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Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to
find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network
anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic
behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999
DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show
that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full
day’s evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
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1. Introduction

Intrusion detection has been extensively studied since the
seminal report written by Anderson [1]. Traditionally, intru-
sion detection techniques are classified into two categories:
misuse detection and anomaly detection. Misuse detection
is based on the assumption that most attacks leave a set
of signatures in the stream of network packets or in audit
trails, and thus attacks are detectable if these signatures can
be identified by analyzing the audit trails or network traffic
behaviors. However, misuse detection approaches are strictly
limited to the latest known attacks. How to detect new attacks
or variants of known attacks is one of the biggest challenges
faced by misuse detection.

To address the weakness of misuse detection, the concept
of anomaly detection was formalized in the seminal report of
Denning [2]. Denning assumed that security violations could
be detected by inspecting abnormal system usage patterns
from the audit data. As a result, most anomaly detection
techniques attempt to establish normal activity profiles by
computing various metrics and an intrusion is detected when
the actual system behavior deviates from the normal profiles.
According to the characteristics of the monitored sources,
anomaly detection can be classified into host-based and
network-based. Typically, a host-based anomaly detection
system runs on a local monitored host and uses its log files or

audit trail data as information sources. The major limitation
of host-based anomaly detection is its capability to detect
distributed and coordinated attacks that show patterns in the
network traffic. In contrast, network-based anomaly detec-
tion aims at protecting the entire networks against intrusions
by monitoring the network traffic either on designed hosts or
specific sensors and thus can protect simultaneously a large
number of computers running different operating systems
against remote attacks such as port scans, distributed denial-
of-service attacks, propagation of computer worms, which
stand for a major threat to current Internet infrastructure. As
a result, we restrict our focus to network anomaly detection
in this paper.

According to Axelsson, the early network anomaly detec-
tion systems are self-learning, that is, they automatically
formed an opinion of what the subject’s normal behav-
ior is [3]. Such self-learning techniques include the early
statistical model-based anomaly detection approaches [4—
6], the Al-based approaches [7] or the biological models-
based approaches [8], to name a few. Although machine
learning techniques have achieved good results at detecting
network anomalies so far, they are still faced with some major
challenges, such as “can machine learning be secure™? [9],
“behavioral non-similarity in training and testing data will
totally fail leaning algorithms on anomaly detection” [10],
and “limited capability for detecting previously unknown
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attacks due to large number of false alerts” [11]. Considered
as an alternative to the traditional network anomaly detec-
tion approaches or a data preprocessing for conventional
detection approaches, recently signal processing techniques
have been successfully applied to the network anomaly
detection due to their ability in point change detection and
data transforming (e.g., using CUSUM algorithm for DDoS
detection [12]).

In this paper, we propose a new network signal modelling
technique for detecting anomalies on networks. Although
the wavelet analysis technique has been used for intrusion
detection in the recent literatures [13-27], we apply it in a
different way. In particular, the general architecture of our
approach, which is illustrated in Figure 1, consists of three
components, namely, feature analysis, normal network traffic
modeling based on wavelet approximation and prediction by
ARX(AutoRegressive with eXogenous) model, and intrusion
decision. During feature analysis, we define and generate
fifteen features to characterize the network traffic behaviors,
in which we expect that the more the number of features
is, the more accurate the traffic volume information for
the entire network will be characterized. This is different
to the current wavelet-based network anomaly detection
approaches because most of them use a limited number of
features (i.e., the number of packets over a time interval) or
existing features from public intrusion detection dataset (i.e.,
41 features from KDD 1999 CUP intrusion detection dataset
[28]) as the input signals. Based on the proposed fifteen
features, normal daily traffic is then modeled and represented
by a set of wavelet approximation coefficients, which can be
predicted using an ARX model. Compared to the current
approaches (e.g., [13]) that attempt to extract different
frequency components from existing network signals, our
approach is more generic and adaptive since the ARX
model used for predicting the expected value of frequency
components is trained from network traffic data collected
on the current deployment network. The output for the
normal daily traffic model is the residual that represents
the deviation of current input signal from normal/regular
behavioral signals. Residuals are finally input to the intrusion
decision engine in which an outlier detection algorithm is
running and making intrusion decisions.

The main contribution of this work consists of: (1)
choosing fifteen network flow-based features which charac-
terize the network traffic volume information as completed
as possible; (2) based on the proposed features, modeling
the normal daily network traffic using the wavelet approx-
imation and the ARX system prediction technique; during
traffic modeling process, we apply four different wavelet
basis functions and attempt to unveil a basic question when
applying wavelet techniques for detecting network attacks,
that is “do wavelet basis functions have an important impact

on reducing the false positive rate and at the same time
keeping an acceptable detection rate”?; and (3) performing
a completed analysis for the full 1999 DARPA network traffic
dataset using our detection approach. The original 1999
DARPA intrusion detection dataset is based on the raw
TCPDUMP packet data [29]. We convert all of them into
flow-based dataset. To the best of our knowledge, this is the
first work to convert the full TCPDUMP-based 1999 DAPRA
network traffic data into flow-based dataset since the 1998
DAPRA intrusion detection dataset [30] has been converted
into connection-based dataset that is now called the 1999
KDDCUP dataset [28].

The rest of the paper is organized as follows. Section 2
introduces related work, in which we briefly summarize
existing works on applying wavelet analysis techniques
for intrusion detection. Section 3 proposes our detection
approach. In particular, we describe the fifteen flow-based
features in detail and explain the reasons for selecting them,
introduce the methodology for modeling the normal daily
traffic and present the outlier detection algorithm for intru-
sion decision. Section 4 presents the experimental evaluation
of our approach and discusses the obtained results. Section 5
makes some concluding remarks and discusses future work.

2. Related Work

The wavelet analysis technique has been widely used for
network intrusion detection recently due to its inherent
time-frequency property that allows splitting signals into
different components at several frequencies. Some examples
of typical works include literatures [13-25].

In the work of Barford et al. [13], wavelet transform is
applied for analyzing and characterizing the flow-based traf-
fic behaviors, in which NetFlow signals are split into different
components at three ranges of frequencies. In particular,
low frequency components correspond to patterns over a
long period, like several days; mid frequency components
capture daily variations in the flow data; high frequency
components consist of short term variations. The three
components are obtained through grouping corresponding
wavelet coefficients into three intervals and signals are
subsequently synthesizing from them. Based on different
frequency components, a deviation algorithm is presented
to identify anomalies by setting a threshold for the signal
composed from the wavelet coefficients at different frequency
levels. The evaluation results show that some forms of DoS
attacks and port scans are detected within mid-band and
high-band components due to their inherent anomalous
alterations generated in patterns of activity. Nevertheless,
low-frequency scans and other forms of DoS attacks do not
generate such patterns even their behaviors are obviously
anomalous.
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To address some limitations of wavelet analysis-based
anomaly detection, such as, scale sensitive during anomaly
detection, high computation complexity of wavelet trans-
formation. Chang et al. proposed a new network anomaly
detection method based on wavelet packet transform, which
can adjust the decomposition process adaptively, and thus
improving the detection capability on the middle and high
frequency anomalies that cannot otherwise be detected by
multi-resolution analysis [14]. The evaluation results with
simulated attacks show that the proposed method detects the
network traffic anomaly efficiently and quickly.

