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1. Introduction

In recent years, considerable attention has been paid to
multiple-input multiple-output (MIMO) systems, which use
multiple antennas at the transmitter and receiver to improve
the performance of wireless communication systems over
fading multipath channels [1]. In a broadcast setting,
when channel state information (CSI) is available at the
transmitter, linear beamforming techniques can be a simple
and efficient way to communicate data from a base station to
multiple mobile receivers [2].

A wide variety of linear beamforming techniques for
multiuser MIMO channels have been proposed in the liter-
ature. Most of these techniques seek to suppress multiuser
interference using perfect CSI at the transmitter [2-5]. If the
channel is not reciprocal and the capacity of the feedback link
is limited, however, it may be difficult for the transmitter to
obtain perfect CSI. As a consequence, several recent works
have considered the problem of coordinated beamforming in
the presence of limited channel state feedback [6-8].

Most prior work on coordinated beamforming has
assumed that the receive antennas are spaced sufficiently far
apart so that signal fading and noise can be modeled as
independent in each receiver chain. However, many wireless
devices, such as cellular handsets and wireless LAN cards,

are severely limited in physical size. When multiple antennas
are packed into a small space, strong interactions can occur
among the antenna elements: the electric fields detected by
different elements become correlated, the radiation patterns
may become distorted, mutual coupling occurs between the
antennas [9-12], and the noise may no longer be spatially
white [13, 14]. Moreover, the statistics of the signal and noise
will depend in general on detailed aspects of the receiver
design, such as the antenna impedances, matching networks,
and amplifiers employed in the receiver RF front-ends. To
optimize performance in such scenarios, it is necessary to
develop realistic models of these interactions as well as
new beamforming techniques that exploit these models to
improve performance.

In this paper, we investigate the effects of receive antenna
coupling, matching networks and correlated noise on the
design and performance of downlink coordinated beam-
forming systems. We present a new coordinated beamform-
ing technique for two receivers that is suitable for MIMO
broadcast channels with signal and noise correlation at the
receiver. We then apply this technique to the specific type
of signal and noise correlation that occurs in the presence
of receiver mutual coupling. Numerical results suggest that,
even in the presence of strong coupling, most of the benefits
of coordinated beamforming can be preserved by using
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F1GURE 1: A MIMO broadcast channel with coordinated beamform-
ing.

appropriate matching networks and linear beamforming.
Moreover, these benefits can be achieved even when feedback
is limited.

The rest of the paper is organized as follows. In Section 2,
we present a new coordinated beamforming technique for
channels with signal and noise correlation at the receivers.
In Section 3, we present a model for a multiantenna receiver
front-end that characterizes the signal and noise correlation
that results from mutual coupling. Finally, in Section 4, we
present numerical results to illustrate the performance of
the proposed beamforming technique and its dependence
on the properties of the receive array, matching networks,
amplifiers, and channel state feedback.

2. Coordinated Beamforming with
Correlated Noise

When receive antennas are placed close together, the signal
components in each receiver chain may become correlated.
In a similar way, recent results have shown that mutual
coupling among the receive antennas can also cause the
noise in each chain to become correlated (e.g., [13, 14]). In
this section, we present a coordinated beamforming strategy
suitable for MIMO broadcast channels with signal and
noise correlation at the receiver. The specific form of signal
and noise correlation that results from mutual coupling is
presented in the next section.

Consider a MIMO broadcast channel in which a base
station with N transmit antennas sends data to two users
with M receive antennas each, as shown in Figure 1. It is
well known that the sum-rate capacity of this channel is
achieved by “dirty paper” coding, which can be difficult to
implement in practice. We will therefore consider the simpler
(but suboptimal) transmit beamforming scheme studied in
[5, 8]. In this scheme, the base station transmits one symbol
to each user via linear beamforming, so that x = byw; +byw,
is transmitted, where by is the symbol intended for the k-
th user and wy is a unit-norm beamformer. We assume a
rich scattering environment with a delay spread that is small
compared to the inverse signal bandwidth, so the complex
baseband signal detected at the k-th user may be expressed as

rr = Hix + ng, (1)
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where Hy is the M X N channel matrix between the
transmitter and the k-th user, and nj; represents noise.
(These results extend in a natural way to frequency-selective
channels with OFDM, but we will not consider this here.)
We assume the N transmit antennas are spaced far enough
apart so as to be essentially uncoupled and uncorrelated, so
the columns of Hj are independent zero-mean circularly-
symmetric complex Gaussian vectors with covariance Si.
Hereafter we denote this distribution by CN(0,Sk). The
noise is also modeled as Gaussian, ny ~ CAMN(0,Ty).
Expressions for Sy and Ty are derived in Section 3.

