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The primary difficulty in the identification of Hammerstein nonlinear systems (a static memoryless nonlinear system in series with
a dynamic linear system) is that the output of the nonlinear system (input to the linear system) is unknown. By employing the
theory of affine projection, we propose a gradient-based adaptive Hammerstein algorithm with variable step-size which estimates
the Hammerstein nonlinear system parameters. The adaptive Hammerstein nonlinear system parameter estimation algorithm
proposed is accomplished without linearizing the systems nonlinearity. To reduce the effects of eigenvalue spread as a result of the
Hammerstein system nonlinearity, a new criterion that provides a measure of how close the Hammerstein filter is to optimum
performance was used to update the step-size. Experimental results are presented to validate our proposed variable step-size
adaptive Hammerstein algorithm given a real life system and a hypothetical case.
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1. Introduction

Nonlinear system identification has been an area of active
research for decades. Nonlinear systems research has led to
the discovery of numerous types of nonlinear systems such as
Volterra, Hammerstein, and Weiner nonlinear systems [1–4].
This work will focus on the Hammerstein nonlinear system
depicted in Figure 1. Hammerstein nonlinear models have
been applied to modeling distortion in nonlinearly ampli-
fied digital communication signals (satellite and microwave
links) followed by a linear channel [5, 6]. In the area
of biomedical engineering, the Hammerstein model finds
application in modeling the involuntary contraction of
human muscles [7, 8] and human heart rate regulation
during treadmill exercise [9]. Hammerstein systems are also
applied in the area of Neural Network since it provides
a convenient way to deal with nonlinearity [10]. Existing
Hammerstein nonlinear system identification techniques can
be divided into three groups:

(i) deterministic techniques such as orthogonal least-
squares expansion method [11–13],

(ii) stochastic techniques based on recursive algorithms
[14, 15] or nonadaptive methods [16], and

(iii) adaptive techniques [17–20].

Adaptive Hammerstein algorithms have been achieved
using block based adaptive algorithms [11, 20]. In block
based adaptive Hammerstein algorithms, the Hammerstein
system is overparameterized in such a way that the Ham-
merstein system is linear in the unknown parameters. This
allows the use of any linear estimation algorithm in solving
the Hammerstein nonlinear system identification problem.
The limitation of this approach is that the dimension
of the resulting linear block system can be very large,
and therefore, convergence or robustness of the algorithm
becomes an issue [18]. Recently, Bai reported a blind
approach to Hammerstein system identification using least
mean square (LMS) algorithm [18]. The method reported
applied a two-stage identification process (Linear Infinite
Impulse Response (IIR) stage and the nonlinear stage)
without any knowledge of the internal signals connecting
both cascades in the Hammerstein system. This method
requires a white input signal to guarantee the stability
and convergence of the algorithm. Jeraj and Mathews
derived an adaptive Hammerstein system identification
algorithm by linearizing the system nonlinearity using a
Gram-Schmidt orthogonalizer at the input to the linear
subsystem (forming an MISO system) [17]. This method
also suffers the same limitations as the block-based adaptive
Hammerstein algorithms. Thus, to improve the speed of
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Figure 1: Adaptive system identification of a Hammerstein system model.

convergence while maintaining a small misadjustment and
computational complexity, the Affine Projection theory is
used as opposed to LMS [18] or Recursive Least squares
(RLSs).

In nonlinear system identification, input signals with
high eigen value spread, ill-conditioned tap input autocorre-
lation matrix can lead to divergence or poor performance of a
fixed step-size adaptive algorithm. To mitigate this problem,
a number of variable step-size update algorithms have been
proposed. These variable step-size update algorithms can
be roughly divided into gradient adaptive step-size [21,
22] and normalized generalized gradient descent [23]. The
major limitation of gradient adaptive step-size algorithms
is their sensitivity to the time correlation between input
signal samples and the value of the additional step-size
parameter that governs the gradient adaptation of the
step-size. As a result of these limitations, a criteria for
the choice of the step-size based on Lyapunov stability
theory is proposed to track the optimal step-size required
to maintain a fast convergence rate and low misadjust-
ment.

