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Among image restoration approaches, image deconvolution has been considered a powerful solution. In image deconvolution, a
point spread function (PSF), which describes the blur of the image, needs to be determined. Therefore, in this paper, we propose
an iterative PSF estimation algorithm which is able to estimate an accurate PSE. In real-world motion-blurred images, a simple
parametric model of the PSF fails when a camera moves in an arbitrary direction with an inconsistent speed during an exposure
time. Moreover, the PSF normally changes with spatial location. In order to accurately estimate the complex PSF of a real motion
blurred image, we iteratively update the PSF by using a directional spreading operator. The directional spreading is applied to the
PSF when it reduces the amount of the blur and the restoration artifacts. Then, to generalize the proposed technique to the linear
shift variant (LSV) model, a piecewise invariant approach is adopted by the proposed image segmentation method. Experimental
results show that the proposed method effectively estimates the PSF and restores the degraded images.
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1. Introduction

Due to the degradation of the image caused by the limited
performance of optical and electronic devices of in today’s
cameras, the image restoration has been researched in
literature. In classical image restoration, the PSF is assumed
to be known prior to the restoration process [1]. However, in
real-world applications, an observed image is only available
with insufficient a priori information.

Various techniques have been proposed to estimate the
PSE. Early works on blur identification, or the estimation of
the PSF, have been proposed based on regular patterns of
zeros in the frequency domain [2]. However, these methods
are sensitive to Gaussian blur that does not have zeros in
the frequency domain. To deal with this problem, the spatial
domain Bayesian parameter estimation of the PSF has been
widely adopted [3, 4]. Especially in the case of motion blur,
the PSF is assumed to be modeled as a uniform motion blur.
Then, the parameters of the uniform motion blur, the length
and angle, are estimated with an optimization technique.
Though these approaches estimate an accurate PSE, they

are not applicable to the PSF which cannot be regarded as
a parametric form. In many real applications, the camera
tends to move in a nonlinear direction with acceleration.
Therefore, the parametric estimation of the PSF sometimes
yields unsatisfactory result, so that the deblurred image tends
to have restoration artifacts. In this case, the parametric PSF
estimation needs to be revised to estimate a more accurate
PSE.

Besides, when moving objects exist or the scene has
depth, the PSF changes with spatial location over the image
[5]. In this case, an estimation of the LSV PSF is essential
to restore the image. To deal with this problem, joint opti-
mization of the blur identification and image restoration has
been considered [6]. However, the optimization approach
with the linear shift invariant (LSI) model is not numerically
applicable to the LSV model. Most of the current approaches
with the LSV model assume that the PSF of the image has
a slow varying characteristic [7, 8]. With this assumption,
the locally invariant PSF is estimated, and a piecewise invari-
ant deconvolution is applied. The conventional piecewise
invariant deblurring approaches either simply divide a whole



image only into blurred and not blurred regions [7] or use
a well-known image segmentation method for the object-
based processing [9]. However, since a blurred region may
not have a homogeneous PSE, a single PSF for the blurred
region cannot accurately describe the blur of the image.
Also, the conventional image segmentation methods are not
efficient for image deblurring because they generally over-
segment images without considering the image blur.

In this paper, we first divide an image into multiple
segments where each segment can be assumed to be blurred
by the LSI PSE Then, the LSI PSF is estimated by the
proposed PSF estimation algorithm. To estimate the PSE
spreading operators are employed when they increase the
accuracy of the PSE. The accuracy of the PSF is assessed
by a cost function, which measures both the blur strength
and undesired artifacts. Finally, image deconvolution is
performed for each segment by using the estimated LSI PSE
By merging all of the resultant segments, we can obtain the
deblurred image.

The rest of this paper is organized as follows. We
describe the proposed PSF estimation method in Section 2
and show how to measure the amount of blurs and artifacts
in Section 3. The application to the shift variant model is
presented in Section 4. Experimental results and conclusion
are given in Section 5 and Section 6, respectively.

