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Integrated Processors (IP) are algorithm-specific cores that either by programming or by configuration can be re-used within
many microelectronic systems. This paper looks at Cellular Neural Networks (CNN) to become realized as IP. First current digital
implementations are reviewed, and the memoryprocessor bandwidth issues are analyzed. Then a generic view is taken on the
structure of the network, and a new intra-communication protocol based on rotating wheels is proposed. It is shown that this
provides for guaranteed high-performance with a minimal network interface. The resulting node is small and supports multi-level
CNN designs, giving the system a 30-fold increase in capacity compared to classical designs. As it facilitates multiple operations on a
single image, and single operations on multiple images, with minimal access to the external image memory, balancing the internal
and external data transfer requirements optimizes the system operation. In conventional digital CNN designs, the treatment of
boundary nodes requires additional logic to handle the CNN value propagation scheme. In the new architecture, only a slight
modification of the existing cells is necessary to model the boundary effect. A typical prototype for visual pattern recognition will
house 4096 CNN cells with a 2% overhead for making it an IP.
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1. Introduction

Over the past years, computer architecture has devel-
oped from general-purpose processing to provision of
algorithm-specific support. Many signal-processing applica-
tions demand a large amount of processing elements (PEs)
arranged in a 1- or 2-dimensional structure. In the video
domain, it is well known that both structures are required
for efficient operation, and a number of application-specific
devices have been built. Nowadays, we see this experience
reaching the embedded computing domain, where in-
product supercomputing is the key to product quality. For
instance, the NXP EPIC and the TI Leonardo da Vinci have a
matrix of tiles as CPU [1].

The cellular neural network (CNN), as proposed by Chua
and Yang [2, 3], is a typical example of a computational
method that assumes a 2-dimensional structure. Each node
has a simple function; but the input values need to be
retrieved from all cells within a specified neighborhood for
each nodal operation. Some years later, Harrer and Nossek
introduce the discrete-time cellular neural network (DT-
CNN) for digital implementations [4]. Initial applications

are largely in the field of image processing, where the analog
counterpart [5] suggests that an 8-bit number representation
is more than enough. In case of doubt, the regular CNN
structure allows for algorithmic pruning to establish the
minimal word length requirements for a specific application
[6].

In a two-dimensional DT-CNN, each cell ¢, which is
identified by its position in the grid, communicates directly
with its r-neighborhood, that is, a set of cells within a certain
distance r to ¢. If r = 1, we have a 3 X 3 neighborhood
while in the case of r = 2, a 5 X 5 neighborhood is obtained.
Nevertheless, a cell can communicate with other cells outside
its neighborhood due the network propagation effect. The
state of a cell, x°, depends mainly on the time-independent
input u to its neighbors d and the time-variant output y%(k)
of these neighbors. Equation (1) describes this dependence
in a discrete time k. The control coefficients b5 only “scale”
the inputs, while the feedback coefficients a are responsible
for the nonlinear dynamical behavior. These coefficients are
usually combined to compose matrices, which results in a
so-called cloning template T = (A, B, i). The CNN equation



(1) implies linear transformations; by suitable application of
linear templates, all 2-dimensional single data manipulations
can be performed. Output of cell ¢ at a certain time step is
simply obtained by means of a squashing function. Three
different types of nonlinear functions are frequently used
[4]: threshold, hyperbolic tangent, and piecewise linear
function.

x(k) = Z afdyd(k)+ Z bfiud+if (1)

deN, (c) deN;(c)

Both analogue (mixed-signal) and digital realizations
of a CNN have been published [7, 8]. The former have
a larger network capacity and allow for handling images
of sufficient size. This is preferred as most work targets
image processing in spite of the intrinsic ability of a CNN
to solve complex nonlinear differential equations. On the
other hand, digital implementations have been discarded
as the massive amount of required multiplications is too
area consuming. Furthermore, the digital CNN architecture
is wiring dominated. Already 8 pairs of input and output
values need to be communicated for the minimal 1-
neighbourhood, one for each neighboring node. This is
easily affordable in analogue architectures as each value is
carried by a single wire only. But for digital architectures,
in the simple case of 8-bit values, the simultaneous use
of 8 values will need 64 wires to be routed. Obviously,
the interconnection requirements are severely increased for
larger neighborhood. Actually, establishing the connections
within an arbitrary neighborhood is so area and/or time
demanding that little research on large neighborhoods is
made. Almost all known CNN templates are for a 1-
neighbourhood, and all realizations are effectively restricted
to that. The restriction is not fundamental, as a proper
interconnect structure can extend a digital implementation
to a larger neighborhood.

A related issue is the need for accessing the external image
memory. In a typical system, the slow access of memory can
only be balanced to the speed of the CPU by widening the
memory bus [9] or by adding more functionality to the CPU
[10]. As already shown in [11], complex CNN operations can
help out also. Still the search remains open for the digital
architecture that limits the memory access requirements.

A third problem is the handling of boundary effects. In a
naive design, a network needs a frame of 2 cells in width to
fix the boundary in a programmable way. This will severely
decrease the usable capacity of the system. In other words, a
proper handling of the boundary is basic for the development
of a CNN integrated processor.

