used for the
simple one-path bitstream adaptation process.

Whenever the operation point contains only a subset
of the entire MVC bitstream, such as in Scenario (a)
and Scenario (c) shown in Figure 1, a bitstream extraction
process is then needed to exact the required NAL units
from the entire bitstream. The bitstream extraction process
should be a lightweight process without heavy parsing of

5
P3 P3 P3
2 70, V2 T1,V2 T2,V2
= _
:
< P1 P1 P2
1 T0, V1 T1,V1 T2,V1
PO P1 P2
0 T0, V0 (base) T1,V0 T2,V0
[[
7.5 15 30
Temporal (fps)
Path:
P = 0: view 0/7.5
P = 1:view 0, 1/15
P = 2:view 0, 1/30
P =3:view0, 1, 2/30
(a)
2 P2 P2 P3
T0,V2 T1,V2 T2,V2
:‘9 =
3 1 P1 P1 P3
> T0,V1 T1,V1 T2,V1
PO P1 P3
0 TO0, VO (base) T0,V0 T2,V0
T T T
7.5 15 30
Temporal (fps)

Path:

P = 0: view 0/7.5

P = 1:view0,1/15
P =2:view0,1,2/15
P = 3:view 0,1,2/30

(b)

FIGURE 3: Assignment of priority_id for NAL units of a 3-view
bitstream with two levels of temporal resolution. T: temporal level;
V: view identifier; P: priority identifier. Temporal level equal to 0
corresponds to 7.5 fps (frame per second), it equal to 1 corresponds to
15 fps, and it equal to 2 corresponds to 30 fps.

the bitstream. For this purpose, the mapping between each
operation point (identified by the combination of required
view_id values and temporal_id values) and the required NAL
units is specified as part of the view scalability information
SEI message (VSSEI) [20]. After the operation point is agreed
upon, the server can simply extract the required bitstream
subset by discarding nonrequired NAL units by checking the
view_id and temporal_id values in the fixed-length coded
NAL unit headers.

Media gateways can perform single-path adaptation by
simply discarding NAL units with priority_id greater than a
certain value. The priority_id has no normative effect on the
decoding process. The only constraint to priority_id values
is that any bitstream subset extracted based on any value of
priority_id must be a conforming MVC bitstream. It is the
encoder responsibility to set priority_id values for the NAL
units and the values can be rewritten, for example, when the
preference of the decoder changes.

Figure 3 depicts two examples of priority-id assignments
which yield two different adaptation paths for the same MVC
bitstream that contains 3 views with 3 temporal levels. In
Figure 3(a), the priority-id is assigned such that the 7.5Hz
base view is with priority_id equal to 0, and then frame rate
of 15 Hz including both view 0 and view 2 is with priority_id
equal to 1, and then higher frame rate is preferred to more
views. In Figure 3(b), the first two steps are the same as
in Figure 3(a), while in the last two steps, more views are
preferred to higher frame rate.

Although a simple media gateway may perform stream
adaptation exclusively based on priority_id, more intelli-
gent implementations may jointly employ the values of
priority_id, view_id, and temporal_id, in order to perform
combined adaptation. For example, for the bitstream dis-
cussed in Figure 3, there can be two adaptation steps, the
first step is to have NAL units with temporal_id equal to
1 (15Hz) and view_id through 0 to 1; the second step is
to increase frame rate directly to 30 Hz and include all the
NAL units in view 2. Note that in this case, the NAL units
corresponding to each adaptation step can have different
values of priority_id, for example, when the priority_id
assignment follows Figure 3(a).

An MVC bitstream may contain a large number of views
(the view_id in the current MVC draft specification is of
10 bits). This makes the possible number of combinations
of view_id values and temporal_id values huge. However, in
practical applications, typically only limited combinations,
that is, operation points, would be used. The VSSEI has been
designed to be flexible to signal any subset of all the possible
operation points. Beside the mapping of operation points
and NAL units, the following information for each indicated
operation point is also included in the VSSE], either to enable
the establishment of the communication session or more
efficient bitstream extraction or adaptation.

Profile and level: This information describes the capacity
a decoder requires to decode a bitstream. Profile and level can
be signaled in the SPS. However, the total number of SPS is
limited to a certain value in the bitstream and it may happen
that for all the operation points, many of them share the same
SPS, the level inside which is not accurate enough to describe
the minimum required capacity of the decoders for different
operation points. Therefore, profile and level are signaled in
the VSSEI for each operation point.

Bit rate: Similar as profile and level, this information
is needed in the session negotiation process for the server
and the client to agree upon a certain operation point.
This information is also useful in rate adaptation by
MANEs. For example, to better adapt the bandwidth, it
is necessary for intelligent media gateways to know the

EURASIP Journal on Advances in Signal Processing

bandwidth of a session when it switches to another operation
point.