2. Proposed Directional Spreading of the PSF

Before introducing the proposed method, it is worth clar-
ifying the motivation for the proposed method. In image
restoration, the image degradation [10] is generally modeled
as

g=hx*f+n, (1)

where f, g, h, and n denote the original image, the observed
image, the PSE and the observation noise, respectively.
Given h, f can be reconstructed from g by using image
deconvolution algorithms [10]. However, the PSF needs to
be estimated since the PSF cannot be known in real motion-
blurred images. In the LSI model, the PSF is assumed to be
invariant for a whole image. Then, the invariant PSF of the
image is estimated by conventional techniques [2, 4]. Since
most of the conventional approaches rely on a parametric
model of the PSF, their estimation accuracies are dependent
on the reliability of the model. Especially for the case of
motion blur, the uniform motion blur model is widely
adopted. However, when the camera moves to an irregular
direction within an exposure time, the uniform motion blur
model fails to estimate an accurate PSE. As can be seen
from Figure 1, the original PSF shaped as Figure 1(a) cannot
be estimated by the uniform motion blur model shown in
Figure 1(b). In Figure 1, + indicates a center position of
the PSF and the grey value represents a magnitude of the
PSF at the corresponding coefficient. The coefficient values
of the PSF vary from 0 to 1, so those values are linearly
mapped from 0 to 255 for the visualization. Since image
deconvolution is inherently an ill-conditioned problem, the
inaccurate PSF may cause serious artifacts in the resultant
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image. Therefore, in this section, we present an iterative PSF
estimation technique that modifies the initial PSF at each
iteration.

Figure 1(c) conceptually illustrates the expected result
of the proposed method. As can be seen, the directional
spreading operator can be applied to update the initial PSF
for improving the accuracy of the PSE. The decision rule of
applying the directional spreading operator will be explained
in the next section. Given a certain decision rule, it is obvious
that the estimation performance depends on the design of the
spreading operator.

In this paper, we use four directional filters to spread the
PSF since the combination of the four directional spreading
can closely approximate the other directions. Figure 2 shows
an example of directional filters whose size is 5 X 5. At the
previous example in Figure 1, these spreading operators are
applied to the initial PSF of 64 x 64 size for the graphical
explanation. Then, let a set of spreading operators be denoted
as S = {s0,81,52,53}. Each operator in S represents 1D
finite impulse response (FIR) filter of four directions, that
is, upper, lower, left, and right. For instance, the impulse
response of the left and right directional filters, s, and s3, are
defined by

S = [a_N,a_NH,. ..,a-1,a0,0,0,... ,0],
(2)

§3 = [0,0:---:O)aOyalaaZ)---)aN]:

where a; represents the ith coefficient and ay is located on
the center position of this filter. If one directional operator is
designed, the others are directly determined by rotating and
flipping the operator.

To determine the filter coefficients, a trade-off character-
istic of directional spreading operator needs to be considered.
If we rapidly change the PSF by using the spreading operator,
we cannot estimate an exact shape of the PSE. On the other
hand, if we slowly modify the PSF, a more precise shape of
the PSF can be achieved at the expense of the computational
complexity. In our experiment, we decide to use a truncated-
Gaussian shaped 1D filter shown in Figure 3 to slowly modify
the PSFE. The variance of Gaussian filter is set to 9 and the
truncated coefficients are normalized to make sum equal to 1.
By repeatedly applying this filter to the PSE, we can represent
a more general type of blur.

Then, the spread PSF h is obtained by the convolution of
the PSF h and the spreading operator as follows:

0

h(ij) = > ss(kh(i+k, j). (3)

k=-N

Note that the length of the spreading operator is 2N+1
but the computations are necessary for half of the elements
since each operator has only N + 1 nonzero elements.
Other directional spreading are defined similarly by changing
the spreading operator. This directional spreading can be
regarded as a 1D filtering of the 2-D PSF matrix in a certain
direction. In (3), each row of the PSF matrix is filtered using
s2. As a result, the coefficient of the PSF matrix is spread to
the left direction. This 1D directional spreading is repeatedly



EURASIP Journal on Advances in Signal Processing

(a)

FIGURE 1: Directional spreading of the PSF. (a) Original PSE. (b) Initial PSF. (c) Directional spreading on initial PSE

FIGURrE 2: Four directional spreading operators, where the shaded
position indicates nonzero element.

applied in a certain direction until the accuracy of the PSF is
no more improved. Once the iteration is terminated, another
spreading operator in S is adopted. The PSF update stops
when all spreading operators in S are used. The remaining
question is how to decide whether the PSF becomes more
accurate after the directional spreading. The criterion of
accuracy of the PSF is discussed in the next section.