The paper goes through a number of such architectural
issues. First, we review the early architectures and analyze
their performance metrics. Then, we take a generic view and
propose a word-serial mechanism. In Section 6, attention is
given to the modeling of the boundary effects. Finally, we
conclude the effect of such measures on the definition of a
CNN as IP and see that we can prototype up to 4 k cells with
2% system overhead on a Xilinx Virtex-II 6000.
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Figure 1: Data dependencies for a pipeline in naive architecture.
Only the pipeline corresponding for the middle node is shown.
White boxes represent functional blocks, consisting of a multiplier
and an adder, while grey boxes represent registers. The middle
node corresponds to a pixel sequence y®. For sequences y* and y©,
functional blocks are dropped for clarity. Identical architecture is
used to calculate the contribution of pixel inputs.
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FiGUure 2: A pipelined CNN architecture with a pipeline three
nodes.

2. CNN Architecture Spectrum

The mapping of mathematical CNN cells into physical
network nodes can be done in several ways, depending on
the adopted communication style. The approach first intro-
duced in [12] inherits the benefits of superscalar computer
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architecture, where values are retrieved from data memory,
fed in series through a heavily pipelined processing unit and
finally stored back in the data memory. The data represent
a topographic map, often a natural image with pixel values.
In a naive realization, data dependencies between scan lines
in an image are stretched over a pipeline of single multiply-
accumulate units (Figure 1). Each neighboring input value is
evaluated separately in a pipelined fashion, doing in series
as many multiply accumulates as there are cells in the
neighborhood.

Interweaving three pipelines, corresponding to a row of
three input values, reduces the latency (Figure 2). In other
words, we let every node in the network contain image data
from three pixels, that is, pixel values for the cell itself and
for its upper and lower neighbors are stored in each node.
A direct connection with the left and right nodes completes
the communication between a node and its neighborhood. In
short, one node contains three pixels and calculates the new
value for one pixel and one iteration. One of such realizations
is a design called ILVA [7]. The prescheduled broadcasting
keeps the communication interface at minimum, which
allows for a large number of nodes on chip. The performance
is high as the system directly follows the line accessing speed,
but the design suffers from a number of weaknesses. It
supports 1 neighborhood only, where extension to larger
neighborhoods requires a total overhaul. Furthermore, itera-
tions are flattened on the pipeline, one iteration per pipeline
stage. Consequently, the number of iterations is not only
restricted due to the availability of logic, but it is also fixed.
Operations that require a single iteration only have still to go
through all pipeline stages. Lastly, actions between the pixels
go only in one direction.

To remedy this, the concept of network on chip [13] is
explored. The CNN equation is not unrolled in time but in
space [14], and the nodes retain the result of the equation
evaluation so that next iterations do not involve access to the
external data memory. Two main alternatives for transferring
the data between the nodes are circuit switching [15] and
packet switching [16]. In our first attempt, called Caballero
[7], circuit switching is used and it is studied how the data
transfers between the nodes can be scheduled.

The principle of operation depicted in Figure 3 is as
follows. Pixel lines come into the FIFO till it is fully
filled. Then, these values are copied into the CNN nodes
that subsequently start computing and communicating.
Meanwhile new pixel lines come in over the FIFO. When
the FIFO is filled again and the CNN nodes have completed
all local iterations, the results are exchanged with the new
inputs. This leaves the CNN nodes with fresh information,
and the FIFO can take new pixel lines while moving the
results out.

The schedule is still predetermined, but splitting the
simple node into a processor and a router decouples the
computation and communication needs. The nodes can
theoretically transfer their values within the neighborhood in
parallel. The number of simultaneous transfers is, however,
reduced to four per node as Manhattan broadcasting is
implemented. For the minimal 1 neighborhood, this requires
two steps only (Figure 4(a)). In principle, the number of
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FIGUre 3: Caballero architecture uses a network-on-chip of CNN
nodes, while the pixels are transported over a distributed FIFO.

FIGURE 4: (a) Communication scheme and (b) activation groups in
Caballero.

possible iterations is infinite and flexible. In order to avoid
bus conflicts, nodes are grouped into 5 different activation
groups indicated in Figure 4(b) by g1, £, &, g and g.
Apparently, this adds heavily to the control and severely
reduces the amount of potential parallelism. The amount of
additional required logic is so big that a larger neighborhood
is basically precluded.

Having these prototype architectures available, it
becomes interesting to have a better overview of the design
space. An overview of the CNN implementation spectrum
(VIND) is given in Figure 5. The similarity to Corporaal’s
4-dimensional diagram about architecture design spectrum
[17] reveals the importance of optimizing control and data
flows in order to achieve a well-performing CNN system, as
is always the case with hardware design.
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FIGURE 5: A 4-dimensional design space {V, I, N, D} of CNN
architectures.

The basic pipelined architecture (Figure 1) can be found
on the D-axis as it aims to raise the number of data
accesses to the external image memory. The individual
accesses are threefold compared to ILVA (Figure 2). The
bandwidth requirements can be even lowered when the
intranetwork communication can handle an arbitrarily large
neighborhood by virtue of a packet-switching technique,
yielding a design called Sleipner [7]. This is shown by the
move along the N-axis.

On the I-axis, we find the basic spatial architecture,
Caballero (Figure 3). Every node interacts with its neighbors
iteratively, constantly transferring data over the intranet-
work. External memory access may be the limiting factor
to system performance, but it depends to be seen for how
many iterations the nodal computations become dominant.
In Caballero, many values are transferred simultaneously.
The effect may be counteracted by the scheduling needs.

These are only a few of the many CNN architectures.
The algorithmic diversity is very large. Many technology
mapping methods can be applied, next to temporal and
spatial partitioning. As an example, we have already drawn
in Figure 5 a version of Caballero with a time-multiplexed
internal network that will be developed in Section 5. But
there is much more, and therefore we do not claim that we
present the most optimal. In fact, it appears that in the end
the application decides on the quality of the implementation.
The later that introduced generic structure helps compiling
several networks from one description while fitting in the
same box.

