Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 917354, 22 pages
doi:10.1155/2009/917354

Research Article

A Reconfigurable Architecture for Rotation Invariant Multi-View

Face Detection Based on a Novel Two-Stage Boosting Method

Jinbo Xu,! Yong Dou,! and Zhengbin Pang?

I National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha 410073, China
2 Institute of Computer, School of Computer, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Jinbo Xu, xjb.nudt@gmail.com
Received 30 December 2008; Revised 9 May 2009; Accepted 19 August 2009
Recommended by Liang-Gee Chen

We present a reconfigurable architecture model for rotation invariant multi-view face detection based on a novel two-stage
boosting method. A tree-structured detector hierarchy is designed to organize multiple detector nodes identifying pose ranges
of faces. We propose a boosting algorithm for training the detector nodes. The strong classifier in each detector node is composed
of multiple novelly designed two-stage weak classifiers. With a shared output space of multicomponents vector, each detector
node deals with the multidimensional binary classification problems. The design of the hardware architecture which fully exploits
the spatial and temporal parallelism is introduced in detail. We also study the reconfiguration of the architecture for finding an
appropriate tradeoff among the hardware implementation cost, the detection accuracy, and speed. Experiments on FPGA show
that high accuracy and marvelous speed are achieved compared with previous related works. The execution time speedups range
from 14.68 to 20.86 for images with size of 160 X 120 up to 800 x 600 when our FPGA design (98 MHz) is compared with software
solution on PC (Pentium 4 2.8 GHz).

Copyright © 2009 Jinbo Xu et al. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Over the years, great advances have been achieved on face
detection research [1], which has already been widely applied
in many real-world applications, such as biometrics, visual
surveillance, human-computer interaction, to name a few.
Some early works on face detection, for instance, Rowley’s
ANN method [2] and Schneiderman’s method based on
Bayesian decision rule [3], have achieved high accuracy, but
their applications are very limited due to the tremendous
computational load. The break through happened in 2001
when Viola and Jones [4] developed their Boosted Cascade
Framework whose remarkable performance owes to the fast
speed of Haar-like feature calculation based on the integral
image, the high accuracy of boosted strong classifiers, and
the asymmetric decision making of the cascade structure.
Frontal face images at 384 x 288 resolutions were reported
to be fairly reliably detected at 15 frames per second by using
PC with PIII 700 MHz CPU.

Although many early researches have good performance
in detection of frontal faces, multiv-iew face detection
(MVED) remains a challenging problem that needs more

attention due to the much more complicated variation
within the multi-view face class. MVFD is used to detect
upright faces in images that with + 90° rotation-out-of-plane
(ROP) pose changes. Rotation Invariant MVFD (RIMVED)
means to detect faces with both +90° ROP and 360°
rotation-in-plane (RIP) pose changes. Statistics show that
most of the faces in images and videos of real world are
nonfrontal [5], and therefore, the ability to deal with multi-
view faces is important for many face-related applications.
In the past few years, many derivatives of Viola’s work
have been proposed for rotation invariant frontal face
detection and MVED. These derivatives can be categorized
into four aspects: the detector structure, designing of strong
classifiers, training of weak classifiers, and selecting of
features. For the detector structure, Viola’s cascade detector
structure is extended by Wu’s parallel cascades structure [6],
Li’s pyramid structure [7], Jones’s decision tree [8], and
Huang’s WES (width-first-search) tree in [9]. For designing
strong classifiers, the discrete AdaBoost was replaced by real
AdaBoost [10], Gentle Boost [11], boosting chain learning
[12], FloatBoost [13], and Vector Boosting [9]. On the level
of weak classifiers, the simple threshold-type function is

replaced by finer partition of the feature space such as piece-
wise functions [6] or joint binarizations of Haar-like features
[14]. As for the feature level in particular, there are works of
Lienhart’s extended Haar-like feature set [15], Liu’s Kullback-
Leibler Boosting [16], Baluja’s pair-wise points [17], Wang’s
RNDA algorithm [18], and Abramson’s control point [19].
Most of these works focus on increasing the detection
accuracy. However, these methods are only evaluated by
using software solution, which can hardly achieve real-time
MVED for some time-constraint applications. There is still
much work to do from the algorithm design to the ultimate
practical systems.

In order to meet the needs of various applications, using
dedicated hardware to accelerate RIMVED is an effective
solution. Without losing detection accuracy, there are several
valuable advantages with dedicated hardware solution: (1)
compared with the software solution, significant speedups of
execution time could be achieved by fully exploiting tempo-
ral and spatial parallelism; (2) the system can be dynamically
reconfigured to meet different requirements on accuracy,
speed, and resources for various applications; (3) low power
consumption and high mobility can be achieved, which is
very useful for small battery driven devices and handheld
devices; (4) the cost could be low for commercial perspective.
In literature, there are hardware implementations of frontal
face detection based on tone color detection [20, 21],
Neural Networks [22], and AdaBoost [23]. However, few
researches focus on hardware implementation of RIMVED.
Since different applications have different demands on the
accuracy, speed, and resources cost, it is necessary to research
on the reconfigurable hardware architecture for RIMVED.

In this paper, a fine-classified method and an FPGA-
based reconfigurable architecture for RIMVFED are presented.
Firstly, a tree-structured detector hierarchy for RIMVEFED is
designed to organize detector nodes for both RIP and ROP
pose changes. To train branching nodes of the detector tree,
a fine-classified boosting algorithm with a novel two-stage
weak classifier design is proposed. Then, the temporal and
spatial parallelism of the proposed RIMVFD method is fully
exploited. Next, the reconfigurable architecture for RIMVFD
is designed and implemented on FPGA. The correlation
among the hardware implementation cost, the detection
accuracy and speed is evaluated, so that the system can
be correctly reconfigured for different applications with
different requirements. The main contributions of this paper
are

(i) RIMVFD with all +90° ROP and 360° RIP pose
changes is achieved by using tree-structured detector
hierarchy and fine-classified boosting method;

(ii) the execution time of the classification procedure is
significantly reduced by fully exploiting the paral-
lelism;

(iii) by dynamically reconfiguring the hardware architec-
ture, the tradeoff among the hardware implementa-
tion cost, the detection accuracy, and speed is well
tuned, so that the proposed design can easily meet
the demands of different applications.

EURASIP Journal on Advances in Signal Processing

The remainder of this paper is organized as follows.
In Section 2, the proposed RIMVFD method is described.
Section 3 presents the hardware architecture model for the
proposed RIMVED on FPGA. The reconfigurable character-
istics of architecture are analyzed in Section 4. Section 5 gives
the experimental results. Concluding remarks are presented
in Section 6.

2. Proposed RIMVFD Method

2.1. Review of AdaBoost. The basic idea introduced by
Schapire and Freund [24-26] is that a combination of
single rules or “weak classifiers” gives a “strong classifier.”
A training procedure uses a training sample set to obtain
multiple weak classifiers iteratively.

We define the weighted learning set S of p samples as

S= {(le)’bwl)a (X2, Y2, W2)5 .0 (xp,yp,wp)}. (1)

The ith sample is defined by a feature vector x; =
(c15C25e .y CD)T in a D-dimensional space, its corresponding
class C(x;) = y; € {—1,+1} in the binary case, and the
weight of the sample w;, where ¢; inx;, i = 1,2,..., p, and
j = 1,2,...,D, represents the ith sample’s feature value at
the jth dimension.

A weak classifier h; obtains a hypothesis whether a sample
belongs to a class, h¢(x), according to the feature values in
the D-dimensional space. For example, whether a sample
belongs to a subwindow in an image can be hypothesized
by using the horizontal and vertical coordinates (¢, o))" as
feature values in a 2-dimensional space. If y; # h(x;), the
weak classifier h; makes a wrong decision on the ith sample;
otherwise, the decision is right.