Some anomaly detection system prototypes based on
wavelet analysis techniques have also been developed and
implemented recently, such as Waveman by Huang et al.
[15] and NetViewer by Kim and Reddy [16]. The evaluation
results for Waveman with part of the 1999 DARPA intrusion
detection dataset and real network traffic data show that
the Coiflet and Paul wavelets perform better than other
wavelets in detecting most anomalies under same benchmark
environment. The NetViewer is based on the idea that “by
observing the traffic and correlating it to the previous normal
states of traffic, it may be possible to see whether the current
traffic is behaving in an anomalous manner” [16]. In their
previous work [17], Kim et al. proposed a technique for
traffic anomaly detection through analyzing correlation of
destination IP addresses in outgoing traffic at an egress
router. They hypothesize that the destination IP addresses
will have a high correlation degree for a number of reasons
and the changes in the correlation of outgoing addresses
can be used to identify network traffic anomalies. Based on
this, they apply discrete wavelet transform on the address
and port number correlation data over several time scales.
Any deviation from historical regular norms will alter the
network administrator of the potential anomalies in the
traffic.

Focusing on specific types of network attacks, wavelet
analysis is used to detect DoS or DDoS attacks in [18-20].
In [18], Ramanarran presented an approach named WADeS
(Wavelet-based Attack Detection Signatures) for detecting
DDoS attacks. Wavelet transform is applied on traffic signals
and the variance of corresponding wavelet coefficients is used
to estimate the attack points. In [19], Li and Lee found that
aggregated traffic has strong bursty across a wide range of
time scales and based on this they applied wavelet analysis
to capture complex temporal correlation across multiple
time scales with very low computational complexity. The
energy distribution based on wavelet analysis is then used
to find DDoS attack traffic since the energy distribution
variance changes always cause a spike when traffic behaviors
affected by DDoS attacks while normal traffic exhibits a
remarkably stationary energy distribution. In [20], Dainotti
et al. presented an automated system to detect volume-based
anomalies in network traffic caused by DoS attacks. The
system combines the traditional approaches, such as adaptive
threshold and cumulative sum, with a novel approach based
on the continuous wavelet transform. Not only applied
for detecting specific network anomalies directly, wavelet
analysis was also widely used in network measurement
from the perspectives of traffic performance analysis [21],

traffic anomalies diagnosing and mining [22, 23], and traffic
congestion detection [24].

3. The Proposed Approach

As illustrated in Figure 1, our approach consists of three
components, namely, feature analysis, normal daily traffic
modeling based on wavelet approximation and ARX, and
intrusion decision. In this section, we discuss each compo-
nent in detail.

3.1. Feature Analysis. The major goal of feature analysis is
to select and extract robust network features that have the
potential to discriminate anomalous behaviors from normal
network activities. Since most current network intrusion
detection systems use network flow data (e.g., netflow, sflow,
ipfix) as their information sources, we focus on features in
terms of flows.

The following five basic metrics are used to measure the
entire network’s behavior:

FlowCount. A flow consists of a group of packets going from
a specific source to a specific destination over a time period.
There are various flow definitions so far, such as netflow,
sflow, ipfix, to name a few. Basically, one network flow should
at lease include a source (consisting of source IP, source
port), a destination (consisting of destination IP, destination
port), IP protocol, number of bytes, number of packets.
Flows are often considered as sessions between users and
services. Since attacking behaviors are usually different from
normal user activities, they may be detected by observing
flow characteristics.

AverageFlowPacketCount. The average number of packets is
in a flow over a time interval. Most attacks happen with
an increased packet count. For example, distributed denial-
of-service (DDoS) attacks often generate a large number of
packets in a short time in order to consume the available
resources quickly.

AverageFlowByteCount. The average number of bytesis in a
flow over a time interval. Through this metric, we can iden-
tify whether the network traffic consists of large size packets
or not. Some previous denial-of-service (DoS) attacks use
maximum packet size to consume the computation resources
or to congest data paths, such as well known ping of death
(pod) attack.

AveragePacketSize. The average number of bytes per packet is
in a flow over a time interval. It describes the size of packets
in more detail than the above AverageFlowByteCount feature.

FlowBehavior. The ratio of FlowCount to AveragePacketSize

It measures the anomalousness of flow behaviors. The
higher the value of this ratio, the more anomalous the
flows since most probing or surveillance attacks start a large
number of connections with small packets in order to achieve
the maximum probing performance.
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TaBLE 1: List of features.

Notation of features

Description

fi
f
5
fa
fs
fs
17
fs
Jo
fo
fn
S
fis
S
Sis

Number of TCP flows per minute

Number of UDP flows per minute

Number of ICMP flows per minute

Average number of TCP packets per flow over 1 minute

Average number of UDP packets per flow over 1 minute

Average number of ICMP packets per flow over 1 minute

Average number of bytes per TCP flow over 1 minute

Average number of bytes per UDP flow over 1 minute

Average number of bytes per ICMP flow over 1 minute

Average number of bytes per TCP packet over 1 minute

Average number of bytes per UDP packet over 1 minute

Average number of bytes per ICMP packet over 1 minute

Ratio of number of flows to bytes per packet (TCP) over 1 minute
Ratio of number of flows to bytes per packet (UDP) over 1 minute
Ratio of number of flows to bytes per packet (ICMP) over 1 minute

Based on the above five metrics, we define a set of features
to describe the traffic Information for the entire network.
Let F denote the feature space of network flows. We use a

.....

Table 1.

Empirical observations with the 1999 DARPA network
traffic flow logs (converting packet into flow logs is discussed
in Section 4) show that network traffic volumes can be
characterized and discriminated through these features. An
example is illustrated in Figures 2 and 3. By comparing
the two graphs, we see that the feature “number of flows
per minute” has the potential to identify the portsweep,
ipsweep, pod, apache2, dictionary attacks [29]. For more
information about the results of our empirical observation
see http://www.ece.uvic.ca/~wlu/wavelet.htm.

3.2. Normal Network Traffic Modeling with Wavelet and ARX.
In this section, we first briefly review the basic theoretical
concepts on wavelet transform and system identification, and
then present how to model the normal daily network traffic
signals in our approach.