The k-th user applies a unit-norm linear combiner g to
the received signal to form the decision statistics:

g{—Ilel bl + g{IH1W2b2 + g’lqnl,

y1=g'n

(2)

V2 = ggll'z g?HZWI b] + ggIH2W2b2 + gﬁ’nz,

where the superscript H denotes the conjugate-transpose.
We want to design beamformers w;, w; and combiners

g1, & so as to maximize the sum-rate of this system, subject

to the constraint that no interference is present in either

decision statistic. The zero interference constraint implies

gl H,w, = gl'Hyw, =0, (3)
in which case the sum-rate of the resulting system is given by
C(wi, w2, 81,82) = log,(1+y1) +1log,(1+92),  (4)

where P, = E[|by \2] is the transmit power allotted to user k
and

_Pk‘ngHka‘Z

Yk = (5)

g Tigr

is the output signal-to-noise ratio (SNR) of the k-th receiver.
We assume full channel state information is available, so H;
and H, are known at the transmitter; the case of limited
feedback is considered below. The optimization problem
is therefore to maximize (4) over all unit-norm vectors
w1, W2, 81,8 that satisfy (3). Note that we can relax the
assumption that g; and g, have unit norm, since (4) does
not depend on the norms of the combiners.

Since the design of the beamformers w; and w; involves
coordination of the two users, this problem has been called
coordinated beamforming [8].

2.1. Uncorrelated Fading and Noise. For uncorrelated fading
(S; = S; =1 and spatially white noise (T; = T, = Nyl), this
optimization problem has been studied in [5, 8]. For M >
N = 2, Wong [5] asserts that the optimal receiver processing
is maximal-ratio combining (MRC),

g1 = Hywy, g2 = Hyw,, (6)

in which case the zero interference constraint (3) becomes

wiHIH,w, = wiHIH,w, = 0. (7)
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Assuming MRC is used at the receiver, Chae et al. [8] showed
for M = N = 2 that any beamformers w; and w, that satisfy
(7) must be generalized eigenvectors of the matrices

F, = H'H,, F, = Hi'H,, (8)

or equivalently, eigenvectors of the matrix F;'F; if F, is
nonsingular. (The optimal beamformers in [8] are expressed
in a slightly different form, as generalized eigenvectors of the
normalized matrices F; = F/Tr[F;] and F, = Fo/Tr[F,],
where Tr[-] denotes the trace. Clearly, the generalized
eigenvectors of F; and F, are the same as those of F; and F,.)

Based on this result, Chae et al. proposed the following
approach to coordinated beamforming. First we compute
a set W of generalized eigenvectors of F; and F,. We then
choose beamformers from this set so as to maximize the
sum-rate when MRC combining is used:

C(wi, wa, Hiwy, How,).

)

{w),w§} = arg  max

wL,W2 EW, Wi # W)

Simulations results presented in [8] suggest that this method
can achieve a sum-rate close to the sum-capacity of the
MIMO broadcast channel.

2.2. Correlated Fading and Noise. When signal fading is
correlated (S; #1I or S, #I) but the noise is spatially white,
the coordinated beamforming strategy in [8] can still be
applied as written, although the resulting average sum-rate
will naturally depend on the covariances S;, S,. The situation
is more complicated when channel noise is correlated. When
T) # Nol or T, # Nol, the strategy in [8] still eliminates
multiuser interference in the decision statistics (2), but does
not generally provide the best sum-rate because it contains
no preference for beamformers aligned to directions with
minimum channel noise.