Each iteration of the process consists in finding the best
possible weak classifier, that is, the classifier for which the
error is minimum. After each iteration, the weights of the
misclassified samples are increased, and the weights of the
well-classified sample are decreased. The iterative procedure
stops if & = 0 or & > 1/2. The reason is in [25]: in the case of
binary classification (k = 2), a weak hypothesis /; with error
significantly larger than 1/2 is of equal value to one with error
significantly less than 1/2 since h; can be replaced by 1-hy;
and for k > 2, a hypothesis h; with error & > 1/2 is useless to
the boosting algorithm. If such a weak hypothesis is returned
by the weak learner, the algorithm simply halts, using only
the weak hypotheses that were already computed (i.e., set the
number of weak classifiers in the strong classifier T' = t—1).

The final strong classifier f is given by

t=1

T
J(x) = sgn (Zatht(x))) (2)

where both a; and h; are to be learned by the boosting
procedure presented in Algorithm 1.

2.2. AdaBoost-Based Face Detection Framework. Accepted by
the computer vision community as the state of the art
in terms of speed and accuracy, face detection based on

EURASIP Journal on Advances in Signal Processing 3
(1) InputS = {(x1, y1, 1), (X2, ¥2, W2)s...» (Xp, ¥p> W)}, number of iterations T.
(2) Initialize w,@ =1/pforalli=1,...,p.
(3) Dofort=1,...,T
(3.1) Train classifier with respect to the weighted samples set and obtain hypothesis
ht : S — {—1,+1}
(3.2) Calculate the weighted error & of h;:
& 2?:1 Wgt)I(Yi # Hy(x;)).
(3.3) Compute the coefficient a;:
1 (1-¢))
- Ly (7 .
a = 5 log .
(3.4) Update the weights
(t)
Wi
Y = 2 exp{—ayih(x)},
t
where z; is a normalization constant:
Zy = 2\Je(1 — &)
(4) Stopife;=0o0re >1/2.SetT =t — 1.
(5) Output: f(x) = sgn(ZtT:1 a;H;(x)).
AvrgoriTHM 1: The basic AdaBoost procedure.
Classifier
Source Feature | Feat
image pool cature Pass Pass Pass| purther
T VZi{lselslé(—)r —>| Stage 1 Stage 2 Stage N processing
II_ltegral Image | | o iows
image rescaler
Fail Fail Fail

FiGure 1: Framework of AdaBoost-based face detection.

AdaBoost algorithm presents two significant advantages; it
has the ability to quickly eliminate nonface regions, and the
classification process itself is extremely fast.

While Haar wavelets were used in [27] for representing
faces and pedestrians, Viola and Jones proposed the use of
Haar-like features which can be computed efficiently with
integral image [28]. Each feature consists of a set of black
and white rectangles. The result of a feature is the sum of the
pixels under the white rectangle minus the sum of the pixels
under the black rectangle. In Viola’s cascade framework, a
group of features composes a classification stage based on
AdaBoost. The outcome of a stage determines whether the
region of the image examined contains a face or not. The size
of the feature determines the size of the image region being
searched. When the base size is processed for all regions,
the features are then enlarged in subsequent scales, and
evaluated for each scale to be able to detect faces of larger
sizes. Additional algorithm details can be found in [28]. The
algorithm outline is shown in Figure 1.

The difference between our RIMVFD method and the
framework in Figure 1 is mainly reflected in the classifier
part. The integral image computation and image rescaler are
the same, which are widely used in face detection domain
currently. In this paper, we will focus on the classifying
strategy of RIMVEFD.

2.3. Tree-Structured Detector Hierarchy for RIMVFD. For
RIMVED, new detector hierarchy different from the cascaded
structure for frontal face detection has to be designed,

since pose changes should be identified in addition to the
face/nonface classification. Huang et al. [9] reviewed some
traditional structures for organizing detector nodes, such
as parallel cascades structure [6], pyramid structure [7],
and decision tree method [8]. After having analyzed the
weaknesses of these structures, Huang proposed a WFS-
tree structure, who claimed that the structure can balance
the face/nonface distinguishing and pose identification tasks,
so as to enhance the detector in both accuracy and speed.
Because of limited parallel processing ability in general-
purpose processor, Huang’s tree structure only divides all
faces into 5 categories according to ROP to control the
computational cost, which is not so fine-grained.

In this paper, we extend Huang’s tree structure so
as to achieve more accuracy and speed with the aid of
reconfigurable hardware acceleration. The extended tree
structure covers all +90° ROP and 360° RIP pose changes.
The coarse-to-fine strategy is adopted to divide the entire
face space into smaller and smaller subspaces as shown in
Figure 2.

Whether a face sample belongs to a pose range or not is
determined by the output of a detector node corresponding
to the current pose range. The output of the detector node
is a Boolean value g(x). In Figure 2, all detector nodes which
have the same parent node are trained with the same training
sample set belonging to the parent pose range. The outputs
of these detector nodes form a determinative vector G(x) =
(@1(x),...,gk(x)), where k is the number of the detector
nodes with the same parent node. When the sample reaches

EURASIP Journal on Advances in Signal Processing

360° RIP, [-90°, 90°]

ROP face classifier
[
N2 N2 N2 N
[—45°,45°] [45°,135°] [135°, —135°] [—135°, —45°]
RIP classifier RIP classifier RIP classifier RIP classifier
I
N N2 N2
[=90°, —30°] [—30°, 30°] [30°,90°]
ROP classifier ROP classifier ROP classifier
I
N N2 N
[=90°, —70°] [-70°, —50°] [-50°, —30°]
ROP classifier ROP classifier ROP classifier
I
N N2 N
[—45°, —15°] [-15°,15°] [15°, 45°]
RIP classifier RIP classifier RIP classifier

F1GuUre 2: Illustration of the proposed fine-grained tree structure.

the leaf nodes, the RIP and ROP ranges that the sample lies
in are determined, from which the pose of the sample is
classified.

The main extensions of the tree structure different from
the one in [9] are that the ROP and RIP granularity are
refined for more accuracy. And the number of detector nodes
as shown in Figure 2 can be reduced about 75% (i.e., from
161 to 41 for this contribution) by using the reconfigurable
computing techniques, which will be further described in
Section 3.1. With the aid of hardware acceleration, the
detection speed is guaranteed.

2.4. Fine-Classified Boosting Method for RIMVFD. After
designing the detector hierarchy, we need to research on the
classification method for each detector node. Intrinsically,
the determination of vector G(x) is the key problem. Take
the (—45°,45°), RIP detector node in Figure 2 as an example.
A sample which passes through this node will be sent into
(=90°,-30°), ROP, (-30°,30°), ROP and (30°,90°), ROP
detector nodes in the subsequent level. At this moment, G(x)
is a 3-dimensional vector. For example, G(x) = (1,0,1)
means that the sample may lie in either (—=90°,—-30°), ROP
or (30°,90°), ROP pose range. This section proposes a fine-
classified boosting method to get G(x) fast and accurately.
The designing and training of the proposed method are
detailed in this section.

Many derivations from the basic AdaBoost method
have been proposed to be used for MVFD. Schapire and
Singer presented a multiclass multilabel (MCML) version
of the Real AdaBoost [10], which assigns a set of labels for
each sample and decomposes the original problem into k
orthogonal binary ones. Huang et al. proposed the Vector
Boosting [9] in which both its weak learner and its final
output are vectors rather than scalars. In Huang’s method,
Vector Boosting will deal with the decomposed binary
classification problems in a unified framework by means
of a shared output space of multicomponents vector. Each
binary problem has its own “interested” direction in this
output space that is denoted as its projection vector. For each

binary problem, a confidence value is calculated by using an
extended version of the Real AdaBoost. Then the confidence
vector composed of these confidence values is compared with
a threshold vector B to obtain a Boolean output vector, where
each vector element indicates whether a sample belongs to
the corresponding class. This kind of method only considers
the confidence value for the current class while determining
whether a sample belongs to this class, and does not consider
confidence values for the other classes. The disadvantage is
that the number of the candidate classes that a sample may
belong is poorly constrained into an ideal extent, since a
sample may be classified into one class by using the threshold
in this dimension, and then classified into another class
by using the threshold in that dimension. Actually, a face
sample should only belong to a single pose class for face
detection applications. Take the previous example in the first
paragraph, for a sample which lies in (—90°, —30°) ROP pose
range, G(x) is expected to be (1, 0, 0). However, it may be
wrongly calculated as (1, 0, 1), which decreases the detection
efficiency obviously.