In this paper, we focus on the adaptive system identifi-
cation problem of a class of Hammerstein output error type
nonlinear systems with polynomial nonlinearity. Our unique
contributions in the paper are as follows.

(1) Using the theory of affine projections [24], we derive
an adaptive Hammerstein algorithm that identifies
the linear subsystem of the Hammerstein system
without prior knowledge of the input signal ẑ(n).

(2) Employing the Lyapunov stability theory, we develop
criteria for the choice of the algorithms step-size
which ensures the minimization of the Lyapunov
function. This is particularly important for the
stability of the linear algorithm regardless of the
location of the poles of the IIR filter.

Briefly, the paper is organized as follows. Section 2
describes the nonlinear Hammerstein system identifica-

tion problem addressed in this paper. Section 3 contains
a detailed derivation of the proposed variable step-size
adaptive Hammerstein algorithm. Section 4 provides both
a hypothetical and real life data simulation validating the
effectiveness of the variable step-size adaptive algorithm
proposed. Finally, we conclude with a brief summary in
Section 5.

2. Problem Statement

Consider the Hammerstein model shown in Figure 1, where

x(n), v(n), and d̂(n) are the systems input, noise, and output,
respectively. ẑ(n) represents the unavailable internal signal
output of the memoryless polynomial nonlinear system.
The output of the memoryless polynomial nonlinear system,
which is the input to the linear system, is given by

ẑ(n) =
L∑
l=1

pl(n)xl(n). (1)

Let the discrete linear time-invariant system be an infinite
impulse response (IIR) filter satisfying a linear difference
equation of the form

d̂(n) = −
N∑
i=1

ai(n)d̂(n− i) +
M∑
j=0

bj(n)ẑ
(
n− j

)
, (2)

where pl(n), ai(n), and bj(n) represent the coefficients of
the nonlinear Hammerstein system at any given time n. To
ensure uniqueness, we set b0(n) = 1 (any other coefficient
other than b0(n) can be set to 1). Thus, (2) can be written as

d̂(n) =
L∑
l=1

pl(n)xl(n)−
N∑
i=1

ai(n)d̂(n− i) +
M∑
j=1

bj(n)ẑ
(
n− j

)
.

(3)
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Let

θ̂(n) = [a1(n) · · · aN (n) b1(n) · · · bM(n)

p1 (n) · · · pL(n)
]H ,

b0 = 1,

ŝ(n) =
[
−d̂(n− 1) · · · − d̂(n−N)

ẑ(n− 1) · · · ẑ(n−M)

x (n) · · · xL(n)
]H

.

(4)

Equation (3) can be rewritten in compact form

d̂(n) = ŝ (n)Hθ̂(n). (5)

The goal of the Adaptive nonlinear Hammerstein system

identification is to estimate the coefficient vector (θ̂(n)) in
(5) of the nonlinear Hammerstein filter based only on the

input signal x(n) and output signal d(n) such that d̂(n) is
close to the desired response signal d(n).

3. Adaptive Hammerstein Algorithm

In this section, we develop an algorithm based on the theory
of Affine projection [24] for estimation of the coefficients
of the nonlinear Hammerstein system using the plant input
and output signals. The main idea of our approach to
nonlinear Hammerstein system identification is to formulate
a criterion for designing a variable step-size affine projection
Hammerstein filter algorithm and then use the criterion in
minimizing the cost function.

3.1. Stochastic Gradient Minimization Approach. We formu-
late the criterion for designing the adaptive Hammerstein
filter as the minimization of the square Euclidean norm of
the change in the weight vector

θ̃(n) = θ̂(n)− θ̂(n− 1) (6)

subject to the set of Q constraints

d
(
n− q

) = ŝ
(
n− q

)H
θ̂(n) q = 1, . . . ,Q. (7)

Applying the method of Lagrange multipliers with
multiple constraints to (6) and (7), the cost function for the
affine projection filter is written as (assuming real data)

J(n− 1) =
∥∥∥θ̂(n)− θ̂(n− 1)

∥∥∥2
+ Re[ε(n− 1)λ], (8)

where

ε(n− 1) = d(n− 1)− Ŝ (n− 1)Hθ̂(n),

d(n− 1) = [d(n− 1) · · · d(n−Q)]H,

Ŝ(n− 1) = [ŝ(n− 1) · · · ŝ(n−Q)],

λ = [λ1 · · · λQ
]H

.