3.2.1. Overview of Wavelet Transform and System Identifi-
cation Theory. The Fourier transform is well suited only
to the study of stationary signals in which all frequencies
are assumed to exist at all times and it is not sufficient
to detect compact patterns. In order to address this issue,
the short term Fourier transform (STFT) was proposed, in
which Gabor localized the Fourier analysis by taking into
account a sliding window [27]. The major limitation of
STFT is that it can either give a good frequency resolution
or a good time resolution (depending upon the window
width). In order to have a coherence time proportional to the
period, Morlet proposed Wavelet transform that can achieve
good frequency resolution at low frequencies and good time
resolution at high frequencies [31]. Further details about
Fourier analysis, STFT analysis and Wavelet transform can

be found in [32]. In this paper, we use the discrete wavelet
transform (DWT) since the network signals we consider have
a cutoff frequency. DWT is a multistage algorithm that uses
two basis functions called wavelet function y(t) and scaling
function ¢(t) to dilate and shift signals. The two functions
are then applied to transform input signals into a set of
approximation coefficients and detail coefficients by which
the input signal X can be reconstructed.

System identification deals with the problem of identi-
fying mathematical models of dynamical systems by using
observed data from the system. In a dynamical system, its
output depends both on its input as well as on its previous
outputs. As we have known, ARX model is widely used
for system identification. Let x(t) represent the regressor or
predictor input and y(t) denote the output generated by the
system we are trying to model. Then ARX [p,q,r] can be
represented by the following linear difference equation:

P q
y(t) =D aiy(t — i) + > bix(t — i) + e(t), (1)

i=1 i=r

where a; and b; are the model parameters. Given an ARX
model with parameters 6, we have the following equation to
predict the value of next output:

p q
(1 0) =D aiyt—i)+ > bix(t —i) (2)

i=1 i=r
and the prediction error &(t) is given by

§(t) = y(t) = y(t10). (3)

The purpose for deciding a particular set of values of
parameters from given parametric space is to minimize
the prediction error. The least-square estimate technique is
usually used to obtain the optimal value of parameters 6.
Further details about system identification theory can be
found in [33].
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FIGURE 2: Number of flows per minute over one day with normal traffic only.
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FIGURE 3: Number of flows per minute over one day with normal and attacking traffic.

3.2.2. Normal Network Traffic Modelling. Modeling the
normal network traffic consists of two phases, namely,
wavelet decomposition/reconstruction and generation of
auto regressive model. Generally, the implementation of
wavelet transform is based on filter bank or pyramidal
algorithm [32]. In practical implementation, signals are
passed through a low pass filter (H) and a high pass filter
(G) at each stage. Given a signal with length I, we expect
to obtain a filtered signal with length [. Since there are
two filters in each filtering stage, the total number filtered
signals are 2. In order to remove the redundancies in signals,
we can down sample the low pass and high pass filtered
signals by half, without any information loss. The size of
data can be reduced through down sampling since we are
interested only in approximations in this case. After the low
level details have been filtered out, the rest of coefficients
represent a high level summary of signal behaviours and thus
we can use them to establish a signal profile characterizing
the expected behaviors of network traffic through the day.
Although there also exists some other algorithms like a trous
and redundant wavelet transforms that do not down sample
signals after filtering [34], we use filter banks algorithm in
the normal network traffic modeling. Therefore, during the
wavelet decomposition/reconstruction process, the original
signals are transformed into a set of wavelet approximation

coefficients that represent an approximate summary of the
signal, since details have been removed during filtering.

Next, in order to estimate ARX parameters and generate
ARX prediction model, we use the wavelet coefficients
from one part of training data as inputs and wavelet
coefficients from the other part of training data as the model
fitting data. The ARX fitting process is used to estimate
the optimal parameters based on least square errors. The
whole procedure for modeling the normal network traffic
is illustrated in Figure 4. After the prediction model for the
normal network traffic is obtained, we can use it to identify
anomalous signals from normal ones. When the input to
the model includes only normal traffic, its output, called
residuals, will be close to 0, which means the predicted
value generated by the model is close to the actual input
normal behaviors. Otherwise, when the input to the model
includes normal traffic and anomalous traffic, the residuals
will include a lot of peaks where anomalies occur. In this
case, residuals are considered as a sort of mathematical
transformation which tries to zeroize normal network data
and amplify the anomalous data.

3.3. Outlier Detection and Intrusion Decision. According to
the above section, we assume that the higher the value of
residuals, the more anomalous the flow is. As a result, in
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order to identify the peaks (or outliers) of residuals, we
implement an outlier detection algorithm based on Gaussian
Mixture Model (GMM) and make intrusion decisions based
on the results of the outlier detection algorithm.

In pattern recognition, it was established that Gaussian
mixture distribution could approximate any distribution
up to arbitrary accuracy, as long as a sufficient number
of components are used [35], and thus the unknown
probability density function can be expressed as a weighted
finite sum of Gaussian with different parameters and mixing
proportions [36]. Given a random variable x, its probability
density function p(x) can be represented as a weighted sum
of components:

k
p(x) = D ati fi(x; i vi) (4)
i-1

where k is the number of mixture components; o; (1 <
i < k) stand for the mixing proportions, whose sum is
always equal to 1. f;(x; i, v;) refers to the component density
function, in which y; stands for the mean of variable x
and v; is the variance of x. The density function can be a
multivariate Gaussian or a univariate Gaussian.

Expectation-Maximization (EM) algorithm has been
suggested as an effective algorithm to estimate the parameters
of GMM [37]. Suppose the mixture component is the
univariate Gaussian, the EM algorithm for GMM can be
described as follows.

(1) Initialize the parameter set 8° = (oc?, y?, 01-0 ).

(2) E-step: for each data X~{x, | n = 1,2,...,N} and for
each mixture component k, compute the posterior
probability p(i | x,) by solving the following
equation:

. ;N (x5 i 07)
P(l | xn) = . (5)
S N (x5 iy 07)

(3) M-step: reestimate the parameters based on the
posterior probabilities p(i | x,):

1 N
Kinew = N’;p(l ‘ xn):

N .
) _ P(l | xn) ) 6
Hinew %(Zf_lp(ilxn) Xn» (6)

S i( p(il xn)

2
n=1 er:]:lp(i | %) ) (6 = fhne)

(4) Go to Step 2 until the algorithm converges.

In the E-step (Expectation step) of the above EM
algorithm, the posterior probability p(i | x,) is calculated
for each data X~{x, | n = 1,2,...,N} and each mixture
component i(1 < i < k). In M-step (Maximization step),
the set of parameters {a;,u;,v;} are re-estimated based
on posterior probabilities p(i | x,), which maximize the
likelihood function. The EM algorithm starts with some
initial random parameters and then repeatedly applies the E-
step and M-step to generate better parameter estimates until
the algorithm converges to a local maximum.