The fine-classified boosting method proposed in this
paper has the advantage of decreasing misclassified cases. For
example, G(x) = (1,0,1) mentioned before may be refined
to be (1, 0, 0) by using the proposed method. The novelty
of the method is that each weak classifier in the detector
tree is trained by using a two-stage boosting mechanism.
The training of all k detector nodes with the same parent
node uses the same training sample set. We use hy = {hy(;) |
i =1,...,k} to denote the vector composed of the tth weak
classifiers in all these k detector nodes. The first stage of
hi(x) : h; : x — RFis based on piece-wise decision
function, where x belongs to a sample space y, and RK
is k-dimensional real-value confidence space. The decision
function in this stage is used to obtain a k-dimensional
real-value confidence vector {¢; | i = 1,...,k} for each
sample according to its Haar-like feature. Each confidence
value indicates the probability that the sample belongs to
the corresponding pose class (e.g., the first, second, and
third confidence value can be used to correspond to the left,

EURASIP Journal on Advances in Signal Processing

100

50

CB

=50

—100

|

|

|

|

|

|

:

|
—150 1 1 ! 1
—150 —100 =50 0 50 100

CA

FIGURE 3: Distribution of the samples in the 2D output space.

frontal and right face class). One Haar-like feature is used
for all k detector nodes with the same parent during each
iteration of training procedure. The k-dimensional real-value
confidence vector {¢; | i = 1,...,k} is then used as the input
feature vector for the second stage of h;(x). The second stage
h’t’ Ry — {—1] +1}k is based on hyper-rectangle decision
function. It is trained to more precisely discriminate different
dimensions by using the real confidence values generated in
the first stage. The output is a k-dimensional Boolean vector,
where the ith element gives the determination whether a
sample belongs to the ith pose class. In this stage, each
output in the k-dimensional Boolean vector depends on all k
elements in the real-value confidence vector. In other words,
while deciding whether a sample belongs to the ith face
class, not only the probability that the sample belongs to the
ith face class but also the probability that the sample does
not belong to the other face classes should be considered.
Since the full-mesh mapping strategy between the two stages
considers the correlation of different confidence values in
different dimensions, the pose class where a sample lies can
be classified more precisely. However, h; : y — RF and

ViR — {-1] +1}* are combined to form the final weak
classifier hy(x) : y — {-1] +1}k in the current iteration,
which estimates whether a sample belongs to the ith class or
not, wherei = 1,...,k.

Take a 2-dimensional classification problem as an exam-
ple. The samples in the training set either belong to face
class A or face class B or nonface. Then each sample will be
assigned a 2D confidence vector (ca4, cg), where c4 indicates
the probability that the sample belongs to face class A,
and cp is similar. The distribution of the samples can be
illustrated as shown in Figure 3, where (ca, cp) is treated
as the 2D coordination of each sample. The blue dots are
samples in face class A, and the green ones are samples in
face class B, and the red ones are nonfaces. The vertical and
horizontal dashed lines in Figure 3 illustrate the classification
criterion based on single threshold, while the two rectangles
illustrate the hyper-rectangle-based classification criterion.

Intuitively, the latter generates less misclassified samples than
the former. For example, for the green dots which lie in
the left rectangle and below the horizontal dashed line, they
are supposed to be classified as class B faces. However, they
are considered as nonfaces by the single-threshold classifiers,
which is misclassified. On the contrary, the hyper-rectangle-
based classifiers can give the right decisions.

The weak learner is called repeatedly under the updated
distribution to obtain multiple weak classifiers, which finally
form a highly accurate classifier. A k-dimensional shared out-
put space H(x) is the linear combination of all trained weak
classifiers. An n X k matrix A made up of n k-dimensional
projection vectors is used to transform the k-dimensional
output space into n-dimensional confidence space F(x). Each
dimension of the confidence space corresponds to a certain
pose class. Finally, the output of the strong classifier is the
sign of F(x).

Take the previous example in the first paragraph,
(=90°,-30°) ROP, (—30°,30°) ROP, and (30°,90° ROP
detector nodes use the same training sample set to get
the classifiers, where the dimension of the shared output
space, k, is 3. If we are dealing with the (—=90°, —30°) ROP
and (30°,90°) ROP classification problems, n is 2, and
n Xk = 2x 3 matrix A is ((1,0,0),(0,0,1)) consequently.
The projection vector (1,0,0) extracts 1st element from
H(x) for (—90°, —30°) ROP pose classification. Similarly, the
projection vector (0,0,1) extracts third element from H(x) for
(30°,90°) ROP pose classification.

Algorithm 2 gives the generalized description of the fine-
classified boosting method. We define the sequence of train-
ing set of m samples as S = {(x1, Y1, ¥1)5 -+ (Xm> Vin> V) }»
where x; belongs to a sample space y, ¥; belongs to a finite k-
dimensional projection vector set) which indicates a certain
pose class, and the label y; = =1 indicates whether the
sample belongs to the pose class or not. For each sample,
the margin of a sample x; with its label y; and projection
vector ¥; is defined as y; - (%; - hy(x;)). For example, y; = 1
means that sample x; belongs to (—90°, —30°) ROP pose class
which is defined by v; = (1,0,0), while the classifier h;(x;)
gives an opposite result: —1, which means that the classifier
does not consider the sample belongs to (—90°, —30°) ROP
pose class. Therefore, the classifier makes a wrong estimation.
At the moment, y; - (v; - hy(x;)) = —1. Otherwise, while
the classifier makes a right decision, y; - (v - hy(xi)) =
Ly; - (% - hy(x;)) is used to update the sample weights. With
the introduction of v;, the orthogonal component of a weak
classifier’s output makes no contribution to the updating of
the sample’s weight. Consequently, it increases the weights
of samples that have been wrongly classified according to the
projection vector (in its “interested” direction) and decreases
those with correct predictions.

Next, the training procedure of the two-stage weak
classifier is described in detail.

2.5. Training of Weak Classifiers. As mentioned before, for
each iteration of training weak classifiers, two stages are used.
We present the training of these two-stage weak classifiers in
this section.

EURASIP Journal on Advances in Signal Processing

For a classification problem that has 7 classes, given:
(1) Projection vector set Q = {w,...,w,}, w; € R¥

(I) Fort =1,...,T

iteration:

(v) Compute the coefficient a;:
o =

(vi) Update the sample distribution
Dy (i) =

(2) Sample set S = {(x1, %, ¥1)5--.» (Xp> V> Ym) }, Wherex € y, v € Q, y = +1
(I) Initialize the sample distribution D; (i) = 1/m foralli=1,...,m.

(i) Under current distribution, train the first stage of a weak classifier
h,:y — R
(ii) Under current distribution, train the second stage of a weak classifier
h :RF - {-1|+1}*
(iii) Combine h; and h;" with a full-mesh mapping strategy to form the weak classifier in the current

h(x):x - (~1]+1}*
(vi) Calculate the weighted error ¢ of h,(x)
& = >t Dy(i) - I(yi # 9 - he(x:))

1

b 252)

2

D, (i) - exp(—ay - yi - (% - he(x7)))

(II) Stop ife; = 0 or g > 1/2,Set T = t-1.
(IV) The final output space is

where Z, the normalization factor so as to keep D;;; as a probability distribution.

H(x) = 3. ahi(x).
(V) The confidence space is F(x) = AH(x), where the transformation matrix A = {w;, ..., T
(VI) The final strong classifier is G(x) = sgn(F(x)).