Operation point dependencies: In the VSSEIL, each oper-
ation point is identified by the view_id values of the target
views and the temporal_id values. The dependent views as
well as the dependent pictures may be known from the
active SPS which contains the view dependency information.
However, within the view dependency, pictures may have
more flexible relationship. For example, assume in a two-
view bitstream with 30 fps, 4 temporal levels and according
to the SPS MVC extension anchor pictures and nonanchor
pictures in view 1 are, respectively, dependent on anchor and
nonanchor pictures in view 0. And if we have two operation
points (OPs), OP 0 has the pictures in view 0 with temporal
level up to 3, that is, 15 fps and OP 1 has pictures with all
the pictures in view 1, however, the pictures with the highest
temporal level in view 1 do not really rely on interview
pictures for reference. Then, OP 1 actually depends only on
OP 0, which cantinas half of the pictures in view 0 and the
highest temporal level pictures in view 0 can be neglected
for transmission and decoding. However, with only the
view dependency signaled in the SPS MVC extension, those
pictures are still required to be transmitted and decoded.
Thus, operation point dependency information included in
the VSSEI would enable simply identification and discarding
of the nonrequired NAL units that are not indicated by the
view dependency information signaled in SPS.

In the following are some MVC stream adaptation
examples in a broadcasting system (see Figure 1). Assume
that the entire bitstream contains coded pictures of 8 views.

For Scenario (e), NAL units are filtered by the MANE so
that only the NAL units that can be recognized by H.264/AVC
decoders (by checking the NAL unit type) are fed to the STB
of an HDTV.

For Scenario (d), an operation point containing, for
example, only view 0 and view 1 is in use. The MANE
controls the bitstream in a way that only allows the NAL
units with view_id (by checking the view_id in the NAL unit
header) equal to 0 or 1 to be sent to the client.

Depending on the bandwidth, a client with enough
decoding capability for 3D TV may switch between Scenarios
(b) and (c), wherein the sub-bitstream corresponding to
Scenario (b) forms an operation point that contains only a
subset of the views within a narrow view angle. The MANE
filters out the views outside the view angle.

4. Random Access and View Switching

4.1. Random Access. Random access refers to starting decod-
ing of a bitstream from a point other than the beginning.
The support of random access is required for traditional
trick play modes such as fast forward and fast backward.
In streaming applications, random access is used to seek
the desired playback position requested by the users. In
broadcast and multicast applications, random access points
are required to allow for newcomers to tune in or switching
of program channels.

Random access with MVC for the above purposes is
not much different from that with single-view coding, as

EURASIP Journal on Advances in Signal Processing

all the target views of an operation point are accessed
simultaneously. The only difference is that there may be views
dependent on by the target views; hence these dependent
views need also to be accessed and decoded.

To access to a picture in a given view at a specified time,
the decoder should first find the closest preceding temporal
locations that are random access points to the specific target
view and all the dependent views, collectively referred to as
the required views. Then the decoder starts decoding the
required views from a found location. In average, how many
view pictures need to be decoded to access to a specific target
picture is therefore proportional to the random access period
(i.e., the length of the temporal dependency chain) and the
number of dependent views (i.e., the length of the interview
dependency chain).

Instantaneous decoding refresh (IDR) pictures are nat-
ural random access points. In an MVC bitstream, IDR
pictures in the base view have NAL units of type 5. If the
bitstream also contains NAL units that are unknown to
plain H.264/AVC decoders, then the base view IDR picture
NAL units are each preceded by a prefix NAL unit, which
has idr_flag equal to 1. IDR pictures of nonbase views, also
referred to as view-IDR (V-IDR) pictures in the draft MVC
standard, all have idr_flag equal to 1. V-IDR pictures may rely
on pictures from other views but only within the same access
units though interview prediction [21].

An access unit contains all the NAL units pertaining to a
certain time instance. According to the draft MVC standard,
an IDR access unit is an access unit wherein the pictures
of all the views are IDR pictures. Such an IDR access units
provide random access support at the time instance to all
the views. Note that the draft MVC standard allows for such
access unit wherein pictures of some views are IDR pictures
while pictures of other views are non-IDR pictures.

IDR pictures disallow any picture succeeding the IDR
picture in decoding order (i.e., bitstream order) to be inter-
predicted from earlier pictures in the same view. This
leads to a reduced compression efficiency compared to the
typical open GOP (group of pictures) coding structures
such as the IBBP structure, where the B pictures after
the I picture in decoding order precede the I picture in
display order, and can use pictures before the I picture
in decoding order for inter prediction. The I pictures in
such open GOP coding structures are defined as anchor
pictures in the draft MVC standard and are identified by
the NAL unit header syntax element anchor_pic_flag equal
to 1. Anchor pictures can therefore also be used as random
access points, while application implementers must bear
in mind that a few pictures after such random access
points may not be correctly decoded when random access is
carried out at these points. Actually, in this situation these
pictures can be dropped from the bitstream sent to the user.
Like V-IDR pictures, anchor pictures in nonbase views can
also use interview prediction.