Our outlier detection algorithm is based on the pos-
terior probability generated by EM algorithm. The pos-
terior probability describes the likelihood that the data
pattern approximates to a specified Gaussian component.
The greater the posterior probability for a data pattern
belonging to a specified Gaussian component, the higher
the approximation is. As a result, data are assigned to
the corresponding Gaussian components according to their
posterior probabilities. However, in some cases there are
some data patterns whose posterior probability of belonging
to any component of GMM is very low or close to zero.
These data are naturally seen as the outliers or noisy data.
We illustrate the detailed outlier detection algorithm in
Algorithm 1.

Thresholds th; and th, correspond to the termination
conditions associated with the outlier detection algorithm:
th; measures of the absolute precision required by the
algorithm and th, is the maximum number of iterations
of our algorithm. Threshold outliergyes refers to the min-
imum mixing proportion. Once the mixing proportion
corresponding to one specified Gaussian component is below
outliergyres, the posterior probability of the data pattern
belonging to this Gaussian component will be set to 0.

The intrusion decision strategy is based on the outcome
of outlier detection: if no outlier data are detected, the network
flows are normal; otherwise, the network flows represented by
this outlier is reported as the intrusion.

4. Performance Evaluation

We evaluate our approach with the full 1999 DARPA
intrusion detection dataset. In particular, we conduct a
completed analysis for network traffic provided by the
dataset and identify the intrusions based on each specific
day. Since most current existing network intrusion detection
systems use network flow data (e.g., network, sflow, ipfix,
to name a few) as their information sources, we covert
all the raw TCPDUMP packet data into flow-based traffic
data by using the public network traffic analysis tools (e.g.,
Editcap [38], Tshark [39]). To the beset of our knowledge,
this is the first work to convert the full 1999 DARPA
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Until: |L] - Lj,1| < thl OI'j > thz

Return x,;

Function: GMM _Outlier_Detection (dataset and k) returns outlier data
Inputs: dataset, such as the residuals and the estimated number of components k
Initialization: j = 0; initial parameters {u,j R uf ) v,-j }, 1 <i < k, are randomly generated;
calculate the initial log-likelihood L ;;
Repeat: If ( a{ > outlieryyr.s ) then compute posterior probability p;(i | x,); else p;(i | x,) = 0;
j = j+1; re-estimate {a{,u{,v{} by using p; 1(i | x,);
calculate the current log-likelihood L ;;

If(pj1(ilx,) =0,1 <i<kand1 <n <N then x, is outlier

ArcoriTHM 1: The proposed outlier detection algorithm.

network packet logs into network flow-based logs since the
1998 DAPRA intrusion detection dataset has been converted
into connection-based dataset in 1999 (i.e., 1999 KDDCUP
intrusion detection dataset).

During the evaluation, the results are summarized and
analyzed in three different categories, namely, how many
attack instances are detected by each feature and all features
correlation, how many attack types are detected by each
feature and all features correlation and how many attack
instances are detected for each attack type. We do not
use the traditional Receiver Operating Characteristic (ROC)
curve to evaluate our approach and analyze the tradeoff
between the false positive rates and detection rates because
ROC curves are often misleading and incomplete [40, 41].
Compared to most, if not all, other evaluations with the
1999 DARPA dataset, our evaluation covers all types of
attacks and all days’ network traffic and as a result, we
consider our evaluation as a completed analysis for network
traffic in the 1999 DARPA dataset. Although the 1998 and
1999 DARPA dataset are the widely used and acceptable
benchmark for the intrusion detection research, they are
criticized in [42, 43] due to the methodology for simulating
actual network environment. As a result, we conduct an
evaluation with a real network traffic dataset collected on a
large-scale WiFi ISP network. Next, we will briefly introduce
the 1999 DAPRA/MIT Lincoln intrusion detection dataset,
explain the method for converting the TCPDUMP packet
logs into network flow-based logs, analyze the residuals for
supporting our intrusion decision assumption in Section 3.3,
and discuss the intrusion detection results we obtain.

4.1. The 1999 DAPRA/MIT Lincoln Intrusion Detection
Dataset. The 1999 DARPA intrusion detection dataset is one
of the first standard corpuses used for evaluating intrusion
detection approaches offline [29] and it includes 5 weeks of
sniffed traffic (tcpdump files) from two points in a simulated
network, one “inside” sniffer, between the gateway router and
four “victim” machines, one “outside” sniffer between the
gateway and the simulated Internet, and host-based audit
data collected nightly from the four victims. We consider
only the “inside” tcpdump traffic during our evaluation in
this paper. The five weeks are as follows:

(i) Weeks 1 and 3: no attacks (for training anomaly
detection systems). During week 1, a total of 22

hours of training data is captured on the simulation
network and the network does not experience any
unscheduled down time. During week 3, the network
is brought down early (4:00 AM) on Day 4 (Thurs-
day) for extended unscheduled maintenance. Traffic
collection is stopped on midnight of Day 5 due to
weekends.

(ii) Week 2: 43 attacks belonging to 18 labelled attack
types are used for system development. During week
2, the simulation network is brought down early
(3:00 AM) during Day 2 (Thursday) for extended
unscheduled maintenance.

(iii) Weeks 4 and 5: 201 attacks belonging to 58 attack
types (40 new) are used for evaluation. During week
4, the inside traffic for Day 2 (Tuesday) is missed.
During week 5, the total 22 hours traffic data is
available and there is no down-time of the network.

All the attacks in the 1999 DARPA intrusion detection dataset
can be grouped into five major categories:

(1) denial-of-service (DoS): an unauthorized attempt to
make a computer (network) resource unavailable to
its intended users, for example, SYNFlood.

(2) Remote to local (R2L): unauthorized access from a
remote machine, for example, guessing password.

(3) User to root (U2R): unauthorized access to local
super-user (root) privileges, for example, various
buffer overflow attacks.

(4) Surveillance or probing: unauthorized probing of a
host or network to look for vulnerabilities, explore
configurations, or map the network’s topology, for
example, port scanning.

(5) Data compromise (data): unauthorized access or
modification of data on local host or remote host.

The 1999 DARPA intrusion detection evaluation dataset
has been widely used for evaluating network anomaly
detection systems since it was created and extended in 1999 as
a succession of the 1998 DARPA’s dataset. The original 1999
DARPA’s dataset is based on raw tcpdump log files and thus
most of current evaluations are based on signatures in terms
of packets. In this paper, we convert all the tcpdump log files
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FIGURE 5: Residuals for number of flows per minute; from left to right is Figures 5(a), 5(b), and 5(c) representing TCP, UDP, and ICMP

flows, respectively.

into flow logs over a specific time interval and then based
on these flow logs we conducted a full network behavioral
analysis for the dataset.