To develop a strategy suitable for correlated noise,
consider a channel with nonsingular noise covariances T,
and T,. Let T}C/ 2 denote the Hermitian square-root of Tj.
Substituting the change of variables

172

g =T “uy, g =T, u, (10)

into (2), we obtain the decision statistics

Y1 =uj Tl 1/2H1W1bl +u; Tl 1/2H1W2172 +u; T 1/2

Y2 =, T2 172 H2W1b1 +uy T2 172 Hszbz +u; T 1/2

(11)

Observe that choosing vectors wyj, wy,u;,u; to eliminate
multiuser interference and to optimize the resulting sum-
rate of the channel (11) is mathematically equivalent to the
original optimization problem (2) with H;, Hy, n;, and n,
replaced bY H] T7 H], ﬁz = T;l/ZHz, ﬁ] = Tfl/an and
n = T2 ’n,, respectively.

Since the new noise vectors n; and n, are both CN (0, 1),
we can now apply the beamforming strategy for uncorrelated
noise in [8]. If MRC combining is used, then u; = ﬁ1w1 and
u = ﬁzwz, or equivalently

g =T 'Hyw, 2 = T; ' How,. (12)

For these combiners, the zero interference constraint (3)
becomes

wiHIT ' Hyw, = wiHYT; ' How, = 0. (13)
For any M = N = 2, we conclude that any beamformers w;

and w; that satisfy (13) must be generalized eigenvectors of
the matrices

~

F, =HIT;'H,, F,=HJT,'H,. (14)

We can now extend the coordinated beamforming strat-
egy in [8] to correlated fading and noise. First compute a set

W of generalized eigenvectors of IAH and ﬁQ. If the combiners
in (12) are used, then the sum-rate is maximized by choosing
the beamformers as follows:

{wo, Wi} = arg max  C(wy,wy, TT T H wy, TS THow, ).

wiL,W2 EW,Wi # W,

(15)

Simulations of the performance of this strategy for
receiver mutual coupling are given in Section 4. We conclude
this section with a general observation about the average
performance of this beamforming strategy.

Theorem 1. The expected sum-rate of the coordinated beam-
forming strategy above,

C_E|: Il’/l\ax C(W],Wz,Tl1H1W1,T21H2W2):|,
wiL,wW2 EW, Wi # W)
(16)

depends on S1,S,,T1, T, only through the eigenvalues of the
“SNR” matrices $;T7! and S, T5 .

Proof of Theorem 1. From (4) and (5), observe that for
Wi, Wy € W>W1 7 W2

C(Wl,WZ, T1_1H1W1,T2_1H2W2)

= log2(1 + le{{f"lwl) + 10g2<1 +P2w§f32wz>.
(17)

so C depends only on the distributions of the independent
random matrices F; and F, in (14). The first channel
matrix can be written as H; = SI/ZHI, where H1 is a
matrix with independent CN (0,1) entries, and thus F, =
HYSI>T 'SV?H,. The eigenvalue decomposition yields
SI2T1S1? = UMALU, (18)
where A; is a diagonal eigenvalue matrix and U is an
M x M unitary matrix. Since H; = Uﬁl and ﬁl have the



same probability distribution, it follows that F, = H?Alﬁl
where H; is a matrix with independent C# (0,1) entries.
Since S{/2T;'S}’* and S, T;! have the same eigenvalues, the
distribution of F, thus depends only on the eigenvalues of
S, T;!. Proceeding in the same way, we can show that the
distribution of f?z depends only on the eigenvalues of S, T3 1
which completes the proof. O

2.3. Limited Feedback. The coordinated beamforming
scheme in Section 2.2 requires the matrices f"l and lA:2 to be
fed back by the users to the base station. When feedback is
limited, the base station’s estimates of these matrices may
be imprecise and the resulting performance degraded. In
this paper, we also examine the impact of mutual coupling
and noise correlation on the performance of coordinated
beamforming with limited feedback. In particular, we
consider a scenario in which no CSI is available at the base
station but there exists a low-rate, error-free, zero-delay
feedback link. In simulations and analyses, we adopt the
simple limited feedback method proposed in [8], in which
the entries of the normalized matrices