3. Cost Function for the Accuracy of the PSF

To determine the PSF, the accuracy of the PSF needs to be
measured. Since the original image is not given in the real
case, quality metrics such as an improvement in the signal-
to-noise ratio (ISNR) [11] are not applicable to assess the
accuracy of the PSE. Therefore, we define a cost function with
two assumptions. First, the accuracy of the PSF is related
to the amount of blur. Indeed, the amount of blur tends to
be decreased as the accuracy of the PSF increases. Second,
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FIGUre 3: Example of directional spreading operator.

restoration artifacts of the deblurred image are dependent on
the accuracy of the PSE. Due to the ill-conditioned property
of the PSF, the estimation error may cause strong restoration
artifacts. Therefore, the amount of the restoration artifacts is
also considered in the cost function.

Since deblurring with an accurate PSF tends to reduce
the blur of the image, the blur amount can be used for
an accuracy measurement of the PSE. For the measurement
of the blur amount, we consider the width of the edge
[12]. To measure the width of an edge, or edgewidth, an
edge operator is firstly applied to detect strong edges of an
image. Figures 4(b) and 4(c) show the blurred image and its
edgemap obtained by using the Canny edge detector [13].
Then, for each edge pixel, we find two end positions of the
edge as shown in Figure 5 [12]. The distance between these
two detected pixels is considered as the edgewidth. Then, the
average edgewidth is used as a measure of the blur amount as
follows:

_ 2L E(f))

M) = =S e “

where M3(fo), E(fo), and L(fo,E(fy)) denote the blur
amount, the binary edgemap, and the edgewidth image of the

observed image fy, respectively. In L( fo, E(fo)), every edge
pixel in E(fy) has the corresponding edgewidth value and
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(e)

()

FiGure 4: Edgewidth mask construction of observed image. (a) Original image. (b) Blurred image. (c) Edgemap of observed image. (d)
Edgewidth mask. (e) Difference image between Figures 4(a) and 4(b). (f) Difference image between Figure 4(b) and the deblurred image

with an inaccurate PSE.

Pixel value

! Edgewidth

Pixel position

FIGURE 5: Definition of edgewidth, where a white circle represents
an edge position and black circles denote end positions of the edge.

nonedge pixels have zero value. Then, the blur amount of the
estimated image Mp( f) is measured for each iteration as

ZL(fA,E(fo))_ -

Ms(f) = =55

Note that the edge operator is applied once to the observed
image, and the blur amount is measured at each iteration
with the edgemap of the observed image.

In general, an accurate PSF should not cause restoration
artifacts such as ghost artifacts. Therefore, we also include
restoration artifacts in the cost function. Based on the fact
that the PSF has lowpass characteristics in the frequency
domain, only the high-frequency region of the original image
is damaged. Therefore, most changes occurred by deblurring
need to be appeared in the high-frequency region that can
be represented by the edges and their spread. However, if the
PSF is inaccurate, deblurring may change the low-frequency
regions that need to be preserved. Based on this assumption,
we define a binary edgewidth mask, Bgw, to quantify the
restoration artifacts:

1, if (x,y) € Eg,
Bew (%, y) = ‘| ! (6)

0, otherwise,
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where Eg, denotes the region of edges and their spread.
Specifically, if a pixel belongs to an edge or its distance
from the nearest edge pixel is less than the edgewidth of the
corresponding edge pixel, a pixel is included in E,p. Then, the
amount of change occurred outside of the edgewidth mask is
used for a measurement of restoration artifact as follows:

(7) - =( ;WZ- }Lgfw— Z D

where MA(]?) denotes the amount of the restoration artifacts
of the restored image, and (“) represents a bitwise comple-
ment operator.

Figures 4(e) and 4(f) exemplify the validity of the
measurement for restoration artifacts. As can be seen, the
change of the original image by blur largely appears in
the high-frequency region. Note that the change appeared
in Figure 4(e) can be covered by the edgewidth mask
shown in Figure 4(d). However, the change by deblur using
an inaccurate PSF cannot be covered by the edgewidth
mask. Figure 4(f) represents the difference image between
Figure 4(b) and the deblurred image obtained by using an
inaccurate parametric PSF estimated by [7]. Due to the
inaccuracy of the PSE, many changes occur outside of the
edgewidth mask. Therefore, the amount of these changes can
be used as the measurement of restoration artifacts.