(9)

Minimizing the cost function (8) (squared prediction
error) with respect to the nonlinear Hammerstein filter

weight vector θ̂(n) gives

∂J(n− 1)

∂θ̂(n)
= 2

(
θ̂(n)− θ̂(n− 1)

)
−

∂
(
θ̂(n)HŜ(n− 1)

)
λ

∂θ̂(n)
,

(10)

where

∂
(
θ̂(n)HŜ(n− 1)

)
∂θ̂(n)

=
[
∂θ̂(n)Hŝ(n− 1)

∂θ̂(n)
· · · ∂θ̂(n)Hŝ(n−Q)

∂θ̂(n)

]
.

(11)

Since a portion of the vectors ŝ(n) in Ŝ(n) include past

d̂(n) which are dependent on past θ̂(n) which are used to

form the new θ̂(n), the partial derivative of each element in
(10) gives

∂θ̂(n)Hŝ
(
n− q

)
∂ai(n)

= −d̂(n− q − i
)− N∑

k=1

ak(n)
∂d̂
(
n− q − k

)
∂ai(n)

,

(12)

∂θ̂(n)Hŝ
(
n− q

)
∂bj(n)

= ẑ
(
n− q − j

)− N∑
k=1

ak(n)
∂d̂
(
n− q − k

)
∂bj(n)

,

(13)

∂θ̂(n)Hŝ
(
n− q

)
∂pl(n)

= xl
(
n− q

)
+

M∑
k=1

bk(n)
∂ẑ
(
n− q − k

)
∂pl(n)

−
N∑
k=1

ak(n)
∂d̂
(
n− q − k

)
∂pl(n)

.

(14)

From (12), (13), and (14) it is necessary to evaluate

the derivative of past d̂(n) with respect to current weight

estimates. In evaluating the derivative of d̂(n) with respect
to the current weight vector, we assume that the step-size of
the adaptive algorithm is chosen such that [24]

θ̂(n) ∼= θ̂(n− 1) ∼= · · · ∼= θ̂(n−N). (15)

Therefore

ai(n) ∼= ai(n− 1) ∼= · · · ∼= ai(n−N),

∂d̂
(
n− q

)
∂ai(n)

= −d̂(n− q − i
)− N∑

k=1

ak(n)
∂d̂
(
n− q − k

)
∂ai(n− k)

bj(n) ∼= bj(n− 1) ∼= · · · ∼= bj(n−N),

,

(16)
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∂d̂
(
n− q

)
∂bj(n)

= ẑ
(
n− q − j

)− N∑
k=1

ak(n)
∂d̂
(
n− q − k

)
∂bj(n− k)

,

pl(n) ∼= pl(n− 1) ∼= · · · ∼= pl(n−N),
(17)

∂d̂
(
n− q

)
∂pl(n)

= xl
(
n− q

)
+

M∑
k=1

bk(n)
∂ẑ
(
n− q − k

)
∂pl(n− k)

.

−
N∑
k=1

ak(n)
∂d̂
(
n− q − k

)
∂pl(n− k)

,

(18)

∂pl
(
n− q − k

)
∂pl(n− k)

= 1, (19)

thus,

∂d̂
(
n− q

)
∂pl(n)

= xl
(
n− q

)
+

M∑
k=1

bk(n)xl
(
n− q − k

)

−
N∑
k=1

ak(n)
∂d̂
(
n− q − k

)
∂pl(n− k)

,

(20)

where

φ̂
(
n− q

) = ∂d̂
(
n− q

)
∂θ̂(n)

=
⎡⎣∂d̂(n− q

)
∂a1(n)

· · · ∂d̂
(
n− q

)
∂aN (n)

∂d̂
(
n− q

)
∂b1(n)

· · · ∂d̂
(
n− q

)
∂bM(n)

∂d̂
(
n− q

)
∂p1(n)

· · · ∂d̂
(
n− q

)
∂pL(n)

⎤⎦H

.