Though the connection pattern of the CNN structure is
very regular and misleadingly easy to design, the network
capacity needs to be very high to preclude bottlenecks.
Therefore, we will analyze first the memory bandwidth
requirements, taking the introduced archetypes (ILVA and
Caballero) as example. Then, we take another approach to
get grip on the algorithmic diversity of the implementation.
The focus of that study is on the size and speed of the
network interface (NI) that wraps any design part to become
accessible through the network standard. It brings out the
basic advantages of the time-multiplexed communication,
and is fully in-line with the original Athereal systematic [16].
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3. Effect of Slicing

All known CNN implementations, both analogue and digital,
are much smaller than a regular image frame. We may
therefore rightfully assume that the network can handle
only a part of the image at time. It has been suggested [7]
that slicing the image solves the problem. Now, a smaller
part of the image is fetched from memory which decreases
the latency. In the following, a frame execution formula
is derived to evaluate the effect of slicing for two of the
digital realizations: ILVA and Caballero. We aim for a unified
notation and make the following assumptions.

(i) Input values are brought per pixel line into a CNN
column. Subsequent pixel lines will take subsequent
columns.

(ii) Internodal broadcasting is instantaneous, that is, it
does not add any delay to the system.

Memory time overhead, that is, the time needed to bring
information from the external memory into the chip, is
crucial for the overall elapsed time. Modern FPGA boards
are equipped with off-chip memories of type DDR/DDR2
SDRAMs with different bandwidths. These memories are
categorized due to their speed grade in “data transfers per
second per pin.” If memory bandwidth (in bits) and speed
grade are denoted Wmem and smem, respectively, then the time
required to fetch a (sub-) frame is given by equation (2).
Here, wy stands for the width, given in bits, of input/output
values in the CNN, while ¢y and cenn represent the number
of rows and columns in the CNN, respectively.

Wd * Tenn * Cenn
lfetch = (2)
Wmem * Smem

In Caballero architecture with a 1-to-1 mapping between
digital nodes and CNN cells, the relation in equation (2)
can be used straight forward, but it needs modification
when ILVA is considered. Here, a fetched scan line is
consumed directly, which has great influence on the overall
performance of the system as will be seen soon. In this sense,
if a scan line is mapped on a column of nodes (as in ILVA),
the time needed to fetch one line from the external memory
is obtained according to equation (3). It is easily seen that
equations (2) and (3) are related by the number of columns
Cenn-

Wd * Tenn (3)

tine_fetch =
mem * Smem

In general, the nodal execution time for a certain
template, tiempl, can be further divided into two parts.

(1) teonst: the time needed to calculate the control contri-
bution along with the bias, that is, > Bu + i.

(i) t,: the time needed to calculate the iterative part
of the state equation, that is, > Ay, followed by
discrimination.
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The first part needs to be performed only once for the
given input pattern, while the second part is repeatedly
performed depending on the required number of iterations,
Niwer, that is in principle infinte. Obviously, fconst and t,
depend on the r-neighborhood, and so does fempl as well. For
all digital realizations carried out so far, it has been shown
that teonst = t,. Therefore, the common notation fcomp is used
when no ambiguity rises. In this sense, template execution
time can basically be expressed as depicted in equation
(4). Frame execution time is then calculated according to
equation (5).

ttempl = Tconst + Miter * ty = (1 + niter) ) tcomp (4)
tframe = (1 + niter) . tcomp + Cenn * Hine_fetch (5)

This is, however, true only if the size of the network
is large enough to accommodate an entire frame, while
slicing the frame introduces a number of complications. The
number of slices depends on the size of both frame and CNN
as shown in equation (6), where 7fame and cgame stand for
the number of rows and columns in the processed frame,
respectively.

b _ frame size

" _ Tframe * Cframe (6)
sfice ™ CNN size

Tenn * Cenn

Two cases may arise depending on the relation between
template execution time and data fetch time.

(i) If ffeteh < tiempl, frame execution time is dependent
on the number of slices as well as on the template
execution time. All output values corresponding to
the inputs of the entire frame have to be available
before the next iteration is performed. In other
words, a single iteration has to be completed on each
slice until the whole frame is processed before the
next iteration is performed on the first slice of the
next frame and so on. As the procedure of fetching
overlaps with the computational part, due to the
usage of FIFO-structure, Caballero is idle only when
the first slice is brought in and the last slice is moved
out. In equation (7), frame execution time is given
as function of frame size, CNN size, number of
iterations, and data fetch time. Note that the obtained
formula differs from the one in equation (5).

cab _ ,cab - . 4cab
tframe = Mgjice * Miter (tconst + ty) +2 tfetch

7

_ Tframe * Cframe ( )

=2 * Miter * tcomp + Cenn * Hine_fetch
Tenn * Cenn

(ii) tetch > templ, frame execution time depends only on
data fetch time:

cab __ cab
trame = Mslice * Miter * Tfetch

(8)

Tframe * Cframe
= ————— * Hiter * Ccnn * Lline_fetch
Tenn * Cenn

In contrast to Caballero, ILVA has an implicit bound
on the number of iterations. As the nodes are arranged in

pipeline stages, on which the iterations are mapped, the
maximum number of performed iterations is one shorter
than the number of pipelines #pipe. The first pipeline
stage is used to calculate the constant part, while each of
the following stages completes the computation of state
and corresponding output. In all stages, the operation is
accomplished during time fpipe. Therefore, ILVA’s template
execution time, given in equation (9) differs from the one
previously obtained for Caballero as given in equation (4).
The calculated time is precise in Caballero, while it is on
average in ILVA.