4.2. Converting 1999 DARPA ID Dataset into Flow Logs. Two
existing tools (editcap, tshark) are used to convert the DARPA
tcpdump files into flow logs. The raw tcpdump files we
consider are the “inside” tcpdump traffic files. First, editcap
is used to split the raw tcpdump file into different tcpdump
files based on a specific time interval. In this case, we set the
time interval as one minute in order to keep it the same as
the time interval of flow data provided by most industrial
standard. An example of using editcap is as follows:

editcap-A"1999-04-09 09:00:00"-B’1999-04-09 09:01:00’
inside.tcpdump 1.pcap

Then, the fepdump traffic data over the specific time interval
is converted into flow logs by tshark through the following
commands:

tshark -r 1.pcap -q-n-z conv, tcp,
tshark -r 1.pcap -q -n-z conv,udp,
tshark -r 1.pcap -q -n -z ip,icmp.

Finally, the format of the generated DARPA flow logs is as
follows:

{timestamp, local src IP: src port, remote dst IP: dst port,
incoming number of packets (remote — local), incoming
number of bytes, outgoing (local — remote) number of
packets, outgoing number of bytes, total number of packets,
total number of bytes, protocol}.

An example of one flow log of DARPA is described as:

920275200 135.8.60.182 : 1116
— 172.16.114.169 : 25 47 3968 77 59310 124 63278 tcp

4.3. Analysis for Residuals. The purpose for analyzing the
residuals is to support our assumption in Section 3.3, that
is the higher the value of residuals, the more anomalous
the flow is. Based on this assumption, we propose an

outlier detection algorithm for residuals and the intrusion
decision strategy is according to the outcome of outlier
detection: if no outlier data are detected, the network flows
are normal; otherwise, the network flows represented by
this outlier is reported as the intrusion. As an example,
we analyze the traffic data on Monday, Week 5 since it
includes not only normal behaviors, but also a large number
attacking activities. Figure 3 in Section 3.1 illustrates the
original network behaviors characterized by the feature
“number of flows per minute” over one day. The following
Figure 5 illustrates the network behaviors characterized by
residuals over same feature “number of flows per minute.”
By comparing Figures 3 and 5, we conclude that the peaks of
residuals identify exactly the location where attacks happen.
As illustrated in Figure 3, we know that neptune (dict)
attacks happen between timestamp 500 to 600 (since the
flow data is based on 1 minute time period, the timestamp
500 means the 500 minutes after the starting observing
time point). From Figure 5, we see that residuals generate
a peak on the exact time where the attack happens. For
more information about residuals for other features see
http://www.ece.uvic.ca/ ~wlu/wavelet.htm.

4.4. Experimental Settings and Intrusion Detection Results.
We have known that the 1999 DARPA data includes 5
weeks data and we use notation “wldl” to represent data
on Monday of First Week. During the training phase, in
order to generate the external regressor we create the input
signal by averaging and smoothing the first 7 days of data
(wldl, wld2, wld3, wld4, wld5, w3dl, and w3d2). Based
on this new generated signal we get wavelet approximation
coefficients, which act as the external regressor input into the
ARX model. Then, we get another test signal by averaging
and smoothing the rest 3 days normal data (w3d3, w3d4
and w3d5) and use this test signal to fit the ARX model.
An ARX [5 5 0] model was fitted to the data using the least
squares error method and the wavelet basis function we use
this evaluation is Haar wavelet. We choose Haar wavelet due
to its simplicity and its aptness for our evaluation purpose.
The choices of other wavelet functions and their impact
on detection performance are discussed in Section 4.5. On
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TaBLE 2: List of notations used in experimental evaluation.

Notation Description
WxDy The specific date, for example, x = 4, y = 1 and W4D1 means Monday on Week 4
Attack type Types of attacks named by DARPA/MIT Lincoln, for example, pod means ping of

Attacking instance
Total number of instances

Total number of attacking
instances

Total number of normal
instances

Total alarms

Correctly detected alarms

death attack
Flow data collected during the period of an attack over a time interval

Number of sequence value of features, for example, 1 hour includes 60 instances
due to 1 min time interval

Number of sequence value of features extracted from flow data with attacks, for
example, an attack lasts 30 minutes and there are 30 attacking instances

Number of sequence value of features extracted from pure flow data without any
attack or residual of attacks

Number of alerts generated by our approach

Number of alerts that detect attacks correctly

Number of false alarms

Number of alerts that report attacks falsely, that also means the alerts report normal

instances as attacks

Detection rate

All features correlatioN

Ratio of correctly detected alarms to total number of attacking instances

Delete the overlap of alarms generated by all 15 features

TABLE 3: Detection rate for each day.

Days W4D1 W4D3 W4D4 W4D5 W5D1 W5D2 W5D3 W5D4 W5D5
DR for attack types (%) 57.14 94.44 66.67 84.62 100 75.0 71.43 88.89 74.1
DR for attack instances (%) 29.23 97.12 51.19 79.37 94.67 66.1 49.52 74.33 26.7

the other hand, thresholds ths and the correspond to the
termination conditions associated with the outlier detection
algorithm: ths is a measure of the absolute precision required
by the algorithm and ths is the maximum number of
iterations required by the algorithm. We set ths and the
as 0.0001 and 5000, respectively. The parameter outlieriyes
refers to the minimum mixing proportion in the outlier
detection algorithm and its selection is very important since
it has an important impact on the detection results. During
the evaluation, we set it as 0.00001 since the value can
provide us an optimal detection results when compared to
other empirical settings. The detailed discussion about the
selection of threshold on our outlier detection algorithm can
be found in [44].

We evaluate our approach with two weeks testing (week
4 and week 5) data from the 1999 DARPA flow logs. The
evaluation results are summarized and analyzed in three
different categories, namely, how many attack instances
are detected by each feature and all features correlation,
how many attack types are detected by each feature and
all features correlation and how many attack instances are
detected for each attack type. Table 2 explains some notations
used in our experimental evaluation.

The starting time of each attack occurs and its last
time period can be referred to [29]. Table 3 illustrates the
detection rate for each day in terms of attack types and
attack instances. We found that the highest detection rate
was obtained in the traffic data collected on Monday, Week
5, where all attack types were detected and about 95% attack
instances were detected. In contrast, the lowest detection rate
was obtained in the test data of Monday, Week 4, where only

about 30% attack instances were found and almost half of
attack types were missed.

The detection results on Monday, Week 5 are illustrated
in Tables 4, 5, and 6. The detail detection results on other
days see http://www.ece.uvic.ca/~wlu/wavelet.htm.

As we discussed before, we do not use ROC curves to
evaluate our approach. Moreover, we do not calculate the
traditional detection performance metric FPR (false positive
rate) during the evaluation. The main reason is that the
residuals of an attack behavior have an impact on the
following successive normal traffic. As a result, residuals of
an attack behavior will be mixed into the normal traffic and
identifying this kind of behaviors is blurred. Ignoring these
blurring behaviors during the evaluation will generate a large
number of false alarms. A possible solution to this issue is
that we may define an attack decaying period tgecoy Which
starts from the exact time point fy,cc when attacks happen.
When we find an attack at tyack, we consider all following
traffic behaviors over [fatack> fattack + fdecay] @s intrusions.