It is also possible to perform random access at non-
intra pictures, for example, using gradual decoding refresh
(GDR) based on the isolated regions technology [22]. In this
case, the GDR random access points can be indicated by
the recovery point SEI message as specified in H.264/AVC,

but included in the scalable nesting SEI message that tells to
which views the semantics apply.

4.2. View Switching. View switching refers to changing the
target view(s). The number of target view(s) may be one or
more. In case the number of target view(s) change or any
of the target view is changed from one view to another, a
view switching occurs. View switching must happen at view-
switching points, after which the new target view(s) can be
correctly decoded. A typical application for view switching is
free-viewpoint video, which has been shown in Scenario (a)
of Figure 1.

All random access points can also be used as view
switching points. There is another type of switching points
that are not random access points. For example, if at picture
X the target views can be switched to view subset C from view
subset A but not from view subset B, then picture X is a view-
switching point from view subset A to view subset C. This
type of switching points can be realized by specifically setting
the interview prediction relationship, or by using the SP/SI
coding technology [23].

5. Decoded Picture Buffer Management

In this section, we first introduce the decoding order arrange-
ment of coded view pictures, which is closely related to
decoded picture buffer management. After that, we present
an analysis of the buffer requirement for decoding of MVC
bitstreams, which has been discussed in more details in [24].
Finally, reference picture management methods both inside
a view and related to interview pictures are discussed.

5.1. Decoding-Order Arrangement. In H.264/AVC, the order
how NAL units are placed inside the bitstream is referred
to as the decoding order. In multiview video, where two
dimensions, time and view, are involved, prescription of the
decoding order gets more complicated.

Two fundamentally different decoding order arrange-
ments, view-first coding and time-first coding, have been
considered by the JVT. In view-first coding [25], within
each group of pictures (GOP), pictures of each view are
contiguous in decoding order, as shown in Figure 4, where
the horizontal direction denotes time (each time instance is
represented by Tm), and the vertical direction denotes view
(each view is represented by Sn). Pictures of each view are
grouped into GOPs, for example, pictures T1 to T8 for any
view in Figure 2 form a GOP.

View-first codingcauses a fundamental problem for
storage of multiview video bitstreams in media container files
based on ISO base media file format [26]. Coded pictures
belonging to different views but with the same time instance
are interleaved with pictures of other time instances in a
bitstream, and thus cannot be in the same access unit. These
different access units, when composed into a file according
to the ISO base media file format, correspond to different
samples. The ISO base media file format requires samples
to be ordered in their decoding order. According to the ISO
base media file format, the decoding time of a sample is an

T0 T1 T2 T3 T4 715 Te 17 T8 T9 TlO

i @*@P@PPP' EHE]
[1])- pEEN
2] JPPPPPPPI (o
5 - -5 G

y gimmmmvmmn

S2

[55]. [F[112]>[113

IR g e T g EEY e 1 g B g Y e [5 W-

(%]
N

285129

2 R Y g 8 e [e 57 - g T e e 71

(%]
~

FIGURE 4: View-first coding.

T2

(o)}
HE

%)
(=}

H@Jﬁiﬁiﬁé

—
N

v

UJ) W W W W W W |~
\D o] ~ [e)} w > w SR ENN

Y

l H 5111 =) {2]3
N Ul — =3 K%
] BE

2]
—_

&]
o

=
N
w1
)
N N o) ur U1 w1 |~
o) —) S0 N a9

(2]
[8]

3=} —_

(=} el
w1
=]

°e)
=

H
—

%]
w1

w
@

%]

[e)}

[\
H

w
H

~ (=)} (o)}
2l el =2k{ak]a]

— — — — — — ~
5 S (%9) — =) —
) —

! H

w W) N N o |~
— S =) o N u1 & W
ur

o

H
—

<e]
~

FIGURE 5: Time-first coding.

increasing function of sample number, and the composition
time (also used as presentation time) of a sample is indicated
as a nonnegative increment compared to its decoding time.
Consequently, view-first coding would require a composition
time offset proportional to the GOP size multiplied by the
number of views, which would be perceived as significant
initial buffering delay. Furthermore, possibility for parallel
decoding would be hard to realize when view-first coded
streams are included in files compliant with ISO base media
file format, because the indicated decoding and composition
times assumed single-processor operation.

To overcome the mentioned problems, time-first coding
was introduced in MVC [27]. In time-first coding, pictures
of any temporal location are contiguous in decoding order,
as shown in Figure 5. In this case, we can define pictures of
the same time instance but belonging to different views as
one access unit. Note that the decoding order of access units
may not be identical to the presentation order.

EURASIP Journal on Advances in Signal Processing

With time-first coding, an access unit contains NAL
units continuous in decoding order. This definition is
similar to the access unit definition in SVC. Therefore,
many mechanisms designed in the SVC file format, such as
extractors and aggregators, are useful for MVC too. Some
design principle for MVC file format can be found in [28].

The following subsections on buffer requirement analysis
and buffer management are all for time-first coding only.