G, =

Tr[lA:k]’ k=1,2 (19)

are uniformly quantized and fed back to the transmitter.
As shown in [8], these matrices are Hermitian, preserve
the generalized eigenvectors, and the entries have well-
defined ranges. For example, for N = 2 we have [Gk],; €
[0,1], [Gkl, = 1 — [Gk]y; and Re{[Gk]1p}, Im{[Gy] 12} €
[—0.5,0.5]. To quantize all of the real scalars in these matrices
using Q bits requires a total of (N? — 1)Q bits for each user.
When beamformers (15) are designed using quantized
versions of the channel matrices H; and H,, the mul-
tiuser interference in the decision statistics (2) may not
be completely canceled. As a consequence, to evaluate the
performance of limited-feedback beamformers, we must
replace the SNRs (5) in the sum-rate (4) with the signal-to-
interference-and-noise ratios (SINRs)

Py ‘ gt Hywy ‘ ’

Yk = ) (20)

- 2
P, ‘ g]Iijwl ‘ + ngTkgk

wherel = 1ifk =2and [ =2 whenk = 1.

3. Receiver Model

We now present a model for a multi-antenna receiver with
correlation and mutual coupling. The aim is to derive
physical expressions for the correlation matrices S1, Sz, Ty, T
introduced in Section 2.2. Since the mechanisms that lead
to correlation in both receivers are similar, throughout this
section we focus solely on receiver 1.

We consider the circuit model for an M-antenna receiver
introduced in [14], which is illustrated in Figure 2. This
model includes the impedances of the antenna array, match-
ing network, front-end amplifiers and load, as well as the
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currents and voltages due to the signal and dominant noise
sources. (For simplicity, the downstream noise in [14, (25)] is
omitted, so r4 = 0.) We assume the system is narrowband, so
that all impedances are constant over the system bandwidth
and all signals can be expressed in complex baseband form.

Antenna Array. The antenna array can be represented as an
M-port Thevenin equivalent circuit, as shown in Figure 2.
The relationship between terminal voltages and currents is
then described by an M x M impedance matrix Z,, where
[Za]nm 1s the self-impedance of antenna m, and [Zal,,,
is the mutual impedance between antennas n and m. For
a uniform linear array of M thin dipoles, approximate
formulas for these impedances are given in [15, (8-71)].
These impedances can also be estimated by numerical
techniques (more on this in Section 4).

The antenna array converts the incident electromagnetic
field into an open-circuit voltage V, across the antenna
terminals. Since this voltage contains both signal and noise
components, it can be written as

Vo = Hox+n0) (21)

where H,x is the voltage induced by the transmitted signal x
and n, represents noise. We assume that the columns of H,
are independent, C.N (0,S,) random vectors. For a uniform
linear array, some authors [9-11] have modeled the open-
circuit signal covariance by Clarke’s model

2nd|m nl)’ (22)

[Soln = Jo 275

where d is the interelement spacing, A is the wavelength,
and Jj is the zeroth-order Bessel function of the first kind.
Simulations suggest that this model may not be accurate for
small d, however, so we estimate this matrix numerically in
Section 4.

For perfectly conducting antennas, n, represents the
voltage induced in the array by noise from the surrounding
environment. As in [14], we consider here thermal noise
from an isotropic distribution of black-body radiators with
a uniform temperature Tj. In this case, the noise voltage is
n, ~ CN(0,T,), where [14]

T, = 2ksToB(Z4 + ZIf), (23)

kg = 1.38 x 1072J/K is Boltzmann’s constant and B is the
system bandwidth in Hz. In this paper, we take Ty = 290
K, the standard temperature. Note that, in the absence of
mutual coupling, Z,4 is diagonal and the noise is spatially
white. When coupling is present, however, Z4 is no longer
diagonal and the noise is correlated.

Matching. A matching network is often used to alter the
antenna array impedance, usually in order to maximize
the power transfer or minimize the noise factor of the
amplifiers. This network is usually formed from passive,
reactive elements so it is noiseless, lossless, and reciprocal. If
Vi, I1, V,, I denote the voltages and currents at the network
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FiGure 2: Circuit model of an M-antenna receiver with mutual coupling.

input and output, respectively, then the network is described
by four M X M impedance matrices:

Vi =Znl +Zp0,
(24)
V, =71 + Zx L.