4.5. Comparative Studies on Four Typical Wavelet Basis Func-
tions. In this Section, we conduct a comprehensive com-
parison for four different typical wavelet basis functions on
detecting network intrusions, namely, Daubechies1 (Haar),
Coiflets] and Symlets2 and Discrete Meyer. We attempt
to unveil and answer a question when applying wavelet
techniques for detecting network attacks, that is “can wavelet
basis functions really have an important impact on the intru-
sion detection performance?”, which can help us improving
the approach’s performance in term of reducing false positive
rate and increasing the detection rate. The evaluation is based
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TaBLE 4: Number of attack instances detected for each attack type
for W5DI1.

Attack Type Wsb1
Number of attack Detected number of
instances for each attack instances for
attack type each attack type

apache2-dos 30 29
arppoison-probe 15 15
dict-r2l 17 17
dosnuke-dos 2 2
ffbconfig-u2r 10 8
guesstelnet-r21 4 4
imap-r2l 1 1
ipsweep-probe 26 26
loadmodule-u2r 5 5
Is-probe 2 2
ncftp-r2l 2 2
neptune-dos 5 5
pod-dos 3 1
portsweep-probe 4 2
selfping-dos 2 2
smurf-dos 2 2
syslogd-dos 1 1
udpstorm-dos 16 16
warezclient-dos 2 1
crashiis-dos 1 1

on the 1999 DARPA flow logs on Monday, Week5, in which
twenty attack types occur. During the evaluation, we found
that the wavelet basis function is sensitive to features. That
is one basis function operating well for one feature might
have bad results for the other features. For example, Coiflets1
is better than Symlets2 in terms of f;, but worse than it in
terms of fi3. In order to achieve an optimal solution, we have
to use different wavelet basis functions for different features.
Table 7 illustrates the number of attack instances detected
for each attack type by different wavelet basis functions.
Since attacks always last couple of minutes in DARPA, we
consider all traffic appeared over the attacking period are
anomalous behaviors. Thus, even only one attack instance
is identified during the attacking period, we still can say the
approach identify this attack type successfully. According to
Table 7, all attack types are detected by Daubechies1 (Haar),
18 attack types are detected by Coiflets1 and Symlets2 over
total 20 attack types on that day, and 17 attack types are
detected by Discrete Meyer. Generally speaking, we conclude
that Daubechies] (Haar) basis function achieves the slightly
better performance than other three wavelet families.

4.6. Evaluation with Network Flows on a WiFi ISP Network.
Our approach is also evaluated with three full days’ traffic
on Fred-eZone, a free wireless fidelity (WiFi) network service
provider operated by the City of Fredericton [45], consider-
ing the limitations of the 1999 DARPA intrusion detection
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dataset. Table 8 lists the general workload dimensions for
the Fred-eZone network capacity. From Table 8, we see, for
example, that the unique number of source IP addresses
appeared over one day is about 1,055 thousands and the total
of packets is about 944 millions. Three full days’ network
flows are collected on Fred-eZone and we use, for example,
the notation “Fred-Dayl” to represent the traffic for the
first day. During the training phase, in order to generate
the external regressor we use the Fred-Dayl traffic as input
signal. Based on this we get wavelet approximation coeffi-
cients, which act as the external regressor input into the ARX
model. Then, we apply the Fred-Day2 traffic as test signal
and use this test signal to fit the ARX model. The parameter
settings of ARX model and the selection of the wavelet basis
function are totally the same with the evaluation with the
1999 DARPA intrusion detection dataset. The traffic on Fred-
Dayl and Fred-Day2 are normal since we delete all malicious
network flows identified by the IDS deployed on Fred-eZone,
while the traffic on Fred-Day3 is a mixture of normal and
malicious network flows. In particular, six types of attacks
are included on the Fred-Day3 traffic, namely, UDP_DoS,
Multihost_Attack, Stealthy_Scan, Potential Scan, HostScans
and Remote_Access_Violation. Table 9 lists the number of
flows, number of bytes and number of packets for each type
of attack identified on that day.

During the evaluation, we use ten features as the network
signals, including fi, fo, fa, fs» f7» fs» fio> fil, fi3, and fia
and we do not consider the features f3, fs, fo, fi2, and fis
because they are ICMP based. From Table 9, we see that all
the attacking traffic is UDP or TCP based. Similarly, Tables 10
to 12 list the evaluation results in terms of number of attack
instances detected for each attack type, number of attack
types detected for each feature, number of attack instances
detected for each feature and all features correlation. Table 10
illustrates that our approach successfully detect five attacks
over the total six attacks and the attack Potential Scan
is missed. Table 11 shows that the UDP-based features fs
and fy successfully detect the UDP_DoS attack and the
TCP-based features are also sensitive to the TCP-based
attacks, for example, Remote_Access_Violation. The number
of false alarms for our approach running with the full
day’s traffic is 0, showing that the normal/daily network
traffic is modeled accurately and any deviation (anomaly)
on the network will lead to a large peak value compared to
other points, thus easily identified by the outlier detection
algorithm. As an example, Figure 6 illustrates the residuals
for the feature “number of packets per flow” For the
residuals for other features generated by our model see
http://www.ece.uvic.ca/~wlu/wavelet.htm.

4.7. Comparison with Existing Anomaly Detection Approaches.
Many approaches have been proposed and implemented for
network anomaly detection recently, most of them belong
to the category of machine learning techniques or signal
processing techniques. Conducting a fair comparison among
all these approaches is very difficult and has not been fully
done yet on the current research community to the best of
our knowledge. The 1998 DAPRA and 199 DAPRA intrusion
detection dataset provide a raw TCPDUMP packets dataset



EURASIP Journal on Advances in Signal Processing

11

TaBLE 5: Number of attack types detected for each feature for W5D1.