The cost function, C(f), including the amount of both
blur and the artifacts is defined as

() = Mol ) 0 7). ®

where the coefficient A controls the weight on the restoration
artifacts. This A is dependent on the accuracy of the initial
PSF estimate. Obviously, an accurate PSF should reduce the
amount of blur as well as the restoration artifacts. Therefore,
the spread PSF is used for the next iteration only if it reduces
the cost function. The global minimum of the cost function
is not assured for an arbitrarily shaped PSF caused by an
irregular handshake of the camera. However, it is guaranteed
that the amount of blur and restoration artifacts is reduced.
Therefore, the proposed cost function can be used to increase
the accuracy of the PSF when the initial PSF is not accurate.

4. Overall PSF Estimation Algorithm for
the LSI Blur

In Sections 2 and 3, the directional spreading operator
and the accuracy measurement method of the PSF have
been presented. Now, the overall procedure of the proposed
PSF estimation method needs to be considered. Figure 6
illustrates the process of the proposed PSF estimation
method consisting of five steps: the initialization of the image
and the PSE image deconvolution with the previous PSE,

the modification of the PSF using a spreading operator,
image deconvolution with the updated PSE, and final image
deconvolution with the finally estimated PSE. For the initial-
ization of the PSF, we adopt the uniform motion blur model
[3]. Then, the directional spreading operators are used to
update the PSE. By comparing the two reconstructed images,
obtained by image deconvolution with different PSFs, we can
determine a more accurate PSF with consideration of the cost
function. Next, we present a detailed description of each step.

For the proposed PSF estimation algorithm, we assume
that the PSF satisfies the nonnegativity and the energy
conservation conditions defined as

h(x,y) =0, 9)
(x)}%:EShh(x’y) =1, (10)

where x and y are image coordinates, and S, denotes the
PSF support. The PSF support is the range that the effect of
blur remains, and its size is dependent on the strength of the
blur. Except for the above conditions, we do not make any
assumption on the PSF to deal with a general type of motion
blur.

In the initialization step of Figure 6, we assume that the
PSF of the observed image f; can be represented by the
uniform motion blur model [3] defined by

= tan 0,

1 . L
C 1f,lx2+y2s5,

0 otherwise

2=

ho(x, y;L,0) = (11)

where x and y are PSF coordinates, L represents the length
of the motion, and 6 denotes the angle between the motion
and the horizontal axis. The coefficient C is chosen in such
a way that the condition in (10) is satisfied. Note that only
two parameters, L and 6, are required to obtain the PSE
Therefore, the PSF estimation problem is reduced to the
parameter estimation problem. In [7], two parameters of
the uniform motion blur are estimated by using the image
statistics. The blur direction, 0, is firstly selected as the
direction with the minimal variation of derivatives. Then,
the histogram of the derivative image is exploited to estimate
L. This simple PSF estimation works only when the camera
or the object moves in a linear direction with a constant
speed. Therefore, we use the PSF obtained by [7] as an initial
estimate. Then, the initial PSF is updated to express a more
general blur of the image.

In Step 1 of Figure 6, we first perform image deconvolu-
tion to reconstruct the blurred image with the PSF which was
estimated in the previous stage. Among many image decon-
volution algorithms, the accelerated Richardson-Lucy (RL)
deconvolution is adopted because of its reliable performance
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FIGURE 6: Proposed iterative PSF estimation process.

[14]. In the RL algorithm, the image f° is obtained by the
following procedure:

(1) k=0.

_ Jo
(2) fk+1—fk(l’l*h®fk )
(3) If k reaches a predetermined iteration number,

f'= fe
Otherwise,

k=k+1, goto(2).

(12)

Then, the directional spreading operator is applied to update
the PSF in Step 2. In Step 3, the image f! is similarly
reconstructed using the RL deconvolution with the observed
image and the updated spread PSE. Then, the two obtained
images, f° and f', which are restored by the previously
determined PSF and the updated spread PSFE, are compared
by using the cost function to select a more accurate PSE

If the spread PSF h produces a smaller cost function value,
the spread PSF is used at the next iteration. Otherwise, the
spreading operator is changed to the other operator in the
set S. Since this directional spreading is adopted only if it
reduces the cost function, the order of the operators is not
important. Once all of the spreading operators are tested, it
is not necessary to repeat the overall steps. The final image
is reconstructed using the RL deconvolution with the finally
estimated PSF.