Z

ArGoriTHM 2: A Generalized description of the fine-classified boosting method.

2.5.1. The First Stage of Weak Classifier. The first stage of
weak classifier is used to get different real confidence values
for k dimensions based on the sample’s Haar-like feature. For
the ith dimension, if a sample’s Haar-like feature is in a range
R;, the sample is considered belonging to this class and a
higher confidence value is assigned to the sample; otherwise,
if a sample’s feature is in another range R;, the sample is
considered not belonging to this class and a lower confidence
value is assigned. In this way, each sample is assigned a
confidence vector{c; | i = 1,...,k}.

The classifier is based on piece-wise function, which
is more efficient than threshold-type function and can be
efficiently implemented with lookup table (LUT) [9]. It
divides the feature space into many bins with equal width
and outputs a constant real value for each bin.

The objective of weak learner is to minimize the
normalization factor of current round if adopting greedy
strategy. Following Viola’s exhaustive search method in [4],
we enumerate a finite redundant Haar-like feature set P =
{fe(x;0)}, 1 < k < n, and optimize a piece-wise function
for each feature so as to obtain the most discriminating
one. Finally, for all detector nodes in the detector tree, 3820
Haar-like features are selected from about 48700 features
through the training procedure as shown in Algorithm 3. The
problem is how to get the optimal piece-wise function y. A
piece-wise function is configured by two parts: one is the
division of feature space, the other is the constant for each
division (i.e., bin). For simplification, the first one is fixed for
each feature empirically, and the output constant for each bin
can be optimized as in Algorithm 3.

When a sample passes through the first stage h; : y —
R¥, a confidence vector is obtained. Each real-value element
in the vector indicates the probability whether the sample
belongs to the corresponding class. Then these confidence
vectors for all training samples are sent into the second stage
of weak classifier to finely discriminate different classes.

2.5.2. The Second Stage of Weak Classifier. The second stage
hy : RF — {-1]+ 1} is used to further determine whether
a sample belongs to the ith class based on the real-value
confidence vector indicating the probability that the sample
belongs to each class. For a sample x, if its confidence
vector is {¢; | i = 1,...,k}, it means that the probability
that the sample belongs to the ith class is ¢;. Some related
works consider the sample belonging to any class where
the confidence value is above a single threshold. Usually,
this causes the sample being classified into multiple classes,
which will obviously decrease the accuracy and increase the
computational cost. To narrow the candidate classes, our
second stage of weak classifier will learn the distribution
of these confidence vectors for all samples, and generate a
precise criterion to discriminate different classes. The clear
boundary among different classes can filter out most classes
that the sample does not belong actually.

In this paper, the second stage is based on hyper-
rectangles. It has been proved in the literature that decision
trees based on hyper-rectangles (or union of boxes) instead
of a single threshold give better results [29]. The decision
function associated with a hyper-rectangle can be easily

EURASIP Journal on Advances in Signal Processing

distribution D, (i).
(I) for k = 1,....n (each feature)
(i) Group all samples into different bins

(ii) For j = 1,..., p (each bin)

. 1 uée[((j-1)/p,j/
whererp(u)=<: wE I =V/p i)

and use equation

(IT) Return the optimal weak classifier

Given: Sample set S = {(x1, Vi, ¥1)5- > (Xm> V> ¥m) }» finite feature set P = { fi(x;6k)}, 1 < k < n, and the current

S; = {(x, %, yi) | x; € bin;},bin; = [(j — 1)/p, j/pl, 1 <j<p

Using Newton-step method to compute
¢t = arg min(3,, Dy(i) exp(~y(¥ - ¢;)))
5

(iii) Create weak classifier h(x; 6,) based on {c]" } ,
h(x; 06, i) = 35, ¢ Bp(6k),
. . J
0 ué[((j—1)/p,j/p)

Zi =2 Zsj D+t (i) exp(=y(¥; - ¢;))
to calculate its corresponding normalization factor Z,.

h;(x) = arg min(Z;)
hy(x)

L...,p.

ArcoriTHM 3: Training of the first stage of weak classifier with piece-wise function.

implemented in parallel. Each sample has a confidence vector
{fc; | i = 1,...,k} in a k-dimensional space, and the
goal is to output a Boolean-value for each dimension to
determine whether the sample belongs to the corresponding
class. We define the generalized hyper-rectangle as a set H of
2k thresholds and a class yg, with yg € {—1,+1}:

H = {611; i‘,eéaega'--’ell{)eil)yH}) (3)

where 6! and 6% are the lower and upper limits of a given
interval in the ith dimension. The decision function is

hy(x) = yy < ﬁ((ci > 9,1) and (¢; < 9}‘)), "
i=1 4

hy(x) = — yu, otherwise.

The core of the training of the second stage is the hyper-
rectangle set Sy determination from a set of samples S. We
use the method proposed in [30] to train the weak classifier.
The basic idea is to build around each sample {x;, yi} €
S a box or hyper-rectangle H(x;) containing no sample of
opposite classes, where x; is the confidence vectors of all
samples in this paper and y; = +1. Additional details of the
training procedure can be found in [30].

3. Design of the Hardware Architecture Model

After having designed the detector hierarchy for RIMVFED,
the strong classifier for each detector node and the weak
classifier in each strong classifier, we will present the
hardware architecture model for RIMVFD. The temporal
and spatial parallelism of the proposed RIMVFD method
is fully exploited on different design levels from the global
structure to the weak classifiers.

3.1. Design of the Global Structure. As illustrated in Figure 1,
the key parts of a face detection system based on Haar-
like feature and AdaBoost are the classifier, the integral
image computation and image rescaler. Although the work
in[28] suggested that rescaling a frame is more expensive
than rescaling the features, this is not always so. For an
embedded system without a large cache, the loss of data
locality incurred by the larger rescaled features is worse than
the cost of including a small rescaling block, because loss of
locality implies the main memory will be accessed for each
use of integral image data, which is beyond the bandwidth
affordable in a low-cost device. We compare the bandwidth
requirements for main memory between the two rescaling
methods here. For the method of re-scaling images, the
sizes of feature subwindows for different rescaling levels are
the same. While linearly transferring image data from main
memory to onchip memory for caching, the cached data can
be reused for adjacent subwindows if the subwindow is small
enough. In this way, each pixel in the integral images in all
rescaled levels is transferred only once, and the bandwidth
requirement for processing a frame is proportional to the
sum of size of integral images in all rescaled levels. Assuming
that the scaling factor is r, the data size of the original
integral image is C, and the number of re-scaled levels is I,
the bandwidth requirements can be denoted as BWimage =
C(L+ (/) + (r2)* + - -+ + (1//)"). For the method
of rescaling features, while the size of features is re-scaled
large enough to a certain extent, the onchip memory may
not simultaneously hold the data required for processing a
single feature subwindow. Therefore, the system will have to
access the main memory one more time before processing
the next subwindow to transfer the uncached part of the
current subwindow into the onchip memory. Consequently,
the cached data in the onchip memory for processing the
current subwindow cannot be reused for processing the
next subwindow, which means that a lot of pixels in the

EURASIP Journal on Advances in Signal Processing

Phase 2 | Computing integral image |
N2
Level 1, class 1 Level 1, class 2 Level 1, class n;
classification classification classification
Level 2, class 1 Level 2, class 2 Level 2, class n;
Rescaling classification classification classification
Phase 3 . . = - _. e i
image

Level N, class 1
classification

Level N, class 2
classification

Level N, class ny
classification

Classification procedure

FIGURE 4: Skeleton of the system pipeline structure.

integral image will have to be transferred more than once
from main memory to onchip memory. In this situation,
the bandwidth requirements can be denoted as BW geayre =
Clay +ay + -+ + a), where aq; > 1,i = 1,2,...,],
and a; means that some pixels in the integral image are
transferred more than once. Obviously, BW feature > BWimage>
which means that for a system without large caches, the
bandwidth requirements while rescaling features are larger
than the bandwidth requirements while rescaling images.
Therefore, in our work, we rescale the image instead of the
features, which means that each iteration of rescaling has a
corresponding rescaled integral image.