5.2. Buffer Requirement Analysis. In MVC, pictures in the
same time instance are assumed to be outputted simul-
taneously. Decoded pictures used for prediction or future
output are buffered in the decoded picture buffer (DPB). To
efficiently utilize the buffer memory, the DPB management
processes have been specified, which include a storage
process of decoded pictures into the DPB, a marking process
of reference pictures, and an output and removal process of
decoded pictures from the DPB.

Assume that we have a prediction structure similar to the
one shown in Figure 2, where each GOP includes a number
of views (nv) and in each view gl (GOP length) pictures.

The optimal DPB size, as discussed in [29], is TL + 1,
where TL is the highest temporal level of all the pictures and
TL = [log, (gD 1.

The DPB sizes for time-first coding in different scenarios
are summarized in the following, while more details can be
found in [24, 30].

5.2.1. DPB When Output is not Taken into Consideration. In
time-first coding, the pictures in the same time instance will
be stored in the DPB longer and each view preserves the
hierarchical B coding structure. So there are two steps to
reach the maximum DPB size for time first:

(1) take the pictures in the same time instance as a whole
and form a hierarchical B coding structure, the DPB
size would then be nv-(TL+ 1);

(2) for the nonreference pictures in the highest temporal
level, interview prediction requires them to be stored
in the DPB.

These two steps are shown in Figure 6.

So, in the typical prediction structure, the maximum
DPB size for time-first coding is nv-(TL + 1) + 2.

In both results, there is a “2”, which actually means
the maximum interview reference pictures in the typical
prediction structure.

5.2.2. DPB When the Output is Taken into Consideration.
When the output is considered, thecase is even worse for
view-first coding, especially for 3D TV application scenario,
which requires the display of all the views. The reason is that,
in view-first coding, all the pictures of the already coded view
in a GOP must be kept in the buffer at least till the last view
starts decoding.

For simplicity, we give the DPB bulffer sizes for view-
first coding and time-first coding in both 3D TV and free-
viewpoint video scenarios without detailed analysis, which
can be found in [24].

EURASIP Journal on Advances in Signal Processing

so]
st]
s2]
so []
st
s2]
st
s2 [

Hinnnm i B
0 [[[[
N I
0 o o o [=
N [I
NN
I | O 4
0 o [o B [

I:l Stored in step 1
- Stored in step 2

|:| Not coded

FIGURE 6: DPB status for time-first coding.

In 3D TV scenario, the total DPB sizes for time-first
coding are (nv — 1) g+ TL+1 and nv(2-TL —log,| TL - 1]),
respectively.

In free-viewpoint video, the total DPB size for time-first
codingis (nv-(TL+1) +3)/2+TL -1 —log,| TL — 1].

Table 1 gives the example values for all the compared
scenarios when the GOP length is 16 and number of views
are 8. Time-first coding, as shown by the formula as well as
the example values, requires less DPB size.

Note. Scenarios through (1) to (4) are the following sce-
narios, respectively: (1) DPB w/o output; (2) 3D TV DPB
with output; (3) Free viewpoint video DPB with output,
maximum; (4) Free viewpoint video DPB with output,
average gl is 16 and nv is 8.

5.3. Buffer Management Inside a View. Because of the time-
first coding structure, whether a picture is a reference picture
or nonreference picture can be decided only by its temporal
prediction structure. Because for any two pictures in a view,
if picture A follows picture B, then in the whole bitstream,
picture A also follows any picture with the same time instance
as picture B. This is not the case in view-first coding, so
it may require cross-view explicitly or implicit marking to
make those pictures with the same time instance as B but
with early decoding time as A as “unused for reference”.

So, all the memory management control operation
commands, if present, are effective inside a view. And the
sliding window also takes effect inside a view, which was
proposed into JVT in the same time in [30-32].

5.4. Buffer Management for Interview Reference Pictures. In
each time instance, if dependency exists, for one current
decoding picture, there can be one or more interview refer-
ence pictures. Those interview reference pictures, although
there are not used for temporal prediction within a view, are
required to be somehow stored in the decoded picture buffer.

TaBLE 1: Comparison examples between view-first and time-first
when different scenarios are utilized.

(1) (2) (3) (4)
view-first 44 117 44 32
time-first 44 56 56 23.5

However, whether to store these pictures as “used for
reference” or “unused for reference” is still an issue. In the
AVC specification, if a picture is not used as a reference
picture for others, it is with a nal_ref_idc value equal to 0
and is a nonreference picture. Those pictures, however, in
MVC context can be used for interview reference picture, for
example, the highest temporal level pictures in view 0 when
view 1 is decoded.

If there are stored as a reference picture, when only
base view sub-bitstream is decoded, it is definitely an extra
memory burden for the H.264/AVC decoder and the encoder
may need to design extra memory management control
operation (MMCO) commands. So, in [33], we proposed
that those pictures are not required to be stored as a reference
picture. This solution solves the problem we mentioned
above and another question arises: how would those pictures
used only for interview prediction be managed to reach
the optimal buffer management. One argument is if an
interview picture is not used for temporal prediction and is a
nonreference picture, it may be not available in the DPB.