In addition, the spreading operator can be applied locally
for increasing the accuracy of the PSE In this case, the upper
and lower direction operators, sy and s;, are examined prior
to s, and s3. For each column of the PSF matrix, the spreading
is applied independently, and the spread PSF is adopted only
if the spreading reduces the cost function. The upward and
downward spreading is performed until the cost function
is not decreased. After finishing directional spreading on
columns, s, and s; are similarly applied to each row of the
PSF matrix. By applying this local spreading, we can estimate
a more general shape of the PSE In order to reduce the
computational overhead, the local spreading is applied based
on the previous spread direction. For instance, once sg is
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FIGURE 7: Pruning method for PSF support.

selected in a certain column, the spreading to the opposite
direction, s, is not performed. In other words, only one
directional spreading is applied to each column. Similarly,
each row is spread to the only one direction.

Also, the support of the PSF needs to be identified. A
large rectangular support is assumed at the first iteration
since the support of the PSF is not known in advance. Then,
to decrease the computational complexity, a prune method
is applied at each iteration for reducing PSF support [6].
We prune the PSF support while preserving the rectangular
shape of PSE. As shown in Figure 7, the coefficients of the PSF
which are located at the boundary of the rectangular support
are pruned if they satisfy

h(x,y) =T, (x,y) €3S, (13)
where T is a positive threshold and 9S, represents the
boundary region of the PSF support. Similar to [6], the
threshold T is defined as

T = min( 0.01), (14)

max(wy, hy)’
where wy, and hy, represent the width and height of the
PSF support, respectively. Since the prune method slightly

reduces the energy of the PSF, normalization is followed in
order to satisfy (10).

5. Generalization to Shift Variant
Blur Reduction

In the above sections, the LSI PSF estimation algorithm has
been proposed. However, when the scene has depth or the
relative motion is not parallel to the image plane, the LSI
model is not suitable for image blur. In order to generalize the
proposed algorithm, the LSV model needs to be considered.
Even though the LSV PSF is given, however, deconvolution is

not directly applicable for the LSV model. Image restoration
based on projection onto the convex sets (POCS) can be
regarded as an alternative solution [15]. However, the LSV
PSF estimation itself is indeed a difficult problem, and the
POCS-based restoration is computationally complex.

Recently, the piecewise shift invariant model has been
applied to the LSV image restoration [7]. The image is
firstly segmented into the blurred and unblurred regions,
and the RL algorithm is performed only to the blurred
region by using the estimated PSE. However, this technique
is applicable to the image of a single blurred object and
unblurred background. In order to apply the proposed LSI
deblurring technique to more general LSV image deblurring
problem, we develop a piecewise shift invariant deblurring
algorithm as shown in Figure 8. In our method, image
segmentation method is employed to divide the image into
different regions that can be considered as the LSI model. To
segment the image, the amount of blur is calculated by the
no-reference blur metric [12]. Since motion blur spreads the
edges of the image, the length of the spread edge is relatively
proportional to the amount of blur. After applying the edge
operator to the blurred image, the length of spread edge is
measured at every edge pixel. Pixels belonging to the edges
and their spread, that is, the edgewidth mask in Section 3, are
considered to be blurred pixels. Then, K-median clustering
[16] with the proposed distance metric is applied to divide
the blurred pixels into different regions. Within the blurred
pixels, three distances including the distance of blur amount
Dy, the distance of pixel value D,, and the distance of pixel
position Dy are defined to measure the similarity between
two pixels, x; and x;, as follows:

Dy(x1,%2) = [B(x1) — B(x2)],
Dy(x1,%2) = [I(x1) — I(x2)], (15)

Dy(x1,%2) = lIx1 — %21l2,

where B, I, and || - ||, represent the estimated blur amount,
the pixel value, and the L-2 norm, respectively. Note that the
blur amount of each pixel represents the edgewidth [12] as
explained in the Section 3.