W5D1
Feature
Detected attack types
f apache2-dos, guesstelnet-r2l, ffbconfig-u2r, pod-dos, ipsweep-probe, neptune-dos,
! crashiis-dos
£ warezclient-dos, dosnuke-dos, arppoison-probe, pod-dos, ipsweep-probe
f smurf-dos, portsweep-probe, apache2-dos, ffbconfig-u2r, arppoison-prob,
’ ipsweep-probe, dict-r2l, udpstorm-dos
fa loadmodule-u2r, udpstorm-dos
f5 udpstorm-dos, selfping-dos, ncftp-r2l
smurf-dos, , apache2-dos, guesstelnet-r2l, loadmodule-u2r, ftbconfig-u2r,
fs arppoison-probe, ipsweep-probe, dict-r2l, syslogd-dos, neptune-dos, Is-probe,
dosnuke-dos, udpstorm-dos, selfping-dos
fr apache2-dos, arppoison-probe, dict-r2l, neptune-dos, udpstorm-dos
fs udpstorm-dos, selfping-dos
apache2-dos, arppoison-probe, crashiis-dos, dict-r21, dosnuke-dos, ffbconfig-u2r,
5 guesstelnet-r2l, imap-r2l, ipsweep-probe, loadmodule-u2r, Is-probe, ncftp-r2l,
’ neptune-dos, pod-dos, portsweep-probe, selfping-dos, smurf-dos, syslogd-dos,
udpstorm-dos, warezclient-dos
fro apache2-dos, smurf-dos, arppoison-probe, pod-dos, dict-r2l
fu apache2-dos, ffbconfig-u2r, loadmodule-u2r, udpstorm-dos
apache2-dos, arppoison-probe, crashiis-dos, dict-r2l, dosnuke-dos, ffbconfig-u2r,
fiz guesstelnet-r2l, imap-r2l, ipsweep-probe, Is-probe, neptune-dos, pod-dos,
portsweep-probe, selfping-dos, smurf-dos, syslogd-dos, udpstorm-dos
f apache2-dos, crashiis-dos, dict-r2l, dosnuke-dos, ffbconfig-u2r, guesstelnet-r21,
13 Is-probe, neptune-dos
fia warezclient-dos, arppoison-probe, pod-dos, ipsweep-probe, udpstorm-dos
fis apache2-dos, , fibconfig-u2r
TaBLE 6: Number of attack instances detected for each feature and all features correlation for W5D1.
W5D1
Features Total Attacking Normal Total Detected False DR (%)
instances instances instances alarms
h 1320 150 1170 152 40 112 26.67
f 1320 150 1170 127 15 112 10.0
f 1320 150 1170 140 21 119 14.0
fa 1320 150 1170 57 3 54 2.0
f5 1320 150 1170 119 19 100 12.67
f 1320 150 1170 216 48 168 32.0
f7 1320 150 1170 48 13 35 8.67
fs 1320 150 1170 117 17 100 11.33
fo 1320 150 1170 750 125 625 83.33
fo 1320 150 1170 25 8 17 5.33
fu 1320 150 1170 60 15 45 10.0
fiz 1320 150 1170 479 97 382 64.67
fis 1320 150 1170 188 40 148 26.67
fia 1320 150 1170 90 10 80 10.0
fis 1320 150 1170 23 2 21 1.33
All feature
1320 150 1170 894 142 752 94.67

correlation
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TasLE 7: Number of attack instances detected for each attack type by different basis functions.

W5D1
Attack type Number of attack instances Detected number of attack instances for each attack type
for each attack type Daube-chies1 Coif-letsl Sym-lets2 Discrete Meyer

apache2-dos 30 29 29 29 28
arppoison-probe 15 15 15 15 15
dict-r21 17 17 17 17 17
ncftp-r2l 2 2 2 2 0
neptune-dos 5 5 5 5 5
pod-dos 3 3 0 0 0
portsweep-probe 4 2 2 2 1
selfping-dos 2 2 2 2 2
smurf-dos 2 2 2 2 1
udpstorm-dos 16 16 15 15 15
crashiis-dos 1 1 1 1 0
dosnuke-dos 2 2 2 1 1
ffbconfig-u2r 10 8 7 5 7
guesstelnet-r2l 4 4 1 1 1
imap-r2l 1 1 1 1 0
ipsweep-probe 26 26 25 25 25
loadmodule-u2r 5 5 0 0 0
Is-probe 2 2 2 2 1
syslogd-dos 1 1 1 1 1
warezclient-dos 2 2 2 2 1

TasLE 8: Workload of Fred-eZone WiFi network over one day.

SrcIP
1055 K

DstIP
1228 K

Packets
994 M

Flows

30783 K

Bytes
500 G

collected on a simulated network over a couple of weeks.
Evaluating the approaches with the common DARPA dataset
is unfair because most of anomaly detection approaches han-
dle the features extracted from the raw packets instead of the
original raw TCPDUMP packets. The feature extraction pro-
cess, however, has an important impact on the final detection
result. This is confirmed by comparing two works [46, 47], in
which based on the same 1998 DAPRA intrusion detection
dataset, the LOF approach (Density-based Local Outliers) is
distinctly better than the NN approach (Nearest Neighbor)
claimed by Lazarevic et al. in [46], while the LOFE, however, is
much worse than the NN approach in [47] since two different
feature sets are used in these two approaches even those
features are both based on the same 1998 DARPA intrusion
detection dataset. As a result, the 1999 KDDCUP dataset
is set up that is based on 41 common features extracted
from the 1998 DARPA intrusion detection dataset. Although
the 1999 KDDCUP provides us a common benchmark for
evaluating different network anomaly detection approaches
under the same conditions, it has been used arbitrarily. For
example, some researchers use a part of KDDCUP training
dataset for the sake of training and another part for testing,
which is not true because there is a separate testing part
containing new attacks which do not exist in the training set

to see how successful the detection approach is facing with
new attacks. Moreover, there are two types of DoS attacks
constituting over 71% of the whole KDDCUP testing dataset,
which would lead a heavily biased detection result.

During our comparison experiment, we select two typical
anomaly detection approaches from both machine learning
techniques and signal processing techniques, namely, I-
means clustering algorithm [48] and nonparametric CUmu-
lative SUM (CUSUM) algorithm [12]. I-means is a hybrid-
clustering algorithm that is built around the k-means
algorithm, which can determine systematically the optimal
number of clusters for a given dataset. The CUSUM algo-
rithm is an approach to detect a change of the mean value
of a stochastic process and it is based on the fact that if a
change occurs, the probability distribution of the random
sequence will also be changed. Detail information about I-
means algorithm and CUSUM can be found in [48] and
[12], respectively. To make a fair comparison, we use the
same fifteen features as the input for all the three approaches.
Table 13 lists the detection results on Day 2, Week 5 (W5D2)
in terms of number of attack instances detected for each
attack type by different approaches.