As shown in [16, (2.4)-(2.5)], this network is lossless (i.e.,
dissipates no power) if the following conditions are satisfied:
Z = —-Z8,7,, = —Z}, and Zy, = —Z%,. The antennas and
matching network together constitute a noisy linear network
which can be represented as a Thevenin equivalent circuit
with open-circuit voltage [16, page 13]

V,=MV,, M=2Zy(Zy+Zs) ", (25)

and impedance
Z;‘x = Z22 - MZ12. (26)

These equations will be applied to some specific matching
networks of interest in Section 4.

Amplifiers. The matching network is connected to the load
through a bank of M identical, uncoupled amplifiers.
Each amplifier can be modeled as a linear, noisy two-port
network [14], as shown in Figure 2. The internal noise in
amplifier k is represented by a random noise voltage vax ~
CN(0,4kpToBr,) and an independent noise current iz ~
CN(0,4kpToBg,), where r, and g, are the equivalent noise
resistance and equivalent noise conductance, respectively. The
parameter zcor = cor+ jXcor 1S called the correlation impedance
and models the degree of correlation between the noise
observed at the two ports of the amplifier. Note that the noise
statistics of an amplifier are completely characterized by the
parameters {74, s> Zcor } -

When an isolated amplifier is connected to a source of
impedance z; = 1, + jx, the noise factor is defined as the total
noise power observed at the output port divided by the noise
power contributed by the source alone, which is given by [14]

1
F = 1+7<ru+ga|zs+zcor|2)- (27)
s

The noise factor is a useful metric because it relates the
input and output SNRs of the amplifier. In decibels, this

relationship is given by SNRow = SNRj, — NF, where
NF = 10log,, F is the noise figure. It can be shown that the
minimum value of F is

Fmin =1+ 2(garcor + V8ala + (gurcor)z)y (28)

which is achieved when z, = zop; where

Zopt = ATa/ga + 12 — jXcor- (29)

Load. In Section 2, we denoted the input to the first user’s
combiner by r; in (1). In our model, r; is taken to be the
voltage Vi observed across the load in Figure 2. We assume
that the receiver chains after the amplifiers are uncoupled
and each is electrically isolated from the receiver front-end,
so each branch of the load can be modeled by an impedance
Zr.

With the assumptions above, the fading covariance in (1)
was shown in [14] to be given by

S, = DCMS, M CHDH (30)
where S, is the open-circuit fading covariance (e.g., (22)),

C=2z(Z), +ZIIIM)_1)
(31)
D = z;[(z1 + 222)Iy — 212C] ',

I is the M x M identity matrix, and M and Z) are defined
in (25) and (26), respectively. Here M describes the impact of
the matching network on the open-circuit fading covariance,
and DC is obtained by using elementary circuit theory to
map the fading covariance at the output of the matching
network to the corresponding covariance at the load. The
noise covariance was shown in [14, (25)] to be

T, = (DC)T,(DC)", (32)

where

1 ’ ’ ’
T, = 41<BTOB[5 (Z4 +Z8) + ralis + ga(Z) + Zeorlr)

X (Z;. + ZcorIM)H] >
(33)



kg is Boltzmann’s constant, T, is the noise temperature
of the amplifier and surrounding noise (assumed equal),
B is the bandwidth, and {rs, g, zcor} are the amplifier
noise parameters. Intuitively, T, represents the combined
covariance of all noise sources, referred to the output of the
matching network.

The covariance T, and the analogous covariance T, of
receiver 2 are the inputs to the coordinated beamforming
strategy proposed in Section 2.2. Note that this strategy
in general depends on detailed aspects of the receiver
design, such as the antenna impedances, matching networks,
amplifier parameters, and surrounding noise environment.
The performance of this strategy, however, can be expressed
in a somewhat simpler form. From Theorem 1, we know that
the average sum-rate performance of this system depends on
S; and T, only through the eigenvalues of the SNR matrix
S, T;!. When DC is non singular, however, then

SiT;! = (DC)MS,MI T, (DC) . (34)

Since §; T ! is related to MS,MA T, ! by a similarity transfor-
mation, they have the same eigenvalues. From Theorem 1, we
can therefore take $;T;! = MS,MT;! for the purposes of
evaluating the average sum-rate performance.