We consider the parallelism first. The phase of acquiring
frames (Phase 1), computing integral frames (Phase 2), and
detecting faces within frames (Phase 3) can form a pipeline,
which works in a data-driven mechanism. A processing
module starts operation once the needed data is available.
The results will wake up the modules that are waiting for
them. As shown in Figure 4, while Phase 3 is processing
the ith frame, Phase 2 can start processing the (i + 1)th
frame, and Phase 1 can operate on the (i + 2)th frame
simultaneously. At Phase 3, for a new frame, the input
data for image rescaler and classification procedure are both
generated from Phase 2, therefore, the image rescaler and the
classification procedure can work in parallel, as illustrated in
Figure 4. Each frame is required to be rescaled to multiple
scales and be processed by the classification procedure at
each scale. Therefore, at Phase 3, when the classification
procedure is processing subwindows at the jth image scale,
the image rescaler can generate rescaled integral image data
at the (j + 1)th scale. After rescaled integral image at
the (j + 1)th scale is generated, the data are sent to the
classification procedure for processing. Simultaneously, the
image rescaler starts generating the (j +2)th rescaled integral
image. During the classification procedure at each scale,
the feature calculation and different classification levels in
the detector hierarchy work on different subwindows in a

Video

capturer/database Face detector

1 module
Image buffer Image
_> rescaler

Integral image
comfuter |}| ? |}| |}|

Memory interface % N

T

’ \
| Main memory l—)|Display/database

_ Detector node
N .

1
I
I
I
1
1

FIGURE 5: Global architecture of the RIMVFD system.

pipelined fashion, and classifiers for different classes in the
same classification level work in parallel (as shown in the
bottom right part of Figure 4). Figure 4 gives the skeleton
of the system pipeline structure. Generally, for the tree-
structured detector hierarchy in this paper, the numbers of
classifiers in different levels are different. The lower the level
is, the more the classifiers are. Consequently, ny > - -- >
ny > n; in Figure 4.

According to the parallel characteristics of the system, the
global architecture for RIMVED is designed as illustrated in
Figure 5. The Image Buffer module buffers the image data
acquired from the Video Capturer/Database. The Integral
Image Computer processes the original image to get the
integral image and stores the data into the Main Memory
via the multiport Memory Interface. At the same time,
the data are sent into the Face Detector Module and the
Image Rescaler simultaneously. The Image Rescaler rescales
the integral image into a demanded scale and writes the
rescaled data back into the Main Memory for later use.

EURASIP Journal on Advances in Signal Processing

The Face Detector module uses the tree structure illustrated
in Figure 2. In each node, a Feature Calculator and a Face
Classifier are included. For a new image, the Face Detector
module first retrieves integral image data from the Integral
Image Computer module. The classification results which
indicate the position, size, and pose of each detected faces
are sent back into the Main Memory for display or other
purposes. After the image in the original size is processed
by the Face Detector module, the rescaled integral image
data are read from the Main Memory and sent into the Face
Detector module for detection of faces in the current scale.
As long as there are rescaled integral image data in the Main
Memory which are generated by the Image Rescaler module,
the procedure continues until all scales are processed for this
image. Then the system starts processing another image.

It can be seen that for an image, data that should be
stored in the Main Memory include the integral image data
from the Integral Image Computer module, the rescaled
integral image data from the Image Rescaler module and
the classification results from the Face Detector module.
Also data that should be read from the Main Memory
include the integral image data required by the Face Detector
module and the classification results required by the Dis-
play/Database module. Assuming that the original image size
is x X y, and the depth of the integral image pixel is d Bytes,
and the scaling factoris # (r > 1), and the frame rate is f, and
the classification results of an image occupies R Bytes, we can
estimate the bandwidth requirements of the Main Memory
as follows:

1 2
BW =2X fx (nyxdx <1+<r2) +) +R> Bytes.
(5)

The experimental results on the bandwidth requirements are
shown in Table 5.

For the computation of integral image and the rescaling
of image, the hardware structures have no much differences
with those in the frontal face detection system, which have
been researched in many related works (e.g., [23, 31]).
Therefore, we will not discuss them in this paper and focus
on the design of the Face Detector Module.

The number of detector nodes as shown in Figure 2
can be reduced about 75% without significantly affecting
the speed. Since any detector node in the (45°,135°%),
(135°,—135%), and (—135°,—45°) RIP ranges can be gen-
erated by rotating the corresponding detector node in
the (—45°,45°) RIP range for 90°, 180°, and 270°, the
detector trees for (—45°,45°), (45°,135°), (135°, —135°), and
(—135°,-45°) RIP ranges can reuse the same structure.
The only differences among them are the data acquisition
addresses during the feature calculation procedure. There-
fore, only the (—45°,45°) RIP classifier and its child nodes
are configured into the FPGA chip at first, together with the
root node (i.e., 360° RIP, (—=90°,90°) ROP face classifier). If
a subwindow is rejected by the root node, it is considered
as non-face; otherwise, it flows into the (—45°,45°) RIP
classifier. If it is approved, it is considered as an upright
face ((—45°,45°) RIP) and will be further processed by the

child nodes of (—45°,45°) RIP classifier until the final results
are generated; otherwise, if it is rejected, the location of
the subwindow is buffered for later processing. After all
subwindows in the image are processed by the detector
tree, the data acquisition scheme in the feature calculation
part is updated to rotate the feature values for 90°, 180°,
and 270°. In this way, the (—45°,45°) RIP detector tree
turns into the detector trees for (45°,135°),(135°,—135°),
and (—135°,—-45°) RIP ranges, respectively. The buffered
subwindows which are rejected by the (—45°,45°) RIP clas-
sifier are reprocessed by the new (45°,135°),(135°,—135°),
and (—135°,—45°) RIP detector tree successively. Only the
subwindows rejected by the 90° RIP classifier in the previous
detector tree are sent into the successive one. Since most
multi-view faces concentrate in (—45°,45°) RIP range in real
world, the number of subwindows that are rejected by the
(—45°,45°) RIP classifier and need to be reprocessed by the
(45°,135°),(135°,—135°), and (—135°, —45°) RIP detector
trees will be tiny. Consequently, although the number of
detector nodes as shown in Figure 2 is reduced from 161 to
41, the detection speed is hardly affected and the detection
accuracy remains unchanged.

3.2. Organization of the Detector Hierarchy. In this section,
we focus on the organization of the tree-structured detector
hierarchy. As mentioned in Figure 4, different levels work
on all subwindows in a pipelined fashion, which means that
when detector nodes in the second level start processing the
jth subwindow, the nodes in the first level can work on the
(j + 1)th subwindow. Also, classifiers for different classes in a
single level work in parallel.

Different detector nodes have similar structure with
different classification parameters. The input materials of
each detector node are some feature values of sub-windows,
and an enable signal indicating whether the node needs to
be activated. The output of each detector node is a Boolean
value indicating whether the subwindow belongs to the cur-
rent face class. If the node is not a leaf node, the output will
be sent into all its child nodes in the next level as their enable
signals; otherwise, the output will be the final results of the
detector hierarchy. In each node, cascaded structure [4] (see
Figure 1) is also adopted to organize strong classifiers in it.
The motivation behind the cascade of classifier is that simple
classifiers at early stage can filter out most negative subwin-
dows efficiently, avoiding activating classifiers at later stages.