VA _ Mpipe * Tpipe
templ = — (9)
The pipelining mechanism requires only one (sub-) line
of the frame to be present prior to computation start. ILVA
consumes the fetched line directly but still experiences a
latency that equals three times fcomp per pipeline stage. An
overall latency rises from the fact that the pipeline has to
be filled before the first output values are produced. This is
reflected in the last term of equation (10). However, when the
pipeline is filled, a new output value is produced each fcomp.
In other words, pipeline execution time £, can be replaced
by tcomp Without loss of generality.

VA _ Hpipe * Lcomp
tframe = Cframe N — 1
pipe

+ Hine_fetch
(10)

+ 3tcomp * Npipe

Slicing of the processed frame is required when 7game >
fenn. The number of slices is then given as

fy

ILvA _ Tframe

slice — ( 1 1)
Tenn

In line with the earlier discussion, two different cases are
distinguished.

tiempl, frame execution time depends

ILVA,
slice *

(1) Hine_fetch =<
mainly on the fcomp and n

ALVA Tframe [ Cframe * Mpipe * tcomp
frame —

Tenn Npipe — 1

(12)

+ tine_fetch + 3tcomp * pipe

(ii) Hinefech > templ, frame execution time depends
mostly on data fetch time:

T

IvA _ frame

trame = ’ - Hine_fetch + 3tcomp * Mpipe (13)
cnn

Due to the different mechanisms employed in ILVA and
Caballero architectures, a straightforward comparison of
frame execution times is not feasible. A key factor is the
number of iterations a given template is performed. In ILVA,
this number is tightly coupled to the number of realized
columns, that is, fjer = Mpipe — 1. Allowing more iterations
will render the comparison unfair as it violates the intrinsic



TaBLE 1: The actual number of rows in ILVA as a function of the
number of pipelines and number of columns in Caballero with
respect to equation (14). Parameter r represents the total number
of rows in Caballero.

Tter  # Pipe Number of rows in ILVA

6 7 8 9 10 11 12
1 2 3r 3r 4r 4r 5r 5r 6r
2 3 2r 2r 2r 3r 3r 3r 4r
3 4 r r 2r 2r 2r 2r 3r
4 5 r r r r 2r 2r 2r
5 6 r r r r r r 2r
6 7 r r r r r r r

limit of functionality in ILVA. However, if less iterations are
required, that is, #jer < #pipe — 1, the superfluous pipeline
stages should be removed and replaced, if possible, by nodes
in such a way that the total number of rows in ILVA is
increased. Equation (14) explains the relation between the
number of rows in ILVA and Caballero. In the following,
the comparison is arranged such that first a single iteration,
nitr = 1, and then several iterations, up to #liter = Cenn — 1,
are performed on both architectures. This will, with respect
to equation (14), yield the different settings given in Table 1.

In order to express frame execution times in seconds,
both ILVA and Caballero are assumed to run on 100 MHz,
resulting in teomp = 1077 seconds in both realizations. We
assume further that a PAL frame of size 720 X 576 is stored
on an external storage of type DDR266 with smem = 266X 10°
and Wpem = 16 bits. With respect to equations (7) and (12),
Figures 6 and 7 illustrate frame execution times with different
sizes of the realized CNN.

cab if ~cab .
Teono lf Cénn < Miter
r&\r{A = ccab (14)
réab . | =t otherwise
pipe

The figures show clearly that ILVA outperforms Caballero
for all CNN-sizes when the larger number of iterations per
template is required. Caballero is better when 1 or 2 iterations
are needed. This is caused by the need to swap all slices in
and out for each iteration. On the other hand, if a sequence
of iterations is allowed on the same slice before the next slice
is brought in, a different situation arises, which requires a
slight modification of equation (7) as shown in equation
(15). The resulting execution time is reflected in Figure 8.
Here, it is noticed that Caballero performs better for more
accommodated columns, almost regardless of the number of
iterations.

b b
t?raame = nglaice - ttempl + 2Ccnn * Hline_fetch

1 = C
— [rame * Cframe (Miger + 1) - fcomp (15)

Tenn * Cenn

+ 2Cenn * tine_fetch
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FIGURE 6: Frame execution time for ILVA with different CNN sizes,
when slicing is required. The legends, 6 to 10, represent the number
of pipelines, that is, the number of columns in the design.
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FIGURE 7: Frame execution time for Caballero with different CNN
sizes, when slicing is required.

Any real-life application consists of a number of tem-
plates that are applied sequentially. In the extreme case,
a new frame needs to be fetched from memory for each
applied template. But for most applications, each template
in the sequence needs to work on the same frame or on
an intermediate modification of the frame from a previous
template. This is valid if the frame and its intermediate
copies are kept in the network, which is possible in Caballero
only. Furthermore, the benefits of high throughput in ILVA
are totally lost when the different templates in a single task
vary in the number of iterations. In this sense, Caballero is
preferred due to the provided iteration flexibility, especially
when whole frames can be accommodated. As this is hard to
achieve in the current implementation, pixel sampling seems
to provide a way out. Here, each node will correspond to the
average of a pixel block rather than just one pixel. This can
initially be done for the entire frame and then repeated for
smaller parts thereby gradually focusing into the region of
interest.
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FIGURE 8: Frame execution time for Caballero is reduced when all
the iterations are performed on a slice before next slice is brought
in.