(21)

Let

Φ̂(n− 1) =
∂
(
θ̂(n)HŜ(n− 1)

)
∂θ̂(n)

,

ψ̂
(
n− q

) = [−d̂(n− q−1
) · · · − d̂

(
n−q−N) ẑ(n−q−1

)

· · · ẑ
(
n− q −M

) M∑
j=0

x
(
n− q − j

)

· · ·
M∑
j=0

xL
(
n− q − j

)⎤⎦H

,

Ψ̂(n− 1) = [ψ̂(n− 1) · · · ψ̂(n−Q)
]
.

(22)

Substituting (16), (17), and (20) into (11), we get

Φ̂(n− 1) = Ψ̂(n− 1)−
N∑
k=1

ak(n− 1)Φ̂(n− 1− k). (23)

Thus, rewriting (10)

∂J(n− 1)

∂θ̂(n)
= 2

(
θ̂(n)− θ̂(n− 1)

)
− Φ̂(n− 1)λ. (24)

Setting the partial derivative of the cost function in (24) to
zero, we get

θ̃(n) = 1
2
Φ̂(n− 1)λ. (25)

From (7), we can write

d(n− 1) = Ŝ (n− 1)Hθ̂(n), (26)

where

d(n− 1) = [d(n− 1) · · · d(n−Q)],

d(n− 1) = Ŝ (n− 1)Hθ̂(n− 1) +
1
2
Ŝ (n− 1)HΦ̂(n− 1)λ.

(27)

Evaluating (27) for λ results in

λ = 2
(
Ŝ(n− 1)HΦ̂(n− 1)

)−1
e(n− 1), (28)

where

e(n− 1) = d(n− 1)− Ŝ (n− 1)Hθ̂(n− 1). (29)

Substituting (28) into (25) yields the optimum change in
the weight vector

θ̃(n) = Φ̂(n− 1)
(
Ŝ(n− 1)HΦ̂(n− 1)

)−1
e(n− 1). (30)

Assuming that the input to the linear part of the
nonlinear Hammerstein filter is a memoryless polynomial
nonlinearity, we normalize (30) as in [25] and exercise con-
trol over the change in the weight vector from one iteration to
the next keeping the same direction by introducing the step-
size μ. Regularization of the Ŝ(n− 1)HΦ̂(n− 1) matrix is also
used to guard against numerical difficulties during inversion,
thus yielding

θ̂(n) = θ̂(n− 1)− μΦ̂(n− 1)

×
(
Φ̂δI + μŜ (n− 1)H(n− 1)

)−1
e(n− 1).

(31)

To improve the update process Newton’s method is applied
by scaling the update vector by R−1(n). The matrix R(n) is
recursively computed as

R(n) = λnR(n− 1) + (1− λn)Φ̂(n− 1)Φ̂(n− 1)H , (32)

where λn is typically chosen between 0.95 and 0.99. Applying
the matrix inversion lemma on (32) and using the result in
(31), the new update equation is given by

θ̂(n) = θ̂(n− 1)− μR(n− 1)−1Φ̂(n− 1)

×
(
δI + μŜ (n− 1)HΦ̂(n− 1)

)−1
e(n− 1)

(33)



EURASIP Journal on Advances in Signal Processing 5

3.2. Variable Step-Size. In this subsection, we derive an
update for the step-size using a Lyapunov function of
summed squared nonlinear Hammerstein filter weight esti-
mate error. The variable step-size derived guarantees the
stable operation of the linear IIR filter by satisfying the
stability condition for the choice of μ in [26]. Let

θ(n) = θ − θ̂(n), (34)

where θ represents the optimum Hammerstein system
coefficient vector. We propose the Lyapunov function V(n)
as