4. Numerical Results

In this section, we give numerical examples that illustrate
how the coordinated beamforming strategy proposed in
Section 2.2 performs when applied to mobiles with receiver
correlation and mutual coupling, as modeled in Section 3.
We consider a system with N = 2 transmit antennas spaced
far enough apart so as to be uncoupled and uncorrelated. We
assume the transmitter allocates equal power to each user, so
P, = P, = P/2 where P is the total transmit power.

We assume the transmitter sends data to two users with
identical receivers. Each receiver employs a uniform linear
array of M = 2 or 4 half-wavelength dipoles with inter-
element spacing d. Each dipole has radius 10-%A, where A is
the signal wavelength.

The open-circuit fading covariance S, was computed as
follows. Let g(¢) denote the open-circuit voltage induced
in the m-th receive antenna by a vertically-polarized, unit-
power plane wave with angle-of-arrival ¢ due to a scatterer
located in the antenna far-field. If the received signal consists
of a superposition of a large number of plane waves with
random phases, which are uniformly distributed in azimuth
¢, then the signal is approximately Gaussian with mean zero
and covariance [13, 14]

2m

[Soln = G (9)g,f (¢)e2r@Vimmcosd g (35)
0

2
For omnidirectional antennas (g,,(¢) = 1), this expression
reduces to Clarke’s model (22). While infinitesimally thin
dipoles are often well modeled as omnidirectional, finite-
diameter dipoles in an array are not. We therefore calculated

the functions g, (¢) using the Numerical Electromagnetics
Code (NEC) [17], a program based on the method of
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moments. NEC was also used to estimate the antenna
impedance Z,, which should be more accurate than the thin
dipole approximations in [15].

We consider the Maxim 2642 SiGe low-noise amplifier
[18], which is designed for use in the cellular band. In high-
gain mode with Ryj,s = 510Q and f = 900MHz, its
impedance matrix and noise parameters are given by

211 212 35.7/ — 82.0° 2.74/91.8°
= Q, (36)
21 Z» 325/ —119° 46.1/ —23.3°

Zeor = 35.34 — 114°Q.
(37)

ra =9.45Q, g, =3.24mS,

To maximize power transfer from the amplifiers to the load,
we assume the load is conjugate matched to the amplifier
output impedance, so z; = z35.

We consider two matching networks that have been
discussed in the literature [12, 13]. In optimal multiport
matching for minimum noise factor, the network Zy in (26)
is chosen so that Z), = Zoptlnm, Where zgp is the source
impedance (29) that minimizes the amplifier noise factor.
It is easily verified that a lossless reciprocal network that
implements this match is

1/2
7XA - roptRA

zZy=j
M J R1/2 1 ’
- ropt A xopt M

where X4 = Im{Zx}, ropr = Re{zopt}, Xopt = Im{zgpi}, and
Ry = (1/2)(ZH + Z,). From (32) and (33), we see that this
matching network effectively uncouples the antennas, and so
the noise covariance in (33) reduces to spatially white noise,
Ta = N()I, where N() = 4kBTOBFminr0pt-

The optimal multiport match can be difficult to realize
in practice. We therefore also consider a simpler, suboptimal
type of matching, called self-matching [12, 14], in which
a two-port matching network is connected to each single
dipole that achieves the minimum noise figure for that
antenna in isolation. A reciprocal and passive network that
implements this match is

(38)

1/2
—Xas - roptRAS

s -
Zu=1] | 12 ’
- roptRAS xoptIM

where Zys = diag(Z4), Ras = Re{Zas}, and Xps = Im{Zxs}.
Here diag(-) retains only the diagonal entries of the matrix.
In Figure 3, we plot the expected sum-rate (4) versus
SNR of coordinated beamforming systems for M = 2
receive antennas spaced d = 0.11 apart. When optimal
multiport matching (38) is used, the noise covariances T}
and T, are spatially white and the coordinated beamforming
algorithm for uncorrelated noise (CB-U) in Section 2.1
can be applied. When perfect CSI is available (CSIT), this
algorithm yields the largest sum-rate in Figure 3 for all
SNRs. In fact, the sum-rate of this highly coupled system
is slightly better than the performance obtained for i.i.d.
fading and noise in [8]. Although it may appear surprising