Because of the time-first coding structure and the
assumption that pictures are outputted at the same time, the
concern mentioned above is solved.

So there is no extra marking process for those pictures
if all views are required for output. If some views are not
required for output, those pictures can be implicitly removed
from the DPB earlier. The implicit removal is based on the
view dependency defined in the MVC SPS extension [19, 34].
The implicit removal is defined in the hypothetical reference
decoder (HRD) part of the MVC specification. The current
HRD design of MVC focuses mostly on output conformance.

Although the interview prediction structure is in the
scope of MVC SPS extensions, for each time instance, a
picture can be used as interview picture or not based on
real uses. For example, pictures in higher temporal levels
may be more helpful for the efficiency while picture in lower
temporal levels may be less helpful. The decoding of those
pictures, if they are nonreference pictures and belong to the
views that are not required for output, can be avoided. So an
inter_view_flag was proposed by [35, 36] and was introduced
into the MVC specification.

6. Parallel Coding of Multiple Views

One of the key identified requirements for the MVC standard
is its ability to support parallel processing of different views
[11]. The parallel processing of different views is especially
important for 3D broadcasting use cases, where the displays
need to output many views simultaneously to support head-
motion parallax. However, interview dependencies between

10

View-1) | —> 1

View-0 > > > —>

0 1 2 3 4

Frame index

FIGURE 7: Sample prediction structure for two views.

pictures may impose serious parallelism issues to the video
system, because two pictures at different views need to
be decoded sequentially. Let us consider a 3DTV system
displaying simultaneously two views, and views are coded
with the coding structure as illustrated in Figure 7.

In order to decode a picture in view 1 at any temporal
instant, the picture in view 0 at the same temporal instant
will be decoded first. The only way to display two views at
the same time is by having an MVC decoder running two
times faster than a regular single-view decoder. Even though
two independent decoders running on different platforms
might be available, both decoders need to run twice faster
than the single-view decoder because decoding has to be
performed sequentially. The situation gets worse, with the
increasing number of views that is supported by the 3D
display. Currently there are commercial displays which can
display 100 views simultaneously, and if all the views depend
on each other, then the decoder must run 100 times faster,
which is very challenging.

One way to increase the parallelism is to code each view
independently. However, this kind of simulcast approach
results in a significant penalty in coding efficiency as
interview redundancies are not exploited at all. The draft
MVC standard includes a more efficient method that allows
parallel decoding/encoding operation of multiple views with
high coding efficiency. This is achieved by utilizing the
parallel decoding information SEI message that indicates that
the views are encoded with systematic constraints, so that
any macroblock in a certain view is allowed to depend only
on reconstruction values of a subset of macroblocks in other
views [37, 38].

In order to describe how parallel processing is achieved
using parallel decoding information SEI message, let us con-
sider an example, where two pictures from view 1 and view
0 are going to be decoded. Assume view 1 picture references
view 0 picture as illustrated in Figure 8 (for simplicity, the
sizes of the frames are five macroblocks both horizontally
and vertically). Parallel decoding information SEI message
indicates the video is encoded in a way that macroblocks
in view 1 picture could only use reconstruction values of
macroblocks that belong to certain rows in view 0 picture.
For example, the macroblocks in the first macroblock row
of view 1 picture could only use reconstruction values from
the first two macroblock rows in view 0 picture. In other
words, the available reference area for the first macroblock
row of view 1 picture constitutes only data from the first

EURASIP Journal on Advances in Signal Processing

=W NN = O

1 2 3 4
T T T T
Available | 0 _}\: !
area DN
[o m— o Ny
3 A I
2F Z. : ZZ: ZZ: 2 | | | I
3 RN Unavailable{3'3__}_:';:"_}_::‘;:":;‘
area R AR
AR
4L 4 RSN
View-0 View-0

FIGURE 8: Systematic restriction of reference area.

two macroblock rows of view 0 picture (i.e., the motion
vectors for the view 1 macroblocks are restricted). Similarly,
the second macroblock row of view 1 picture only uses
reconstruction values of the first three macroblock rows of
the view 0 picture. This systematic restriction of reference
area enables parallel decoding of first row of view 1 with any
row below the second of view 0, as they are not referring each
other.

In order to illustrate how this feature is used, let us
assume an MVC decoder running on two processors (or
processor cores) and decoding a bitstream containing two-
views, where view 1 references view 0. Further assume that
the bitstreams are coded with the restrictions as described
above. The parallel decoding operation of these two views is
illustrated in Figure 9, where processor PO is decoding view
0 pictures and processor P1 is decoding view 1 pictures. The
decoding operations for both views start simultaneously, but
decodingf the first row of macroblocks in view 1 picture
does not start before view 0 notifies the view 1 decoder.
This notification is done after all the macroblocks in the
first two macroblock rows in view 0 are decoded, and
their reconstruction data are placed in the memory. This
notification tells decoder of view 1 that all data required to
decode first macroblock row in view 1 are ready. This way,
the decoder of view 1 could start decoding the macroblocks
of the first row, while the decoder of view 0 proceeds with
decoding macroblocks in the third row and two decoders
run in parallel. This parallel operation continues with two
macroblock rows of delay between two views till the decoding
of all the macroblocks is finished.