In Figure 6, we pick up several detector nodes from two
adjacent levels to explain the structure and their communi-
cations. All direct child nodes of a parent node (we call them
“brother nodes”) uses the same feature set. The reason is
that they share the same selected features while training the
first stage of weak classifiers (see Algorithm 3). Therefore, the
feature values calculated by the Feature Calculator are sent
into all direct nodes of the same parent node simultaneously.
When a subwindow passes into the parent level in Figure 6,
if the Enable Signal from the parent node of the parent
level is negative, the node in the parent level will not be
activated, since the subwindow is not considered to belong
to this corresponding class; otherwise, the sub-window is
processed in Stage 1 of the parent node. If the output of

10

EURASIP Journal on Advances in Signal Processing

|

Stage 2 éJ i

Feature calculator

Parent level

Child level , = - >

Feature calculator
w4
5
% (1
o (1]
vl

—> Enable signal
—> Feature value

F1GURE 6: Structure of detector nodes and their communications.

the Stage 1 is negative, the subwindow does not have to be
processed by later stages in the node, which can decrease the
computational cost; otherwise, the Enable Signal of the next
stage will be positive. The final output of the current node is
positive only if the final stage’s output is positive. The output
of the parent node is connected with the Enable Signals of its
direct child nodes. The workflow of these child nodes are the
same with that of the parent node. We have mentioned that
different levels work on all sub-windows in a pipelined fash-
ion. Actually, different stages in a level form a pipeline as well.

3.3. Parallel Implementation of the Strong Classifier. This
section will describe the structure of the strong classifiers in
each cascade stage of each detector node. The design of the
strong classifier has been proposed in Section 2.4. For each
level in each direct child node of a parent detector node,
the strong decision function is a particular sum of products,
where each product is made of a constant «; and the value
—1 or +1 depending on the output of ;.

Different strong classifiers have similar structure with
different classification parameters and different number of
weak classifiers. For strong classifiers in different stages of
a detector node, the number of weak classifiers is different.
In addition, the constant values «; and the feature set used
by weak classifiers are different too. However, the constant
values «; and the feature set are the same for the same cascade
stage of different direct nodes of a parent node according to
the training procedure in Algorithm 2.

We illustrate a possible structure of the strong classifier
in Figure 7. However, T feature values calculated by the
Feature Calculator are sent into T weak classifiers 4;. Due
to the binary nature of the output of h, it is possible to
avoid computation of multiplications. We can simply use
the output of h; to determine the sign of a; through a
multiplexer. The results of T multiplexers are summed by a
hierarchy of adders. We can see that T-1 addition operations

are required and the latency will be T-1 for a sequential
pipeline and log, T for a tree-structured pipeline, which will
slow down the processing speed when T is large.

We can improve the above structure by decreasing the
addition operations in the hierarchy of adders. The idea
is that the multiplexers can be replaced by lookup table
units, and the results of additions and subtractions of a;
are encoded into them beforehand. The outputs of the weak
classifiers are used as addresses of LUT units. The more
additions and subtractions are encoded in a single LUT
unit, the less online addition operations are required in the
hierarchy of adders. The improved structure of the strong
classifier with 16-bit LUT unit is presented in Figure 8.

3.4. Design of the Weak Decision Function. In this section,
we will introduce the hardware structures of the two-stage
weak classifiers. The design of the weak classifiers has been
discussed in Section 2.5. The first stage h; : y — R has the

following formula: h(x; Ok, px) = Zﬁ»’:l cj‘Bf,(ek), where

1 ue [(]_1),]>
p p
o ue70.0)

(see Algorithm 3) and ¢} is trained offline. The second stage

2

h, : R — {-1] +1}k has the form of (4) for each
dimension of the k classes.

The first and the second stages are combined to form the
weak classifier /; required by the strong classifier as shown
in Figure 8. For the tth weak classifier, the feature value is
sent into all dimensions of h; first, where each dimension
corresponds to each direct child node of a parent detector
node. Following the decision procedure based on piece-wise
function, all k outputs of h; are sent into each dimension

Bj(u) = i=L..,p, (6)

EURASIP Journal on Advances in Signal Processing

Sub-window

data
To stage i

-~ in other
] G Cw) - Ga Ca |) bote
! £ £ £ nodes
! Lo MUX_ | --- [_MUX__ K{hg] !
! ¥ J !
I [Hierarchy of adders | :
I
| 1 |
: |
. Stage i,

FIGURE 7: A possible structure of the strong classifier.

Sub-window TO stage 1
data in other
brother
| Feature calculator | nodes

/
Lo [l |2 | s | [a | s][s] 17|

+op+tap +ax taz| |tag +ap +ax +as
+opt+ap tay —a3| [tap+a; +tay — a3
+ap + o) —ay + o3| [+ap + o —ay + a3

—0p — 0] — a2 — a3 [—Qp — O] — &2 — A3

|

| Hierarchy of adders

F1Gure 8: Improved structure of the strong classifier.

of h; for further hyper-rectangle-based decision. Figure 9
shows the dataflow.

Different h; have similar structure. According to the
training procedure in Algorithm 3, the division of feature
space and the feature value as input is the same for different
dimensions of h;, but the constant c are different, which will
eventually affect the outputs of different dimensions. The
derivation of the confidence values, ci,¢,...,¢p, is based on
the training procedure in Algorithm 3. For all k dimensions
of a set of first-stage weak classifiers h, = {h'y; | i =
1,...,k} (as shown in Figure 9), the determination of their
confidence values uses the same set of training samples.
Therefore, the jth confidence value for all k dimensions can
form a confidence vector ¢;. Also, ¢; is updated iteratively
by using a proper optimization algorithm such as Newton-
step method, until the training loss Zsj Dy (i) exp(—yi(vi-¢)))
is minimized. The final c;, denoted as c;k, is then used to

construct the piece-wise decision function h;. The piece-wise
decision function can be easily implemented on hardware by
using LUT units, as shown in Figure 10(a). Each element in
an LUT unit corresponds to the constant value for a feature
bin. The input is the normalized feature value, which will be
used as the address for LUT. If the feature value is located

11
Sub-window
data
| Feature calculator |
b [Feature ¢

FiGure 9: Dataflow of the weak decision function.

Normalized| ¢1
feature ¢2 |Confidence
value G value

a c] > 9(]) YH
t‘,{:ﬂi And P {
1 < 60
: And {>{ XNOL
Result

Ck [0

And |

(b)

FIGURE 10: Structures of the two-stage weak classifiers. (a) the first
stage; (b) the second stage.

at the jth bin of all p bins, ¢; in the LUT will be selected as
output.

Different h, have similar structure, too. The confidence
values as input are the same for different dimensions of
ht However, the classification parameters as shown in (3)
are different. The hyper-rectangle-based decision function
can be easily implemented on hardware by only using some
comparison units and logical operation units, as illustrated
in Figure 10(b).

4. Reconfiguration of the Architecture Model

In this section, we focus on finding automatically an appro-
priate tradeoff among the hardware implementation cost, the
detection accuracy, and speed by dynamically reconfiguring
the hardware architecture model, so that the proposed design
can easily meet the demands of different applications. The
design automation strategies are analyzed on different design
levels from the global structure to the weak classifiers.

4.1. Reconfiguration on the Global Structure Level. In this
section, we analyze how the variation of the scaling factor and
the scanning step would influence the classification speed
and accuracy. Obviously, the larger the scaling factor and the
scanning step is, the fewer subwindows are to be processed
for a single frame, which will improve the speed but decrease

12

the accuracy. Therefore, we can find a tradeoff between the
speed and accuracy by changing the scaling factor and the
scanning step.

By rescaling the integral image, a pyramid framework
will be generated. The calculation of pyramid poses heavy
computation load. For example, given an input image
resolution of x-by-y, and the size of the sub-window for
classification xo-by-yo, let the scaling factor be r and let Sy
and S, be the steps in the x- and y-direction, respectively.
The total number of subwindows, 7, can be calculated as

N X r2 — min(x%/xz,yg/yz)' o
55, 21

Typical values of xy and y, is 24, and the values of S, and
S, are in the range of 1 to 5 pixels. When r = 1.2 and
input image size is 256 X 256, according to (7), n is more
than 100 000 images.