The conclusion is that any Caballero-like overcomes
memory latency if and only if

(i) the size of the CNN allows for a rapid determination
of the region of interest, on which a succession of
templates is applied:

(ii) the task consists of a number of templates, with a total
number of iterations such that the total time exceeds,
or at least equals, the time needed to fill the FIFO-
structure.

In Section 5, we see how stretching the 2-step communi-
cation cycle in Caballero reduces local control demands
and leads to smaller network interface (NI). The modified
architecture accommodates more nodes such that pixel
sampling is within reach.

4. Nodal Models

The computation of control and feedback contributions in
the nodal equation (1) is identical by means of number and
nature of the performed operations. The series of multiply-
and-add operations have, however, to be explicitly scheduled
in order to guarantee correct functionality and achieve the
desired performance. The need for explicit scheduling on
nodal activities works out differently for different CNN to
network mappings.

(i) The consumer node is fully in accordance with equa-
tion (1). The discriminated output of a cell is also
the node output and broadcasted to all connected
nodes, where it will be weighted with the coefficients
of the applied template before the combined effect is
determined through summation (Figure 9(a)).

(ii) The producer node discriminates the already weighted
inputs and passes to each connected node a separate
value that corresponds to the cell output but weighted
according to the applied template (Figure 9(b)).

Ideally all nodes are directly coupled, and therefore
bandwidth is maximal. In practice, the space is limited,

Q Circuit node

® Multiplier
O Summation + discrimination

(a)

FIGURE 9: (a) Consumer and (b) producer cell to node mapping.

O Circuit node

®  Multiplier
O Summation + discrimination
@ Switch

(a)

FIGURE 10: Value routing by multiplexing (a) in space and (b) in
time.

and the value transfer has to be sequenced over a more
limited bandwidth. This problem kicks in first with the
producer type of network, where we have 2n connections
for n neighbors. The network-on-chip approach is meant to
solve such problems. However, as the cellular neural network
is a special case for such networks, having identical nodes in a
symmetric structure, such a NoC comes in various disguises.

In the consumer architecture, scheduling is needed to
more optimally use the limited communication bandwidth.
Switches are inserted to handle the incoming values one by
one. To identify the origin of each value, one can either
schedule this hard to local controllers that simply assume the
origins from the local state of the scheduler (circuit switch-
ing, Figure 10(a)), or provide the source address as part of
the message (packet switching, Figure 10(b)). The former
technique is simple. It gives a guaranteed performance as the
symmetry of the system allows for an analytical solution of
the scheduling mechanism. The latter is more complicated
but allows also for best effort.
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FIGURE 11: More value routing by multiplexing (a) in space and (b)
in time.

The counterpart of consumption is production. Every
node gives values that have to broadcast to all the neighbors.
Again where the communication has a limited bandwidth,
we need to sequence the broadcast and this can be done in
the same way as for the value consumption (Figure 11).

In the case of producer architectures, the nodal output is
already differentiated for the different target nodes. Each tar-
get node will combine such signals to a single contribution.
This combining network is an adder tree that will reduce the
n values to 1 in a pipeline fashion. Consequently, this tree
can also be distributed, allowing for a spatial reduction in
bandwidth. This can be seen from the simple rewrite of the
CNN equation as

Xy = 2 lay®)la+ D [bulg+ic (16)

deN, (c) deN;(c)

The overall processing scheme as shown in Figure 12 is
then similar to what has been discussed for the consumer
architecture. The main difference is that the communicated
values will be larger as they represent products and are
therefore of double length. Where the consumer architecture
is characterized by “transfer and calculate,” the producer
architecture is more “calculate and transfer” Furthermore,
they both rely on a strict sequencing of the communication,
simultaneously loosing a lot of the principle advantage of
having a cellular structure.

Also here, we have to look at the way values are
broadcasted. In contrast to the consumer architecture, we
have as many output values as there are neighbors. This
makes for an identical situation and no additional measures
are needed, except for the fact that we will not be able
to generate all the different products at the same and the
sequencing issue pops up again.

In a word-serial/bit-parallel approach, all nodes are
broadcasting packaged values simultaneously over a set of
“rotating wheels” (Figure 11(b)). For a 1 neighborhood,
the cell execution time is ¢ + d, where ¢ is the amount
of neighbouring cells and d is the core cell cycle. The

Q Circuit node

® Multiplier
O Summation + discrimination
® Adder

(a)

FIGURE 12: Adder trees combine the network in the producer
architecture.

packet that passed through the network is comprised by the
values and for both the row and the column address 2 bits
each. So, for an 8-bit value, a packet of 12 bits is needed.
The network interface comprises of the packet switch, an
input buffer, and an output register. The core node will
iterate a parallel multiplication plus addition, followed by
discrimination. Characteristic for this approach is the need
for a parallel multiplier; furthermore, it can only work on
fixed-point integer. The state of a cell is contained in the
output register. For a multilayer CNN implementation, the
state is salvaged in the local memory. Therefore, the overhead
in performing the same operation on an image sequence or
different operations on a CNN sequence is moderate.

On the other hand, in a word-parallel/bit-serial
approach, all nodes are serially forwarding their values to
all neighbors directly (Figure 12(b)). Being circuit switched
rather than packet switched, no addresses are transmitted.
For a 1 neighborhood, the cell execution time is given by
n+d+log,(c), where n is the number of bits, d is the core cell
cycle, and ¢ is the amount of neighbouring cells. There is no
network interface. The local multiplications are done bitwise
and are followed by an adder tree that gradually increases in
size. Characteristic for this approach is the reduction of the
multiplier to a mere AND gate; furthermore, it can be easily
adapted to scaled arithmetic and therefore allows a large
dynamic range with limited precision.