V(n) = θ(n)Hθ(n), (35)

which is the general form of the quadratic Lyapunov function
[27]. The Lyapunov function is positive definite in a range

of values close to the optimum θ = θ̂(n). In order for
the multidimensional error surface to be concave, the time
derivative of the Lyapunov function must be semidefinite.
This implies that

ΔV(n) = V(n)−V(n− 1) ≤ 0. (36)

From the Hammerstein filter update equation

θ̂(n) = θ̂(n−1)− μΦ̂(n−1)
(
Ŝ(n−1)HΦ̂(n−1)

)−1
e(n−1),

(37)

we subtract θ from both sides to yeild

θ(n) = θ(n−1)− μΦ̂(n−1)
(
Ŝ(n−1)HΦ̂(n−1)

)−1
e(n−1).

(38)

From (35), (36), and (38) we have

ΔV(n) =
(
θ(n)

)H
θ(n)−

(
θ(n− 1)

)H
θ(n− 1). (39)

Minimizing the Lyapunov function with respect to the
step-size μ, and equating the result to zero, we obtain the
optimum value for μ as μopt

μopt =
E
[
θ(n−1)HΦ̂(n−1)

(
Ŝ (n−1)HΦ̂(n−1)

)−1
e(n−1)

]
E
[
e(n−1)HΥ(n−1)HΥ(n−1)e(n−1)

] ,

(40)

where

Υ(n− 1) = Φ̂(n− 1)
(
Ŝ (n− 1)HΦ̂(n− 1)

)−1
. (41)

Adding the system noise v(n) to the desired output and
assuming that the noise is independently and identically
distributed and statistically independent of Ŝ(n), we have

d(n) = Ŝ (n)Hθ + v(n). (42)

INITIALIZE: R−1(0) = I , λn /= 0, 0 < β ≤ 1
for n = 0 to sample size do

e(n− 1) = d(n− 1)− Ŝ(n− 1)Hθ̂(n− 1)

Φ̂(n− 1) = Ψ̂(n− 1)−
N∑
k=1

ak(n− 1)Φ̂(n− 1− k)

B̂(n) = αB̂(n− 1)− (1− α)Υ(n− 1)e(n− 1)

μ(n) = μ̂opt(
‖B̂(n)‖2

‖B̂(n)‖2
+ C

)

(
λn

1− λn
I − Φ̂(n− 1)HR(n− 1)−1Φ̂(n− 1))

−1

R(n)−1 = 1
λn

[R(n− 1)−1 − R(n− 1)−1Φ̂(n− 1)

Φ̂(n− 1)HR(n− 1)−1]

θ̂(n) = θ̂(n− 1)− μ(n)R(n)−1Φ̂(n− 1)

(δI + μ(n)Ŝ(n− 1)HΦ̂(n− 1))
−1
e(n− 1)

ẑ(n) = x(n)H p̂(n)

d̂(n) = ŝ(n)Hθ̂(n)
end for

Algorithm 1: Summary of the proposed Variable Step-size Ham-
merstein adaptive algorithm.

From (40) we write

μoptE
[
e(n− 1)HΥ(n− 1)HΥ(n− 1)e(n− 1)

]
= E

[
θ(n− 1)HΦ̂(n− 1)

(
Ŝ (n− 1)HΦ̂(n− 1)

)−1
e(n− 1)

]
.

(43)

The computation of μopt requires the knowledge of θ(n − 1)
which is not available during adaptation. Thus, we propose
the following suboptimal estimate for μ(n):

μ(n) = μ̂optE‖Υ(n− 1)e(n− 1)‖2

E‖Υ(n− 1)e(n− 1)‖2 + σ2
v Tr

{
E‖Υ(n− 1)‖2

} .
(44)

We estimate E‖Υ(n−1)e(n−1)‖ by time averaging as follows:

B̂(n) = αB̂(n− 1)− (1− α)Υ(n− 1)e(n− 1)

μ(n) = μ̂opt

⎛⎜⎝
∥∥∥B̂(n)