The benefit of using parallel decoding information SEI
message is that significant coding gain is achieved over
simulcast, while maintaining almost the same desirable par-
allelism characteristics. When compared to anchor method,
where encoding happens without utilizing the SEI message
and systematic restrictions, it is seen that parallel operation
is achieved with almost no penalty on coding efficiency:

EURASIP Journal on Advances in Signal Processing

| Decode (row-1) MBs |

| Put recon (row-1) |

| Decode (row-2) MBs |

| Put recon (row-2) |

Cw

ait

Notify view-1
| Decode (row-3) MBs |

| Decode (row-1) MBs |

| Put recon (row-3) |

Wait

Notify view-1
| Decode (row-4) MBs |

| Decode (row-2) MBs |

Processor P1
view-1 decoding

Processor PO
view-0 decoding

FIGURE 9: Sample parallel decoding process for two views.

maximum 0.08 and in average 0.03 dB loss for all the test
sequences defined in the comment test condition for MVC
[39]. Compared to simulcast, similar parallelism is achieved
with 0.9 dB gain on coding efficiency as interview prediction
is still utilized [37, 38].

In addition to using this SEI message, parallel processing
could also be achieved by using simpler prediction structures.
For example, consider the case where nonanchor pictures do
not use interview prediction but only temporal prediction
[40]. This approach achieves parallel operation as nonanchor
pictures can be independently decoded without referencing
other views. The parallelism of this structure could be further
improved by using the parallel decoding information SEI
message for anchor pictures.

It should be noted that parallel decoding information
SEI message does not change the worst case complexity of
MVC decoders. This means that the MVC decoders need
to be designed to handle bitstreams where the encoding
restrictions have not been applied, and parallel decoding
information SEI message is not present. However, system
standards such as DVB-H [41] can mandate the usage of this
SEI message on their respective environments. This would
ensure parallel operation for all the decoders operating on
these services.

7. Other Related Techniques

Beside those discussed in earlier sections, the joint draft of
MVC includes the following related techniques as summa-
rized below.

7.1. Reference Picture List Construction. The reference picture
list construction process can flexibly arrange temporal and

11

view prediction references. This provides not only potential
coding efficiency gain but also error resilience, since reference
picture section and redundant picture mechanisms can then
be extended to the view dimension [15]. This strengthens the
error robustness of the MVC bitstreams.

7.2. Active View Information SEI Message. The decoder may
prefer to display a subset of the views encoded in an MVC
bitstream. If this preference can be known by the decoder,
then only the output views and the dependent views need
to be decoded and stored in the DPB. The active view
information SEI message was introduced to indicate the
views that are to be output [42].

7.3. Multiview Scene Information and Multiview Acquisition
Information SEI Messages. Two SEI messages related to
acquisition and rendering were introduced in MVC, namely
multiview scene information SEI message and multiview
acquisition information SEI message, to signal camera
parameters, which are helpful in view interpolation by a
renderer [43].

8. Concluding Remarks

In this paper, we reviewed the key aspects of the system,
transport interface, and decoder designs of MVC. We also
introduced techniques crucial in meeting the requirements
of typical 3D services and system architectures. These
solutions, as adopted to the draft MVC standard, focus on
two parts: features to facilitate storage and transport of
MVC bitstreams and features to achieve minimum decoder
resource consumption.

For the MVC system and transport interface, bandwidth
adaptation, decoder capability adaptation, view random
access, and view switching are the main concerns of the
design. For the MVC decoder, minimizing the memory
consumption and computational complexities are addressed.

The following key points of the MVC design are high-
lighted.

(i) MVC shared the same network abstraction layer
(NAL) unit types designed in SVC, while differs a little in
some specific syntax elements.

(ii) The base view of an MVC bitstream was designed
to be H.264/AVC compatible in a way that it can be
reconstructed by a standard H.264/AVC decoder. At the same
time, backward-compatible extensions allow to utilize MVC-
specific features with an MVC-compliant decoder.

(iii) New supplemental enhancement information (SEI)
messages have been introduced to signal operation points
as well as their dependency information. It is designed
for adaptation and bitstream extraction. In addition, a
mechanism has been specified that allows reusing all the
original H.264/AVC SEI messages.

(iv) Time-first coding order was introduced to facilitate
the file format design of MVC. This coding order is essential
to achieve optimal buffer management at the decoder.

(v) Parallel decoding information SEI message was
introduced to enable parallel encoder/decoder operation

12

for different views. This is especially important for 3D
broadcast systems that support head-motion parallax, where
the receiving end needs to decode and display multiple views
simultaneously.