A scaled distance, Dy(x;,X;), used for K-median cluster-
ing, is defined as a weighted sum of the three distances:

Dy(x1,%X3) = a1 Dy(X1,%X2) + 02D (X1, X2) + a3Dy(X1,%2).
(16)

After selecting the initial seeds from the blurred region, the
center of each segment is iteratively modified until the cluster
center is unchanged. Since D;s consists of the blur amount
and the piecewise smoothness of the segment, a continuous
segment with a similar blur amount can be obtained. Given
the segmentation results, each segment is restored by the
proposed PSF estimation method and the accelerated RL
algorithm. Finally, the restoration results of all segments are
merged to reconstruct the entire deblurred image.
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FiGure 8: Shift variant deblurring process.
6. Experimental Results the proposed algorithm can estimate the PSF with a high

6.1. LSI PSF Estimation Accuracy. In all of the experiments of
the proposed PSF estimation, we locally spread the PSF using
the four directional spreading operators defined in Section 2.
In order to evaluate the performance of the proposed LSI
PSF estimation, the test images, Lena, Airplane, Barbara, and
Peppers, were degraded by applying the sample PSFs shown
in Figure 9. Each sample PSE, h;, was obtained by combining
the uniform motion blur and the random blur as follows:

hs = hy * h;, (17)

where hy represents the uniform motion blur defined in
(11). In order to introduce a randomness of the PSE, the
random blur, A,, is combined to hg. Here, h, is in a form of
N X N matrix whose coefficients are randomly chosen within
a range of [0, 1) while satisfying (10).

Then, the degraded images are used as initial estimates of
iterative PSF estimation process. For the initialization of the
PSE, the length and the direction of the linear motion blur
are estimated from the blurred image [7]. Figure 10 shows
PSF estimation results on Airplane image blurred by the PSF
in Figure 9(a). As can be seen from Figures 10(b), 10(c),
and 10(d), the shape and the size of the PSF are efficiently
estimated.

To evaluate quantitatively the performance of the pro-
posed PSF estimation method, the quality of deblurred
images of the proposed method and the conventional
method is compared. Since we have original images, the
ISNR [11] can be used for the quantitative measurement of
the quality of the deblurred image which is defined as

Sepes; Lf(6p) = g
N 2
Z(x,y)eSf [f(xay) - f(x>}’)]

ISNR = 10log ,  (18)

where f, g, f, and Sy denote the original image, the
blurred image, the deblurred image, and the image support,
respectively. Since the ISNR increases as the quality improves,
the best deblurred image is the one that has the highest ISNR.

Table 1 shows the ISNR comparison results. All of the
deblurred results were obtained by 10 iterations of the
accelerated RL algorithm. Since the proposed algorithm
estimates the PSF from the image itself, the ISNR results
were dependent on the image features. However, the results
showed that the overall ISNRs of the proposed method
approached those of the ideal case where the original PSF
was used. From these ISNR results, we can conclude that

accuracy.

In Figure 11, the normalized cost function obtained by
using Figure 9(a) and Airplane image is illustrated, where
A is chosen as 0.5. As explained in Section 4, if a certain
directional spreading reduces the cost function, the test
of that direction is repeated. Otherwise, the remaining
directions are tested. The proposed algorithm terminates
when all the spreading operators are used. Here, the final
PSF shown in Figure 10(c) was achieved after 40 updates of
the PSE. Then, the accelerated RL deconvolution is applied
with the estimated PSE The original and its corresponding
blurred images are given in Figures 4(a) and 4(b), and
the restoration result in Figure 12 shows that the proposed
method effectively restores the image without excessive
restoration artifacts.

Next, we examined the performance of the proposed LSI
image restoration algorithm on a real-blurred image. The
test image shown in Figure 13(a) was taken with a high-
end DSLR with enough exposure time for capturing the
image without excessive noise. Since the image was captured
with the global horizontal motion of the camera, the blur
in Figure 13(a) was assumed shift invariant. The restoration
result shown in Figure 13(b) demonstrates that the proposed
algorithm is applicable to the real-blurred image when the
PSF can be considered as the LSI.