It appears that the two architectural varieties differ
mostly in the balance between wiring and logic, and are
therefore dependent on the realization technology. They both
show the ability to pass state and output data via the local
memory, effectively mapping a levelled hierarchy of CNNs
into a single implementation.

5. Wheeled Networks

The attraction of CNNs lies in the feature of local con-
nections. But bandwidth limitation prevents full connec-
tivity, as already addressed in Section 4. Value routing is
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FIGURE 13: (a) Semiparallel and (b) serial switched broadcasting.

then unavoidable, both in consumer and producer models.
Obviously, not all nodes can be active at the same time. In
the existing implementations, this is solved by handling one
value at time, where a strict sequencing of value transfers
is enforced. All nodes in ILVA perform the sequence of
compute-and-transfer operations in an identical predefined
order. But, as the values flow over the pipeline, they are
actually in different states of the iterative procedure. One
may say that corresponding nodes are acting out of phase.
On the other hand, the active nodes in Caballero are in
the same operative phase, but far from all nodes are active
simultaneously. Instead, stretching the communication cycle,
so that it overlaps with the sequence of operation, reduces
routing demands considerably. A side effect, but a highly
desired one, is the simplification of the local controller.
In this basic concept, values that come into the nodes are
immediately absorbed, which allows for evaluation of the
nodal equation on the fly.

Looking back at the switched broadcasting employed
in Caballero, we see that all nodes send their own values
to the orthogonal neighbors that copy the data and for-
ward it in a perpendicular direction to the received one.
Theoretically, all nodes will have access to the values of
the entire neighborhood after two steps only. But as the
CNN grid is grouped into subgroups of 5 nodes (Figure 4),
a latency of 10 clock cycles is then introduced. Hence,
the actual communication cycle, during which a node is
idle, is coupled to the number of nodes in each subgroup.
In other words, the short communication pattern of two
steps does not boost the performance. On the contrary,
it affects the final throughput negatively due to larger
routing units and thereby smaller network. Stretching the
communication cycle of a 1 neighborhood to 10 clock cycles
leads to a semiparallel broadcasting scheme (Figure 13(a))
with reduced routing demands. Table 2 shows the order of
sending and forwarding packets. The possible directions are
always: North, East, South, and West. Received packets are
labeled in accordance with the position of the source node
with respect to the current (destination) node. Obviously,
the computation needs can be plaited together with the
communication cycle.

We propose here a word-serial scheme (Figure 13(b)),
where values are sent out in one direction only, but are
forwarded to all nodes within the neighborhood serially.
Tables 2 and 3 show that stretching the broadcasting of
packets yields the same sequence of computation calculation,
regardless of the broadcasting scheme. The received packets
are consumed directly and overridden by subsequent packets.

TaBLE 2: The semiparallel broadcasting scheme interlaces compu-
tation with communication. Characters N, E, S, and W stand for
the four main directions on which packets are sent, received, or
forwarded. The output value ys,, for example, originates from the
southwest neighbor.

Clock cycles Send  Receive  Forward  Hold Calculate
1 Yown  down * Yown
2 N S Vs as * Ys
3 W E — Asw * Ysw
4 E W Yw Ay " Yw
5 N S — Anw * Yow
6 S N Yn an * Yn
7 E \\ — Gne * Vne
8 W E Ve ac " Ye
9 S N — Ase * Yse
10 £0)

TaBLE 3: The serial broadcasting scheme yields in a same sequence
of computation as in the semiparallel one.

Clock cycles Send  Receive  Forward Hold  Calculate
1 Yown  Gown * Yown
2 N S Vs as * Vs
3 W E Vsw Asw * Vsw
4 N S Y Ay " Yw
5 N S Vow nw * Ynw
6 E \Y Yn an * Yn
7 E w Ve Ane * Yne
8 S N Ve ac " Ye
9 S N Yse Age * Vse
10 J)

Consequently, the need of a local memory to hold the values
of all neighboring nodes is removed. A single register is
used to hold the current packet before it is multiplied by
corresponding template coefficient that resides in a local
memory (BRAM). Traditionally, the same memory is used
to hold a look-up table representing the discrimination
function.

Looking back at equation (1), we see that the part involv-
ing u?-values together with the bias remains unchanged
during the iterative process of computing the new nodal
state and thereby the new output. Thus, the broadcast will
first handle the inputs u¢ and the bias, and the resulting
constant is locally stored. On every next iteration, the result
of broadcasting the cell outputs will be added to the stored
constant to give the new cell output. There is no need
anymore for a global control, and the network interface is
very simple.

In order to simplify the control demands, the addressing
of template coefficients is obtained through a base-address
register that holds the higher address part, and indexing
of the lower address part is carried out by the nodal
controller itself. As the BRAM has the configuration of a
2 K entries memory, the base-address register does not need
to be wider than 6bits as shown in Figure 14. For a 1
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FIGURE 14: Address space of the nodal template memory.

neighborhood, 19 coefficients need to be stored for each
template: 9 control coefficients, 9 feedback coefficients, and
a bias. As the control coefficients b?, a?, and the bias are
used in the first iteration to compute the constant, they are
stored sequentially and can be addressed by 4 bits. A u/y-
flag, set by the nodal controller, allows the addressing of
the corresponding feedback coefficients ajj. The base address
picks out the correct template.