The execution time of a single frame depends directly on
the number of subwindows #n. Therefore, when the system
requires that the classification should be processed in a very
high speed and the accuracy requirement is not that critical,
we can achieve this by increasing r, S, and/or S,. Otherwise,
we can decrease them.

Let Iy, I3, and Ir3 denote the computation latency for a
single subwindow for Task 1 (integral image computation),
Task 2 (classifier), and Task 3 (image rescaler). According to
the pipeline scheme in Figure 4, the latency for generating
a final result of a subwindow would approximately depend
on the largest value among Ir1, Ir2, and Ir3. Therefore, the
total time T to process a single frame (with n subwindows)
is approximately given by

Tr = n - max(lri, Ir2, I13). (8)

Let 11, c12, and ¢r3 denote the hardware implementation
costs of Task 1, Task 2, and Task 3, respectively. Then the total
cost for the key part of the system is approximately the sum
of them:

Crotal = €T1 + CT2 + CT3. 9)

4.2. Reconfiguration on the Detector Hierarchy Level. In the
detector hierarchy level, we analyze two aspects of reconfigu-
ration problems. Firstly, the detection granularity and range
of detector nodes in the tree-structured detector hierarchy
can be reconfigured. Secondly, the number of cascaded
strong classifiers can be reconfigured in each detector node.

4.2.1. Reconfiguration of the Detection Granularity and Range.
According to Section 2.3, the proposed tree structure can
cover all = 90-degree ROP and 360° RIP pose changes. The
finer the detection granularity in each pose dimension is,
the more accurate the detection is. For example, in Figure 2,
the granularity in ROP and RIP is 20° and 30°, respectively.
Consequently, the hardware resource requirements and the
power consumption will increase because of the increase of
number of detector nodes. Also, the detection speed may
decrease.

EURASIP Journal on Advances in Signal Processing

For different classification granularities, the detector
nodes should be retrained. The consequences are that the
number of cascades in the nodes and the number of
weak classifiers in the strong classifiers would be totally
different. As a result, the reconfiguration of the classification
granularity means that almost all detector nodes in the tree
should be removed and new detector nodes are configured
into the FPGA chip. The cost of this kind of reconfiguration
would be a little large. Therefore, it is not so suitable
for run-time reconfiguration. However, when the system is
about to be used for another purpose which has different
requirements on the detection granularity and hardware
resources, the reconfiguration operation can be performed
during the initialization phase. By reconfiguring the current
system, there is no need to design a new system for the
application.

Moreover, if the application only requires that the
detection be performed in some particular ranges of pose
changes, but not all =90° ROP and 360° RIP pose changes,
we can achieve this by manually shut off those absolutely
useless nodes. For example, if pose changes in the range of
(—30°,30°) for ROP are required to be classified, and pose
changes in other ranges are not our interest and considered
to be nonface directly, the corresponding detector nodes
can be manually shut off. In this way, the active nodes are
significantly reduced from 41 to 15. The cost of this kind
of reconfiguration is small since only a 1-bit enable signal is
required for each node and the node itself do not have to be
replaced with a new one.

The hardware implementation cost of the detector
hierarchy cr, can be approximately calculated as

m n;

cr2 = chij) (10)

i=1j=1

where ¢;; is the cost of the jth detector node in the ith
detector level.

4.2.2. Reconfiguration of the Cascade Number. As mentioned
in Section 3.2, the cascaded structure [4] is adopted in each
detector node. As discussed in [4], simple classifiers at early
stages can filter out most negative subwindows efficiently,
and stronger classifiers at later stages are only necessary to
deal with instances that look like faces with some particular
poses. Compared with the detector node with only one
strong classifier, the power consumption will be significantly
decreased since quite a few subwindows can be processed
with the early simple classifiers. However, it is at the cost
of hardware resources. The approximate cost of the cascaded
detector node node;; (i = 1,...,m,j = 1,...,n;) is

qij
Cij = ZCijk, (11)
k=1

where c¢;j is the estimated hardware cost of the kth cascade
stage at the jth node in the ith level.

The number of the cascades in a node can be recon-
figured to meet different requirements. For applications

EURASIP Journal on Advances in Signal Processing

which demand that the power consumption be low, such as
digital camera and other handheld devices, more cascades
can be configured into the FPGA chip; otherwise, for
applications which demand that the size and price of the
device be controlled, the number of the cascades should be
constrained.

4.3. Reconfiguration on the Strong Classifier Level. The num-
ber of weak classifiers, denoted as Tij, in a single strong
classifier (we are referring to the strong classifier at the
latest stage in a detector node) can also be reconfigured to
find a tradeoff between the detection accuracy and hardware
implementation cost. If Tjjx is smaller, the accuracy is weaker
and the hardware cost is less; otherwise, the accuracy is
stronger and the cost is more.

The hardware implementation cost of a strong classifier
with Tjj weak classifiers can be approximately estimated.
According to Figures 8 and 9, a strong classifier is mainly
composed of a set of 16-bit LUT units, a hierarchy of adders
and Tjjr weak classifiers containing the first stage h;, the
second stage h;’ together with their corresponding feature
calculation units. In terms of slices, the hardware cost, cij,
for the strong classifier at kth cascade stage of jth detector
node at ith detector level, can be expressed as follows:

Cijk

T
—]k(’+t+’)+M + T 1
= Crtoy e 4 *CLUT 4 |- * Cadd>

(12)

where c;, Chys Chs cLuT> and caaq are the costs of a feature
calculation unit, a first-stage weak classifier iy, a second-stage
weak classifier h;’, a 16-bit LUT unit, and an adder, where
crut and c,qq will be considered as a constant.

4.4. Reconfiguration on the Weak Decision Function Level. In
this section, the reconfiguration problems on the first-stage
weak classifier h; and second-stage h;" are analyzed.

As shown in Figure 10(a), the elementary structure of h;
is an LUT unit. The number of elements in the LUT unit
is the same with the division granularity of feature space.
The finer the granularity is, the more accurately the function
can estimate. However, more LUT elements will cost more
hardware resources. Therefore, we can tune the number of
elements to meet different requirements on the accuracy and
the cost. The hardware implementation cost of the first-
stage weak classifier, ¢, is approximately proportional to the
number of LUT elements u:

Cy = MA], (13)

where 1, is the cost for one LUT element.

As the elementary structure of h;" is based on numerous
comparisons performed in parallel (see Figure 10(b)), it is
necessary to reduce the number of comparators as much
as possible for minimizing the final number of used slices.
If the hardware resources are limited, three particular cases

13

of hyper-rectangles can be considered to replace the general
case as illustrated in (4) for minimizing the hardware cost.

(1) The single threshold:
T = {6 yr}, (14)
where 0; is a single threshold, i = 1,...,k (k is the

number of classes in the classification space), and the
decision function is

hr(x) = yr = ¢ <6,

(15)
hr(x) = —yr, otherwise.
(2) The single interval:
I= {9,!)0;1)}/1}, (16)
where the decision function is
hi(x) =y = (ci > 6,’) and (¢; < 6}),
(17)
hi(x) = —yr, otherwise.
(3) The partial hyper-rectangle:
P= {611, lu’eé’ i‘)---)eé)) 11‘)}/1)}: (18)
where {6},6%,65,0Y,... ,9;,,9{‘} are the lower and

upper limits of a randomly selected subset of the
entire k-dimensional space. And the decision func-
tion is the similar with (4):

hp(x) = yp = ﬁ((ci > 05) and (¢; < 0,“)), (19)

hp(x) = — yp, otherwise.

In order to optimize the final result, it is necessary to
combine the previous approaches, finding for each iteration
the best weak classifier among the single threshold hr, the
single interval hj, the partial hyper-rectangle hp, and the
general hyper-rectangle hy. The training procedure of the
second-stage weak classifier h; can be optimized as shown
in Algorithm 4.

This strategy allows minimizing the number of training
iterations, and thus minimizing the final hardware cost.
The hardware implementation cost of a second-stage weak
classifier, ¢y, is approximately proportional to the number
of comparators v:

Cp’ = VAZ, (20)

where A, is the cost for one comparator.