6.2. Shift Variant Blur Reduction. In order to apply the LSI
image restoration algorithm to the shift variant blur, we
first experimentally generated a blurred image by applying
the LSV PSE The original image shown in Figure 14(a)
contains two objects. Figure 14(b) shows a blurred image
whose objects were blurred by different PSFs. As can be
seen from the segmentation result in Figure 14(c), the two
objects were successfully divided. In this experiment, we
explicitly set the number of the segment, K, to 2. The
weighting coefficients of the K-median clustering need to be
carefully selected since a segmentation result is dependent on
these parameters. Since we intended to divide an image into
multiple regions with different blurs, we gave more weight
on «; which measures the amount of blur. Throughout the
experiment, we empirically chose a1, ay, and a3 as 3, 2, and
1, respectively. Morphological erosion and dilation operators
with a 3 by 3 rectangular structural element [17] are used
for the smooth segmentation as a postfiltering. In our
simulations, five iterations of dilation followed by erosion are
performed to connect segments. Since conventional piece-
wise LSI deblurring [7] only divides the image into blurred
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FIGURE 9: Four sample PSFs with the following parameters. (a) L = 9, 8 = 135°,and N = 3. (b) L = 11,0 = 30°,and N = 3. (¢) L = 7,

0=60°,and N =5.(d) L =13,0 =90°,and N = 5.

TaBLE 1: ISNR(dB) comparison of deblurred results.

PSF Image

Original Estimated Lena Airplane Barbara Peppers
by [7] 1.21 0.55 1.65 1.32
PSF in Figure 9(a) by the proposed method 3.19 2.16 2.72 3.11
PSF in Figure 9(a) 3.57 2.82 3.05 4.88
by [7] 1.89 2.93 3.27 3.18
PSF in Figure 9(b) by the proposed method 3.36 3.28 3.71 4.55
PSF in Figure 9(b) 4.19 3.62 4.12 5.02
by [7] 0.37 0.72 0.58 0.42
PSF in Figure 9(c) by the proposed method 2.45 3.00 2.83 2.94
PSF in Figure 9(c) 2.79 3.29 3.01 4.12
by [7] 0.27 0.61 0.83 1.35
PSF in Figure 9(d) by the proposed method 1.89 2.52 1.40 2.79
PSF in Figure 9(d) 2.35 2.69 2.14 3.36

and nonblurred regions, the quality of the deblurred image
shown in Figure 14(e) is not satisfactory. The proposed
segmentation-based piecewise invariant approach visually
produces a better result as shown in Figure 14(f). Since the
original image is given in this simulation, the ISNR can

be used to measure the quantitative performance of the
results. By the comparison of ISNRs from the conventional
method and the proposed method which are —1.14 and
2.03, respectively, we see that the proposed method performs
better than the conventional method.
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FIGURE 10: PSF estimation results using Airplane image and the sample PSF in Figure 9(a). (a) Initial PSF estimated by [7]. (b) Estimated
PSF after 20 updates. (c) Estimated PSF after 40 updates. (d) Estimation error between Figures 9(a) and 10(c).

TasBLE 2: Quantitative evaluation of deblurred results in real blurred images.

Image Algorithm PMOS
[7]'s 77.01

Proposed K=5 78.37

Miniature K=10 78.31
K =20 82.10

K =30 82.22

[7]’s 76.34

Proposed K=5 78.42

Doll K=10 78.88
K =20 79.87

K =30 80.59

For the sake of implementation on image deconvolution,
a rectangular segment is preferred instead of an arbitrary
shaped segment. Therefore, we construct a rectangular block
of minimum size for each segment. For each pixel of the
segment, the minimum and the maximum pixel coordinates
of the horizontal axis and the vertical axis are used to obtain
the rectangular block as shown in Figure 14(d). Then, the

proposed LSI restoration is applied to each block. After LSI
restoration, the actual segment region inside the block is
replaced by the region of the deblurred block. Since the
segment region covers most of the rectangular block, the per-
formance is not severely compromised by introducing this
simplified implementation. Finally, we obtain the restored
image by merging the results of all segments. By comparing
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Figure 11: Cost function result on Airplane image blurred by the
PSF in Figure 10(a).

FIGURE 12: Restoration results of numerically blurred image where
the PSF is estimated after 40 updates. (a) Restored image by using
the conventional algorithm [7]. (b) Restored image by using the
proposed.

the magnified regions of restoration results in Figures 14(g)—
14(1), we can see that the proposed method outperforms the
conventional method.