Acknowledgment

This work was supported in part by Nokia and the Academy
of Finland, Finnish Centre of Excellence Program 2006-2011
under Project 213462.

References

[1] A. Smolic, H. Kimata, and A. Vetro, “Development of
MPEG standards for 3D and free viewpoint video,” in
Three-Dimensional TV, Video, and Display IV, vol. 6016 of
Proceedings of SPIE, Boston, Mass, USA, October 2005.

[2] H.-Y. Shum, S. B. Kang, and S.-C. Chan, “Survey of image-
based representations and compression techniques,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 11, pp. 1020-1037, 2003.

[3] C.Fehn, “Depth-image-based rendering (DIBR), compression
and transmission for a new approach on 3D-TV;” in Stereo-
scopic Displays and Virtual Reality Systems XI, vol. 5291 of
Proceedings of SPIE, pp. 93-104, San Jose, Calif, USA, May
2004.

[4] H.Kimata, M. Kitahara, K. Kamikura, Y. Yashima, T. Fujii, and
M. Tanimoto, “System design of free viewpoint video commu-
nication,” in Proceedings of the 4th International Conference on
Computer and Information Technology (CIT °04), pp. 5259,
Wuhan, China, September 2004.

[5] A. Smolic and P. Kauff, “Interactive 3-D video representation
and coding technologies,” Proceedings of the IEEE, vol. 93,
no. 1, pp. 98-110, 2005.

[6] A. Vetro, W. Matusik, H. Pfister, and J. Xin, “Coding
approaches for end-to-end 3D TV systems,” in Proceedings of
the 23rd Picture Coding Symposium (PCS ’04), pp. 319-324,
San Francisco, Calif, USA, December 2004.

[7] C. Fehn, R. de la Barré, and S. Pastoor, “Interactive 3-
DTV-concepts and key technologies,” Proceedings of the IEEE,
vol. 94, no. 3, pp. 524-538, 2006.

[8] J. G. Eden, “Information display early in the 21st century:
overview of selected emissive display technologies,” Proceed-
ings of the IEEE, vol. 94, no. 3, pp. 567—574, 2006.

[9] B. Froba and C. Kiiblbeck, “Face detection and tracking using
edge orientation information,” in Visual Communications and
Image Processing, vol. 4310 of Proceedings of SPIE, pp. 583-594,
San Jose, Calif, USA, January 2001.

[10] L. Young and D. Sheena, “Methods & designs: survey of eye
movement recording methods,” Behavior Research Methods &
Instrumentation, vol. 7, no. 5, pp. 397-429, 1975.

[11] ITU-T Rec. H.264—ISO/IEC IS 14496-10, “Advanced video

coding for generic audiovisual services,” v3, 2005.

ISO/IEC JTC1/SC29/WG11, “Requirements on multi-view

video coding v.5,” N7539, Nice, France, October 2005.

[13] “Joint draft 6.0 on multi-view video coding,” JVT-Z209,
Antalya, Turkey, January 2007.

[14] D. Tian, M. M. Hannuksela, and M. Gabbouj, “Sub-sequence
video coding for improved temporal scalability,” in Proceedings
of the IEEE International Symposium on Circuits and Systems
(ISCAS °05), vol. 6, pp. 6074—6077, Kobe, Japan, May 2005.

(12

EURASIP Journal on Advances in Signal Processing

[15] Y. Chen, Y.-K. Wang, and M. M. Hannuksela, “On MVC
reference picture list construction,” JVT-V043, Marrakech,
Morocco, January 2007.

[16] T. Wiegand, G. Sullivan, J. Reichel, H. Schwarz, and M. Wien,
Eds., “Joint draft 11 of SVC amendment,” JVT-X201, Geneva,
Switzerland, June-July 2007.

[17] Y.-K. Wang, M. M. Hannuksela, S. Pateux, A. Eleftheriadis,
and S. Wenger, “System and transport interface of SVC,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 1149-1163, 2007.

[18] S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 645-656,
2003.

[19] Y. Chen, Y.-K. Wang, and M. M. Hannuksela, “Comments on
MVC D 2.0,” JVT-W035, San Jose, Calif, USA, April 2007.

[20] Y. Chen, Y.-K. Wang, and M. M. Hannuksela, “View scalability
information SEI message for MVC,” JVT-W037, San Jose,
Calif, USA, April 2007.

[21] Y. Chen, Y.-K. Wang, and M. M. Hannuksela, “MVC com-
ments on JD 3.0,” Geneva, Switzerland, July 2007.

[22] M. M. Hannuksela, Y.-K. Wang, and M. Gabbouj, “Isolated
regions in video coding,” IEEE Transactions on Multimedia,
vol. 6, no. 2, pp. 259-267, 2004.

[23] M. Karczewicz and R. Kurceren, “The SP- and SI-frames
design for H.264/AVC,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 637-644, 2003.