(39)
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F1GURE 3: Sum-rate versus SNR with N = M = 2and d = 0.1A.

that a highly coupled system can actually perform slightly
better than i.i.d. fading and noise, similar results have been
reported for MIMO capacity [19] and receive diversity [14].
(Wallace and Jensen [19] suggested the explanation that
closely-spaced antennas can actually collect more power
than widely separated ones because part of the power
scattered by each receive antenna can be recaptured by the
adjacent antenna, especially when appropriate matching is
implemented.) Using the simpler but suboptimal self-match
(39) with CB-U leads to a performance loss of roughly
3.6dB at high SNRs, due to the presence of correlated
noise in the receivers. If we compensate for the correlation
by applying the new coordinated beamforming algorithm
for correlated noise (CB-C) in Section 2.2, the loss is
reduced to about 1.8 dB. When self-matching is used, note
that both algorithms enforce zero multiuser interference
at the receivers; however, CB-C also exploits the noise
correlation present in coupled receivers to further improve
performance.

Figure 3 also shows the expected sum-rate of these four
systems with limited feedback (LF) with Q = 2 bits
(black lines) or Q = 4 bits (red lines), as described in
Section 2.3. Again we see that CB-U with multiport matching
provides the best performance and is slightly better than
the performance obtained for i.i.d. fading and noise in [8].
The performance loss entailed by using self-matching with
CB-U is in the range 3.6-8.0dB for Q = 2 and 3.6-5.0dB
for Q = 4. If the new algorithm CB-C is used with self-
matching, however, these losses are reduced to 0.8—1.8 dB for
Q = 2 and 1.0-1.8dB for Q = 4. For SNRs in the range 0—
5dB, note that all of the limited feedback curves are close
to the corresponding full CSI curves, so Q = 2 could be
used with little loss of performance. The limited feedback
systems with Q = 4 perform close to full CSI systems for
SNRs up to 15dB. For higher SNRs, a large gap opens up
between the performance of the new algorithm with full CSI
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FIGURE 5: Sum-rate versus antenna spacing with N = 2, M = 4 and

Q=6.

and the limited feedback versions, which might be mitigated
by choosing a larger Q.

The advantages of larger arrays are illustrated in Figure 4,
which plots the expected sum-rate of CB-C (or CB-U) with
multiport matching for M = 2 and 4 receive antennas,
spaced 0.2 apart, and different feedback scenarios. For full
CSI, the larger array improves the sum-rate by a consistent
4.7 dB relative to the M = 2 case. For limited feedback
scenarios, however, the improvement decreases as SNR
increases, particularly for small Q.
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We now consider the impact of receive antenna spacing
on the expected sum-rate. Figure 5 plots the expected sum-
rate of the proposed beamforming system for M = 2,
limited feedback Q = 6, and three different SNRs (P/N, =
0dB, 15dB, and 30dB). Also shown for comparison is the
performance of an ii.d. system with the same SNRs. Note
that multiport matching can achieve performance close to
thei.i.d. case even in the presence of strong coupling, whereas
performance with self-matching tends to degrade for d <
0.41.

Another performance metric of interest in coordinated
beamforming is the outage probability

PM(r) = Priy <}, (40)
where 7 is a nonnegative threshold and yy is defined by (5)
for full CSI systems and by (20) for limited feedback. Since
no closed-form formulas exist for the outage probability of
coordinated beamforming systems, we will estimate it by
Monte Carlo methods.