Next, we applied the proposed algorithm to the real
blurred images also captured with a high-end DSLR. The
Miniature image shown in Figure 15(a) was taken under 150
lux with shutter speed of 1/20 (sec) and blurred by a camera
shake during the exposure time. In this high-resolution
image whose spatial resolution is 1280 by 1024, the PSF of
the whole image cannot be assumed to be shift invariant.
Since the number of segments is not known in advance, a
relatively large number should be used. We set K as 20 in
this experiment. Other experimental parameters ay, ay, and
a3 are set as 3, 2, and 1, respectively. Figure 15(b) shows the
segmentation result of the proposed method. In this figure,
different luminance indicates a different segment. Since
smooth regions are not affected by blur, those regions whose
luminance is zero are not included in the segmentation. Each
segment is deblurred by the aforementioned technique, and
final result is compared with the result of the conventional
piecewise shift-invariant approach [7]. From the magnified

11

(a) (b)

FIGURE 13: Restoration results of real-blurred image. (a) Test image.
(b) Restoration result of the proposed method, where the final PSF
is achieved after 27 updates.

region of each result shown in Figures 15(c)-15(f), we can
subjectively compare the performances of the results.

Figure 16 shows another experimental result with a
different experimental condition. The Doll image shown in
Figure 16(a) was taken under 180 lux with shutter speed of
1/20 (sec) and blurred by a horizontal motion of camera
during the exposure time. In the experiment, the same
experimental parameters used in Figure 15 were maintained.
As can be seen in Figure 16(b), blurred regions are separated,
so each segment can be deblurred by its own estimated PSF.
From the magnified region of each result shown in Figures
16(c)-16(f), we can also subjectively see the superiority of
the proposed method. Note that even though the image is
simply blurred by a global horizontal motion of the camera,
more improved quality can be achieved by the proposed PSF
estimation and piecewise LSI restoration.

We also quantitatively measured the performance of the
proposed algorithm for the real blurred images. Since the
original image is not given in this general restoration prob-
lem, we examined a no-reference (NR) quality assessment
(QA) [18] to compare the performances of the proposed
and conventional algorithms. In [18], natural scene statistics
are blindly measured and the quality is expressed by the
predicted mean opinion scores (PMOSs), where the higher
PMOS represents the better quality. The PMOS results in
Table 2 demonstrate that the proposed algorithm quantita-
tively performs better than the conventional algorithm.

To examine the effect of the number of segment, the
results with various K are also given in Table 2. As can be
seen, the performance is gradually improved as K increases
until K reaches a sufficient number, which is 20. Note that
K is dependent on the type of image blur. For Figure 16(a),
which is blurred by a horizontal camera motion, a relatively
low K provides comparable result with the results with high
K. However, for an image blurred by a camera shake such
as Figure 15(a), a high K is preferred to provide a sufficient
quality of the resultant image.

7. Conclusion

In this paper, we presented an iterative PSF estimation
method and its application to LSV image restoration. The
PSF is modified by using a cost function which considers
the blur strength and the restoration artifacts. Since the
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(c) (d)

FIGURE 14: Restoration results on simulated shift variant blur images [7]. (a) Original image. (b) Blurred image. (c) Segmentation result. (d)
Segmentation result with rectangular block. (e) Restoration result of [6]. (f) Restoration results of the proposed method. (g)—(i) Magnified
region of Figure 14(e). (j)—(1) Magnified region of Figure 14(f).
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FiGure 15: Comparison of restoration results on Miniature image. (a) Blurred image. (b) Segmentation result. (c)-(d) Magnified region of
the deblurred image obtained by [7]. (e)-(f) Magnified region of the deblurred image obtained by the proposed algorithm.

(d)

FIGUreg 16: Comparison of restoration results on Doll image. (a) Blurred image. (b) Segmentation result. (c)-(d) Magnified region of the
deblurred image obtained by [7]. (e)-(f) Magnified region of the deblurred image obtained by the proposed algorithm.

directional spreading operator is applied only when the
update of the PSF reduces the cost function, the amount of
blur can be decreased without excessive restoration artifacts
in the restored image. Piecewise shift invariant approach
with the proposed image segmentation method is applied
to deal with the LSV PSE Throughout the experiments, the
proposed PSF estimation algorithm can efficiently estimate
the PSF when the parametric model of the PSF is inaccurate.

The generalization of the LSI algorithm to the LSV shows
relatively better performance in comparison with the con-
ventional algorithm.

However, since the PSF update method starts from an
initial estimate of the PSF, its performance tends to be
affected by the accuracy of the initial guess of the PSE. To
deal with the complicated PSE, which is caused by a severe
handshake of the camera, more precise initial PSF estimation
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methods need to be considered. In the future, we plan to
extend our approach to remove motion blur of fast moving
objects using video sequences.
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