There are 24 attack types on W5D2, namely, back,
casesen, eject, fdformat, ftpwrite, httptunnel, neptune, perl,
ppmarcro, ps, queso, selfping, syslogd, tcpreset, xterml,
yaga, xsnoop, teardrop, pod, crashiis, dosnuke, ipsweep,
ncftp, udpstorm. Total 18 attack types are detected by
our wavelet/ARX model except teardrop, ncftp, udpstorm,
casesen, selfping, tcpreset. The CUSUM algorithm detects
11 attack types which are all detected by our approach.
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TAaBLE 9: Descriptions on attacks identified on the third day in Fred-eZone.
Attack types Volume features
Number of flows Number of packets Number of bytes
UDP_DoS 2 313038 146 770 832
Multihost_Attack 158 19033 1800315
Stealthy_Scan 2 4872 175392
Potential_Scan 17 724 111138
Host_Scans 44 11226 10 601 722
Remote_Access_Violation 4 31 441 17 286 538
TasLE 10: Number of attack instances detected for each attack type x10°
for Fred-Day3. 8
7 L p
Fred-Day3
Attack Type rec-Lay
Number of attack Detected number 6f A
instances for each of attack instances e _
attack type for each attack type 5
UDP Dos 1 1 g 1
Multihost attack 1 1 § 3t A
Stealthy scan 1 1 S .
Potential scan 1 0 1k _
Host scans 1 1 0 .
Remote access 1 1
S 1 . ; . . .
violation 0 200 400 600 800 1000 1200
Index of timestamp
TaBLE 11: Number of attack types detected for each feature for Fred-
Days3. (@)
x10*
Feature Fred-Day3 16
Detected attack types 14t |
fa Remote access violation, stealthy scan .
f UDP DoS$
fr Remote access violation ERR 7
=
fs UDP DoS$ % st ]
fro Multihost attack, host scans, stealthy scan kS 6l |
L
fihfifisfa Null £
= 4r 1
2 - 4
The I-means detects 14 attack types, in which one attack 0 bt |
(i.e., ncftp-r2l) is missed by our approach. Table 14 list the
detection rate (DR) for all three approaches in terms of attack 20 200 200 500 300 1000 1200

type and attack instance.

From Tables 13 and 14, we see that our wavelet model
obtains the best detection performance compared to the
other two typical machine learning and signal processing
techniques.

To conduct a more comprehensive comparison, we also
investigate the detection results with the DAPRA intrusion
detection dataset by some existing wavelet analysis-based
anomaly detection approaches [15, 20, 26]. In [15], Huang
et al. evaluate their Waveman framework using three denial-
of-service (DoS) attacks from the 1999 DAPRA intrusion
detection dataset, namely, neptune, smurf and mailbomb.
They show a large deviation at the locations of the neptune
attack start and end, with minimum deviations at all other
locations. It is claimed that the entropy-based method and

Index of timestamp
(b)
FI1GURE 6: Residuals for average number of packets per flow over one

minute; from left to right is Figures 6(a) and 6(b), representing TCP
and UDP flows, respectively.

the percentage deviation-based method can be used to detect
and analyze network anomalies. The detail anomalies detec-
tion results have not been given and are left in their future
work. In [20], Dainotti et al. only use part of the normal
traffic from the 1999 DARPA dataset to construct normal
wavelet signals. Their attacking traces are simulated using
existing attack tools, such as TFN2K [49] and Stacheldraht



14 EURASIP Journal on Advances in Signal Processing
TasLE 12: Number of attack instances detected for each feature and all features correlation for Fred-Day3.
Features Fred-Day3
Total instances ~ Attacking instances ~ Normal instances ~ Total alarms  Detected ~ False =~ DR (%)
fa 1440 6 1434 2 2 0 33.3
f5 1440 6 1434 1 1 0 16.7
f7 1440 6 1434 1 1 0 16.7
fg 1440 6 1434 1 1 0 16.7
fio 1440 6 1434 3 3 0 50.0
fiffiifisfia 1440 6 1434 0 0 0 0.0
All Feature Correlation 1440 6 1434 5 5 0 83.3
TaBLE 13: Number of attack instances detected for each attack type by different approaches.
W5D2
Attack type Number of attack instances Detected number of attack instances for each attack type
for each attack type Wavelet/ ARX CUSUM I-means
xsnoop-r2l 2 2 2 2
ftpwrite-r21 15 7 5 15
back-dos 21 20 11 21
neptune-dos 18 15 12 18
httptunnel-r21 6 6 3 5
eject-u2r 17 17 6 16
ppmarcro-r2l 13 13 3 9
syslogd-dos 1 1 1 1
perl-u2r 15 15 3 11
Queso-probe 1 1 1 1
ipsweep-probe 20 9 4 5
xterm1-u2r 41 23 0 0
ps-u2r 101 94 0 0
pod-dos 1 1 0 0
yaga-u2r 43 29 0 0
crashiis-dos 1 1 0 1
fdformat-u2r 61 39 0 0
dosnuke-dos 1 0 1
ncftp-r2l 0 0 1

TaBLE 14: Detection rate for all three approaches in terms of attack
type and instance.

Performance
Approaches DR (%)
Attack Type Attack Instance
Wavelet/ ARX 75.0 66.1
CUSUM 45.8 25.6
I-means 58.3 54.3

[50]. In [26], Rawat and Sastry test their approach on the
10% of the 1999 KDDCUP dataset, which is provided with
the full set and consists of almost all the attacks present in
the 1998 DARPA dataset with a total of 494 020 records.
However, only the detection result for the neptune and
smurf attacks are discussed in the paper and only detection
results for neptune is showed. Compared to other existing

evaluation works, our evaluation is the most completed one
since it takes care of the total 55 attack types and 5 full
attacking categories. Moreover, during our evaluation, we do
not miss any attack instances collected from the 1999 DARPA
intrusion detection dataset.

5. Conclusions and Future Work

In this paper, we have proposed a completed network
anomaly detection approach based on wavelet transforma-
tion and the system identification theory. The input signal
is a 15-dimensional feature vector, which is defined to
characterize the behavior of the network flows. A prediction
model for normal daily traffic is established, in which wavelet
coefficients play an important role since we use these normal
wavelet coefficients as an external input to an ARX model
that predicts the approximation coefficient of the signal yet
to be seen. The outputs of this traffic prediction model are
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called residuals that measure the difference between normal
and anomalous activities. The empirical observations show
that the peaks of residuals always stand for the location where
attacks occur. As a result, an outlier detection algorithm
based on GMM is implemented in order to detect peaks from
a set of residuals. Decisions are made based on the results of
the proposed outlier detection algorithm. A complete traffic
analysis for the 1999 DARPA intrusion detection dataset is
conducted using our network anomaly detection approach.
To the best of our knowledge, it is the first work to analyze the
full 1999 DARPA traffic dataset from the network flow based
perspective. The best detection rates in terms of attack types
and attack instances are 100% and 94.67%, respectively. That
means our approach detects all the attack types appeared
on that day and almost 95% attack instances are identified
accurately. The experimental comparison with two other
typical existing machine learning algorithms (i.e., [-means)
and signal processing techniques (nonparametric CUSUM)
shows that our approach obtain the best performance.

In the near future, we will focus on applying different
wavelet basis functions for modeling the network traffic
signals. An interesting problem we attempt to solve is to
find whether the different wavelet families have different
propensities to different classes of attacks since it implies that
these attack classes have core differences in their information
which the different wavelet families are bringing to the
surface, so that we can unveil a set of questions, for example,
“why is a Coifflet better than a Daubechies wavelet for this
attack class?”, “what is it about this attack class that the
Coifflet sees but the Daubechies wavelet does not?”, to name
a few.
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