∥∥∥2

∥∥∥B̂(n)
∥∥∥2

+ C

⎞⎟⎠,
(45)

where μ̂opt is an rough estimate of μopt, α is a smoothing
factor (0 < α < 1), and C is a constant representing
σ2
v Tr{‖Υ(n− 1)‖2} ≈ Q/SNR. We guarantee the stability of

the Hammerstein filter by choosing μ̂opt to satisfy the stability
bound in [26]. Choosing μ̂opt to satisfy the stability bound
[26] will bound the step-size update μ(n) with an upper limit
of μ̂opt thereby ensuring the slow variation and stability of the
linear IIR filter.

A summary of the proposed algorithm is shown in
Algorithm 1. In the algorithm, N represents the number
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Figure 2: Mean square deviation learning curve of the proposed
algorithm for varying constraint.

of feedback, M the number of feedforward coefficients
for the linear subsystem, and L the number of coef-
ficients for the polynomial subsystem. Based on these
coefficient numbers, let K represent N + M + L − 2
in the computation of the computational cost of our
proposed adaptive nonlinear algorithm. In computing the
computational cost, we assume that the cost of invert-
ing a K × K matrix is ©(K3) (Multiplications and
additions) and ©(L2N) for computing R−1 [28]. Under
these assumptions, the computational cost of our pro-
posed algorithm is of ©(QK2) multiplications compared

to ©(K2) in [17]. This increase in complexity due to
the order of the input regression matrix in the proposed
algorithm is compensated for by the algorithms good
performance.

4. Simulation Results

In this section, we validate the proposed algorithm with
simulation results corresponding to two different types of
input signals (white and highly colored signals). The white
signal was an additive white Gaussian noise signal of zero
mean and unity variance. The highly colored signal was
generated by filtering the white signal with a filter of
impulse response:

H1(z) = 0.5
1 + 0.9z−1

. (46)

The Hammerstein system was modeled such that the
dynamic linear system had an impulse response H2(z)
given by
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Q = 4
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Figure 3: Mean square deviation learning curves of the proposed
algorithm for varying constraint and a colored input signal.

H2(z)

= 1.0000−1.8000z−1 +1.6200z−2−1.4580z−3 +0.6561z−4

1.0000−0.2314z−1 +0.4318z−2−0.3404z−3 +0.5184z−4
,

(47)

and static nonlinearity modeled as a polynomial with
coefficients

z(n) = x(n)− 0.3x(n)2 + 0.2x(n)3. (48)

The desired response signal d(n) of the adaptive Ham-
merstein filter was obtained by corrupting the output of the
unknown system with additive white noise of zero mean
and variance such that the output signal to noise ratio was
30 dB. The proposed algorithm was initialized as follows:
λn = 0.997, μopt = 1.5e − 6, δ = 5e − 4, and C = 0.0001.

Figure 2 shows the mean square deviation between the
estimated and optimum Hammerstein filter weights for a
white input case. The results were obtained, by ensemble
averaging over 100 independent trials. The figure shows
that the convergence speed of the proposed algorithm is
directly correlated to the number of constraints Q used in
the algorithm.

Figure 3 shows a comparison of the mean square devia-
tion learning curve obtained, from the proposed algorithm
and the algorithm in [17]. The proposed algorithm outper-
formed [17] even though the authors had used the Gram
Schmidt process to better enhance the algorithms perfor-
mance in a colored environment. This result is expected since
[17] is sensitive to the additional step-size and regularizing
parameters that govern the adaptation of the Gram-Schmidt
processor. Results also show that, above a constraint value
of 1 (Q > 1), the proposed algorithms performance in the
colored environment is similar.
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5. Conclusion

We have proposed a new adaptive filtering algorithm for
the Hammerstein model filter based on the theory of Affine
Projections. The new algorithm minimizes the norm of the
projected weight error vector as a criterion to track the
adaptive Hammerstein algorithm’s optimum performance.
Simulation results confirm the convergence of the parameter
estimates from our proposed algorithm to its corresponding
parameter in the plants parameter vector.
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