Also a number of templates are prestored in the local
memory. But other templates can be sent by the user to every
node in the network through the FIFO elements. These FIFO
elements serve originally to bring the external inputs u into
the nodes, but their functionality can easily be extended to
cover the handling of template transmission. At first glance,
this additional mechanism seems to add on the complexity
of the nodal controller, but a proper usage of information
stored in the header of the received FIFO packets keeps the
complexity at minimum.

In principle, control demands are reduced to a mux-
enable signal and addressing of the template memory. A
single register is used to hold one value only according to
Table 3. The content of the register is overridden as a new
value is received or locally produced. The schematic design
of the node is shown in Figure 15. Here, the local memory
is merged with the discriminator, as it also holds a table of
precomputed values to map the state onto a certain output.

6. Boundary Nodes

The functional correctness of any CNN system depends on
the handling of the boundary nodes, as these nodes lack a
complete neighborhood. Traditionally, the effect of bound-
ary conditions is modeled by adding virtual nodes on the
edge of the network. The problem here is further complicated
by the asymmetry of the prescheduled communication pat-
tern: boundary nodes experience different needs depending
on their position in the network. Figure 16(a) illustrates the
disturbed communication cycle for top boundary nodes. The
situation is even worse for the corner nodes (Figure 16(b)).
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TaBLE 4: Additional actions in boundary nodes remove the need of
virtual nodes.

Step Top boundary node
(1) Send E (instead of N);
store W value locally do not update u/y register
2 — —
Use W value (instead

3) —

of u/y-register value)

Bottom boundary node

Use own value;

(4) Use W value —
(5) Use own value —
(6) Forward own value W —
(7) Forward own value S Forward W; receive E

Forward own value W;
receive E

(8) —

Actually, not only boundary nodes are affected by the
incompleteness of broadcasting but even close-to-boundary
nodes as well (Figure 16(c)).

Employing the traditional approach of adding virtual
nodes is not as simple as it may seem. Besides being unable
to solve the problem completely, it adds on the network
size. In any prescheduled communication scheme, virtual
nodes should follow the sequence of sending (and eventually
forwarding) of values that is accommodated by all regular
nodes in the network. This works fine for close-to-boundary
nodes (Figure 17(a)), but the communication path is still
incomplete for boundary nodes. It is clear from Figure 17(b)
that top boundary nodes will not receive any data in steps
(4), (5), and (6). In other words, the partially asymmetric
transfer cycle necessitates the existence of two (!)layers of
virtual nodes to achieve completion.

We aim here for a total removal of the need for
virtual nodes. This is possible by slightly changing the
communication pattern of boundary nodes. Let us consider
top and bottom boundary nodes. Then, the actions listed
in Table 4 have to be performed in addition to the regular
functionality of the node, mainly when a zero-flux boundary
condition is used. For fixed boundary condition, most of the
sending/forwarding is redundant as all boundary nodes will
need to store a single fixed value only that can be used instead
of the received value. Implementing the actions in Table 4
introduces the need for boundary nodes to, sometimes,
send or receive two packets simultaneously, which requires a
remarkable redesign of the nodal controller and the router
in addition to the need of an extraregister that keeps one
value (W value in the table). Once again, different boundary
nodes will require different refinements. This is of course
better than the virtual nodes approach, but still increases the
area considerably. A better solution makes use of the existing
routing mechanism to forward boundary conditions. We
call it “swing boundary broadcasting” as each boundary
node will send its own value to one neighboring boundary
node and then to the other boundary node in the opposite
direction. Due to the use of duplex lines between the nodes,
the internodal connections have to be idle for one time step
in between (Figure 18). In this case, all boundary nodes will
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FiGure 16: (a) Top edge, (b) right upper corner nodes, and (c) even close-to-boundary nodes have an incomplete communication cycle.
Squares represent regular nodes; while the dotted lines show which part of the packet path is missing. The node of interest is shaded.

have the value of their neighboring boundary nodes available
locally. This requires two additional buffering elements to
store the values, but the effect on area utilization is kept at
a minimum. Overall, 3 time steps are introduced for each
newly calculated y value.

7. System Architecture

The development of classical computer architecture has
shown an emphasis on computing acceleration by pipelining
the central processing unit [18]. More and more the memory
bottleneck became a concern. Of late, attention moved
to more spatially distributed methods, such as networked
tiles, which offer inherent parallelism and local storage. The

underlying assumption is that sequencing instructions over
the local node takes the pressure away from the memory
access by the many parallel executing tasks.

We see the same principle back in the research reported
in this paper. On one hand, we aim to have as much nodes
executing in parallel as possible. This poses a severe burden
on the memory bandwidth. Therefore, it is required to do
more locally. From inspection of existing CNN applications,
one finds that data is accessed in memory more than once.
Therefore, bringing the amount of accesses down to 1 or less
will easily pay the bill.

The newest digital implementations reach a “close to
analogue” capacity by merging temporal distribution of
many nodes inside a single CNN cell implementation and
spatial distribution of many cells within a network. This
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FIGURE 18: Swing broadcasting allows distributing of boundary
conditions in (a) three steps clockwise and (c) anticlockwise. (b)
For proper functionality on the duplex lines, a separating idle step
is introduced.

allows entire CNN programs to be handled with minimal
memory access. This invites to the definition of a system
architecture and an appropriate application programming
interface.

The CNN Instruction Set Architecture defines the exte-
rior of the CNN Image Processor in terms of signals and
visible memory locations. The overall CNN ISA is depicted
in Figure 19. Overall we find two separate bus systems: the
image memory bus (IMB) and the host interface bus (HIB),
both with an R/W signal and strobe address and data bus.