The outage probabilities versus normalized SNR are
shown in Figure 6 for coordinated beamforming systems
with M = 2 antennas spaced d = 0.1A apart. Also shown
for comparison are results for a single-user MIMO MRC
system with mutual coupling (black lines) from [20]. Here
normalized SNR means that Pp"(7) is plotted versus

T = T _ T
T PNy~ PI2N,’

(41)

where Py/Nj is the average SNR of user k with zero multiuser
interference. For perfect CSI (blue lines), we see that CB-U
(and CB-C) with multiport matching yields the best outage
of all the coordinated beamforming systems considered, and
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at 1% outage is about 3.7 dB away from the performance
of a single-user MIMO MRC system with mutual coupling
(black lines). For self-matching, CB-U suffers a loss of about
5dB relative to multiport matching at 1% outage. If the
new algorithm CB-C is used with self-matching, this loss is
reduced to 2.3 dB. Figure 6 also plots the outage of limited
feedback systems with Q = 2 bits (red and brown lines).
At 1% outage, the new algorithm CB-C with self-matching
performs within 1.7dB of CB-U with multiport matching
for P/Ny = 10dB, and within 0.7dB for P/N, = 25dB.
However the algorithm CB-U with self match suffers about
5dB loss for both SNRs at the same outage level. Note that
LF systems perform poorly for high SNRs because multiuser
interference is not completely canceled and the performance
becomes interference limited since

2

Yk _ \ngka]
; .
PI2No - p/aNy | gl Huw | + (1/No)gf Tug

(42)

Further insights can be gained by examining the effect
of different noise sources on the diversity gain, which is
defined as the difference in SNR between the M = 2 and
M = 1 outage curves at a fixed outage probability. Figure 7
shows the diversity gain of CB-C at 1% outage versus antenna
spacing d/A for M = 2, limited feedback Q = 4, and
different types of noise and matching conditions. Note that
the diversity gain of CB-C with self-matching decreases as
d/A decreases in a way that depends on which source of
noise is dominant. When antenna noise is dominant (e.g.,
ta = ga = 0), the performance of CB-C with self-matching
is exactly the same as multiport matching. On the other
hand, when amplifier noise dominates (e.g., T, = 0) then
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the diversity gain tends to deteriorate rapidly as d/A decreases
below 0.2. This can be explained by observing that antenna
noise and the signal enter the receiver at the same point,
so that all subsequent impedances transform the signal and
noise in the same way, and so do not affect performance.
Amplifier noise is more of a problem because noise at the
input terminal of amplifier 1 can be transferred via mutual
coupling to antenna 2 and become amplified by amplifier
2. Finally, observe that CB-C (or CB-U) with multiport
matching can achieve a diversity gain close to the i.i.d.
case even when the receive antennas are strongly coupled,
regardless of what type of noise dominates. For large d, note
that the antennas become less coupled and the performance
of both matching networks converges to the ii.d. case for
each type of noise.

The results above suggest that the performance benefits
of coordinated beamforming extend to MIMO broadcast
channels with strong correlation and mutual coupling at the
receiver. All of the information needed by the transmitter
about the noise environment, antennas, matching networks
and amplifiers at receiver k can be lumped into a single
matrix F, which is fed back as CSI to the transmitter.
Simulations suggest that limited feedback methods can often
attain performance comparable to full CSI, although the
amount of feedback depends in an essential way on the
SNR. Simulations further show that multiport matching is
often significantly better than self-matching, particularly in
strongly coupled systems. When multiport matching is used,
coordinated beamforming can provide performance close to
the i.i.d. case even when the receive antennas are spaced as
close as 0.2A — 0.4 apart.

5. Conclusion

We investigated the effect of receiver correlation, mutual
coupling, matching networks, and correlated noise sources
on coordinated beamforming systems. We presented a
new coordinated beamforming technique for two receivers
appropriate for MIMO broadcast channels with signal and
noise correlation at the receiver. The best sum-rate and
outage performance is attained when optimal multiport
matching is used with the CB-U algorithm in [8]. Since
multiport matching is difficult to achieve in practice, we also
considered the performance of suboptimal self-matching.
Numerical results suggest that the proposed CB-C algorithm
can significantly outperform CB-U in coupled systems with
self-matching. These results also suggest that performance
depends on which noise sources are dominant. We conclude
that, even in the presence of strong coupling, most of the
benefits of coordinated beamforming can be preserved by
using appropriate matching networks and linear beamform-
ing. Moreover, these benefits can be achieved even when
feedback is limited.
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