[24] Y. Chen, Y.-K. Wang, and M. Gabbouj, “Buffer requirement

analyses for multi-view video coding,” in Proceedings of the

26th Picture Coding Symposium (PCS ’07), Lisbon, Portugal,

November 2007.

“Joint multiview video model (JMVM) 1.0,” JVT-T208, Kla-

genfurt, Austria, July 2006.

ISO/IEC IS 14496-2, “Information technology—coding of

audio-visual objects—part 12: ISO base media file format,”

2005.

[27] Y.-K. Wang, Y. Chen, and M. M. Hannuksela, “Time-first
coding for multi-view video coding,” JVT-U104, Hangzhou,
China, October 2006.

[28] Y. Chen, Y.-K. Wang, and M. M. Hannuksela, “On MVC file
format,” M 14634, Lausanne, Switzerland, July 2007. 1pt0.8pt

[29] H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of hier-
archical B pictures and MCTE” in Proceedings of the IEEE
International Conference on Multimedia and Expo (ICME *06),
pp- 1929-1932, Toronto, Ontario, Canada, July 2006.

[30] Y. Chen, Y.-K. Wang, and M. M. Hannuksela, “MVC reference
picture management,” JVT-U105, Hangzhou, China, October
2006.

[31] A. Vetro and S. Yea, “Comments on MVC reference picture
marking,” JVT-U062, Hangzhou, China, October 2006.

[32] P. Pandit, Y. Su, P. Yin, and C. Gomila, “Comments on high-
level syntax for MVC,” JVT-U026, Hangzhou, China, October
2006.

[33] Y. Chen, Y.-K. Wang, M. M. Hannuksela, S. Liu, and H. Li,
“On MVC reference picture marking,” JVT-V044, Marrakech,
Morocco, January 2007.

[34] A. Vetro and S. Yea, “MVC clarification of marking process,”
JVT-V085, Marrakech, Morocco, January 2007.

[35] Y.-K. Wang, Y. Chen, and M. M. Hannuksela, “Comments to
JMVM 1.0,” JVT-U103, Hangzhou, China, October 2006.

[36] J. Choi, W. Shim, H. Song, and Y. Moon, “Inter-view
prediction reference picture marking,” JVT-W056, San Jose,
Calif, USA, April 2007.

(25

[26

EURASIP Journal on Advances in Signal Processing

[37] K. Ugur, H. Liu, J. Lainema, M. Gabbouj, and H. Li, “Parallel
encoding-decoding operation for multi-view video coding
with high coding efficiency,” in Proceedings of the Conference
on True Vision, Capture, Transmission, and Display of 3D Video
(3DTV ’07), pp. 1-4, Kos Island, Greece, May 2007.

[38] K. Ugur, J. Lainema, H. Liu, and Y.-K. Wang, “Parallel
decoding info SEI message for MVC,” JVT-V098, Marrakech,
Morocco, January 2007.

[39] “Common test conditions for multiview video coding,” JVT-
T207, Klagenfurt, Austria, July 2006.

[40] P. Merkle, A. Smolic, K. Mueller, and T. Wiegand, “Com-
parative study of MVC structures,” JVT-V132, Marrakech,
Morocco, January 2007.

[41] G. Faria, J. A. Henriksson, E. Stare, and P. Talmola, “DVB-H:
digital broadcast services to handheld devices,” Proceedings of
the IEEE, vol. 94, no. 1, pp. 194-209, 2006.

[42] Y.-K. Wang, M. M. Hannuksela, and Y. Chen, “MVC output
related conformance,” JVT-W036, San Jose, Calif, USA, April
2007.

[43] A. Vetro, S. Yea, W. Matusik, H. Pfister, and M. Zwicker, “Anti-
aliasing for 3D displays,” JVI-W060, San Jose, Calif, USA,
April 2007.

13

	1. Introduction
	1.1. Application Scenarios
	1.2. Requirements of MVC
	1.2.1. Scalabilities
	1.2.2. Decoder Resource Consumption
	1.2.3. Parallel Processing
	1.2.4. Random Access
	1.2.5. Robustness

	1.3. Contributions of this Paper

	2. Structure of MVC Bitstreams
	3. Extraction and Adaptation of MVC Bitstreams
	4. Random Access and View Switching
	4.1. Random Access
	4.2. View Switching

	5. Decoded Picture Buffer Management
	5.1. Decoding-Order Arrangement
	5.2. Buffer Requirement Analysis
	5.2.1. DPB When Output is not Taken into Consideration
	5.2.2. DPB When the Output is Taken into Consideration

	5.3. Buffer Management Inside a View
	5.4. Buffer Management for Interview Reference Pictures

	6. Parallel Coding ofMultiple Views
	7. Other Related Techniques
	7.1. Reference Picture List Construction
	7.2. Active View Information SEI Message
	7.3. Multiview Scene Information and Multiview Acquisition Information SEI Messages

	8. Concluding Remarks
	Acknowledgment
	References