A host must be able to control the overall functionality
of the system by sending instructions and cloning templates
and by setting a number of configuration parameters. The
communication is handled by a host interface unit (HIU)
that receives the requests from the host over the HIB and
forwards them to the system using a wishbone bus. The
HIU is as well responsible for data delivery to the host. Two
different FIFOs are used, one for acquiring host requests and
one for putting out data to the host.

The instructions cover four modes of operation. Firstly,
it sets the image window parameters, which allows zoom-
ing in and out of an image while applying the CNN
transformations. Secondly, it sets the CNN structure by
loading the program, template, and discrimination tables.
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FiGURE 19: External view of the CNN architecture.

The program can contain logical, arithmetic, and CNN-
specific operations. Thirdly, it can insert debug facilities.
Finally, it can also execute the stored instructions in a variety
of run steps.

The control unit (CU) has direct communication to the
CNN core and the HIU through wishbone buses. It is built
with the concept of pipelining in mind and consists of two
main components: instruction fetch and a controller. The
latter is in turn composed of two major components. One
is the actual instruction decoder for the proper template,
while the other generates CNN-enable and instruction-done
signals depending on the number of iterations and whether
equilibrium is reached or not.

8. Discussion

The moral of the serialized broadcasting approach is that
the transfer needs to be sequenced when the communication
bandwidth is limited due to area restrictions. The nodal
control demands are kept at a minimum by interlacing
communication and computation needs. Local storage needs
are reduced as well, due to the need of holding one value
only locally at any time step. A realization of the serial
broadcasting approach, hosted on a Xilinx Virtex-II FPGA,
shows reduced area utilization (Figure 20). Special attention
should be paid to the smaller network interface of the
switched serial approach compared to the 2-step approach
employed in Caballero. The simplicity of the serial scheme
eliminates the complexity of the router, which affects the
total size of the node. Note that the serial architecture
occupies fewer slices than the almost-interface-less ILVA
architecture in spite of that the latter requires less flip-
flops and equal number of LUTs. This has probably to do
with a more balanced logic usage among the functional
components (Figure 21).

We have also found that using state machines not
only leads to architectural rigidity but also to degraded
performance. For instance, 30% of the utilized area in the
serial broadcasting scheme is occupied by the controller, that
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is, state machine (Figure 21). One way to eliminate the need
of the nodal controller, at least partially, is by transferring
all values in a source-addressed packet. The original data-
only packet used previously is padded with a small header
containing the position of the source node in the grid. Hence,
the packets carry their addressing information in the header,
which can be exploited in two different ways.

In a traditional approach, the packets will be stored
in distinct destination registers accordingly. In this case,
the number of required registers equals the number of
neighbouring nodes. For the minimal 1 neighborhood, this
means 9 registers. This is not as bad as it sounds. Registers are
mapped on flip-flops only and no LUTs are used. The present
imbalance in the number of LUTs and flip-flops, shown in
Figure 21, allows for more flip-flops without affecting the
overall number of slices. In this way, an eventual architectural
rigidity is removed with no impact on area utilization.

A better approach uses the intrinsic positioning informa-
tion in the header to address the local template memory of
the current node. The nodal equation, (1), performs then
in the order the packets come in. The logic required for the
addressing of the value/coefficient pairs is greatly reduced
through the use of a mirrored binary numbers of both the
rows and the columns. In case of a 1 neighborhood only
2bits for the row and 2bits for the column address are
required. In general, we need only 2(r + 1) bits, where r is
the neighborhood.

It is also possible to merge the local controllers. The
network is divided into small groups with each a single
controller (Figure 22). This semiglobal control approach
does not affect the guaranteed performance but will lead
to logic optimization. It adds some wiring overhead and
therefore slow down the system but the gained amount of
logic from reducing the number of nodal controllers is far
much larger. Attention has to be paid; so the average wire
length is not increased to such a limit that the potential
benefits of the CNN are lost [19]. The rate of one controller
per neighborhood seems to be a good tradeoft.

By virtue of the slim network interface and limited
need for run-time storage within the cell, the word-serial
implementation can easily be extended to handle multilevel
structures. In principle, for every node the run-time status is
stored in the connected BRAM and loaded from there when
the execution moves from one level to the other. This makes
that the network is virtually much larger than the actual
number of implemented nodes sets as a limit.

Wrapping the CNN in the ISA scheme takes only a 1-
5% overhead. At this price, it becomes feasible to execute
a program of standardized instructions on a variety of
CNN implementations. It can as well work as coprocessor
(Caballero) and as image streamer (ILVA). Especially note-
worthy is the rich set of debug facilities to support work in
the development phase of a project.

The ISA is especially helpful when the actual parame-
terization for the network is not clear during development,
but should not influence the application at hand. It has
become practical because the virtual network size has been
raised from a meager 144 cells to 4096, and can probably
be raised even higher. This makes a digital CNN a practical



14

alternative for image processing. As such networks do not
have a global control, their intrinsic speed is much higher
than the usual, and speeds of 400 frames per second have
been demonstrated.

In a typical hand-vein application [20], we find that
different templates need to be applied to the same image,
and the two results need to be used in a next dyadic
operation to bring a single result on which again two
different templates are applied, and so on. With the current
implementation, we can reduce the amount of external
memory access, as each frame only has to be loaded once.
Additional registers are simply added for each suboperation.
Factually, in this application we need to go through 7
subsequent CNN layers and never have to reload from
external memory. This provides us with an amazing 20x
higher performance, making real-world, real-time, and real-
power product applications possible.
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