14

EURASIP Journal on Advances in Signal Processing

(1) Train classifier with respect to the weighted samples set and obtain some hypothesis hr, hy, hp(l), ...

and hy;
(2) Calculate weighted errors er, er, epV, ..., ep
(3) Choose h;" from {he, by, bV,

by

@ and ey introduced by each classifier;
hp @ hy} for which & = min(er, e, epV, ..., ep @,).

ALGoRrITHM 4: Optimization for the training procedure of the second-stage weak classifier.

4.5. Design Space Exploration Algorithm. Based on the above
analysis, a design space exploration algorithm is proposed
so that the reconfiguration strategies on all design levels can
be well coordinated to meet the demands on the hardware
implementation cost, the detection accuracy and speed for
different applications.

To describe the algorithm more clearly, we first list some
related parameters in Table 1.

The design space exploration algorithm is illustrated in
Algorithm 5. At first, the related parameters are initialized
without considering the hardware resources constraints in
order to increase the detection speed and accuracy as
possible as we can. Then the approximate hardware cost
and execution time for a single frame is estimated based on
the parameters and the architecture model. If the available
hardware resources are sufficient and the processing speed
is fast enough, we activate the system to test the detection
accuracy. If the error rate is ideal enough, the algorithm
returns. If the error rate does not meet the requirements,
some parameters are demanded to be tuned. There are
two considerations about decreasing the error rate: refining
the scanning granularity and improving the classification
accuracy of detector nodes. The scanning steps in the x-
and y-direction S,, S,, and the scaling factor r can be
decreased to increase number of subwindows n based on
(7), so as to refine the scanning granularity and avoid
skipping some potential face objects. As for improving the
classification accuracy, the number of weak classifiers in each
strong classifier T;jx can be increased by doing more training
iterations as shown in Algorithm 2. Also, the number of
LUT elements in each first-stage weak classifier u can be
increased via finer division of feature space during the
training procedure. Also, the number of comparators in each
second-stage weak classifier v can also be tuned by using
the training procedure as shown in Algorithm 4. After the
above parameters are updated, the algorithm starts a new
iteration to check whether the hardware implementation
cost, the detection accuracy and speed meet the requirements
or not. If the error rate is ideal enough, but the processing
speed is not fast enough, the scanning granularity should
be made coarser and the computational complexity of
detector nodes should be decreased, which are opposite to
the update process for decreasing the error rate. Therefore,
the parameters Sy, Sy, 7, Tijx, 4, and v should be updated
in an opposite way correspondingly. If the error rate and
the processing speed both meet the requirements, but the
hardware implementation cost is not ideal, the number of
cascade stages in each detector node g;j, in addition to Tjj,
u, and v can be decreased to reduce the hardware cost, which
will sacrifice some detecting accuracy inevitably.

TasLE 1: List of related parameters.

Symbols Description

X,y the input image resolution

X0> Yo the size of a sub-window
the available hardware resources on the FPGA chip

Cavail for the key part of the system

o the estimated total hardware cost for the key part of
the system

Tgoal the expected execution time for a frame

Tk the estimated total execution time for a frame

" the number of sub-windows to be processed in a
frame

CrisCr s the estimated hardware implementation costs of
Task 1, Task 2 and Task 3

L I Iy the computation latency for a single sub-window for
Task 1, Task 2 and Task 3

Sx> Sy the scanning steps in the x- and y-direction

r the scaling factor

m the number of levels in the detector tree

n; the number of nodes at the ith detector level

B the number of cascades at the jth node in the ith

i level

Tijk the number of weak classifiers in a strong classifier

.. the estimated hardware cost of at the jth node in the

v ith level

e the estimz}ted hgrdware cost of the kth cascade at the
jth node in the ith level

c; the hardware cost of a feature calculation unit

o't the hardware cost of a first-stage weak classifier

et the hardware cost of a second-stage weak classifier

cLuT the hardware cost of a 16-bit LUT unit

Cadd the hardware cost of an adder

PR the hardwe.lre cost of a LUT element in a first-stage
weak classifier

" the number of LUT elements in a first-stage weak
classifier

1 the hardwe.lre cost of a comparator in a second-stage
weak classifier

Y the number of comparators in a second-stage weak

classifier

The parameters that should be initialized include S, S,
T, M, Ni, gij> Tijks 4, v. The scanning steps S, and S, can be
initialized as small as 1. The scaling factor r is a value larger
than 1, such as 1.25. The number of detector levels m is fixed
to be 5 in our work. The number of nodes at the ith detector

EURASIP Journal on Advances in Signal Processing

15

qij> Tijka u, v;

BEGIN
num_iterations = 0;

tagl: IF (num_iterations>THRES) FAIL;

Equation (11); Estimate cr, using Equation (10);
Calculate ¢ora1 using Equation (9);
IF (Ctotal <= Cavail)
BEGIN
Calculate n using Equation (7);
Estimate T using Equation (8);
IF (TF <= Tgoal)
BEGIN

ELSE BEGIN

num_iterations + = 1;
GOTO tagl;
END
END
ELSE BEGIN

nume_iterations + = 1;
GOTO tagl;
END
END
ELSE BEGIN

of cascade stages
BEGIN

num_iterations + = 1;
GOTO tagl;
END

detecing accuracy
num_iterations + = 1;
GOTO tagl;
END
END

. ¢ c e
INPUT: x, Y> X05> Y05 Cavail Tgoaly €115 €135 lTl) lTZ& lT3> Cf) CLUT> Cadd> /11’ AZ) and the initial values for S Sy> r,m, n;,

OUTPUT: the updated values for S,, S, 7, qij, Tiji> 4, V3

Initialize Sy, Sy, 7, m, 1, qij> Tiji, t, v without considering the hardware resources constraints;
//if this algorithm is iterated THRES times, the algorithm stops.
Estimate ¢y and ¢+ using Equations (13) and (20); Estimate ¢;jx using Equation (12); Estimate ¢;; using

//the hardware resources are sufficient

//the processing speed is fast enough

Configure the system architecture model using the related parameters;
Activate the system to run RIMVFD tasks on some test images;
[F(the error rate is below the predetermined threshold)

Update sy, sy, r to increase n, and/or train the classifiers using updated Tij, u, v;

Update s, s, r to decrease n, and/or train the classifiers using updated Tjjx, u, v;

IF (there exists g;; which are larger than 1) //reduce the hardware cost by reducing the number

Reduce the number of cascade stages in each detector node;

Train the classifiers using updated Tijk, u, v;

RETURN;

//reduce the hardware cost by sacrificing some

ArcoriTHM 5: The design space exploration algorithm.

level, n;, is fixed to be 1, 1, 3, 9, 27, respectively for i =
1,2,...,5. Therefore, the total number of detector nodes is
41, and these nodes are organized as described in Section 3.1.
The number of stages in the cascade construction of each
detector node, g;j, and the number of weak classifiers in each
cascade stage, Tjjk, are determined by selecting operating
points within a receiver operator characteristic (ROC) curve.
In each first-stage weak classifier, the number of LUTs, u,
is initialized as 64. Also, the number of comparators in a
second-stage weak classifier v is initialized to be 2k according
to (4), where k is the face class dimensions of the current
level. During the design space exploration, Sy, Sy, 7, gij» Tjjk

u, v are updated iteratively. While increasing or decreasing Sy,
Sy, r to tune the scanning granularity, the updating steps can
be 1, 1, and 0.05 respectively. For g;;, as long as g;; is larger
than 1, g;; can be decreased with a step of 1 for reducing the
hardware cost. For Tij, the tuning step is set to be 10 here.
Also, the step is 4 for u. v is increased or decreased between 1
and 2k with a step of 1.

To sum up, if any one of the hardware implementation
cost, the detection accuracy, and speed do not meet the
requirements, the related parameters are tuned and the archi-
tecture model is reconfigured with these new parameters.
The order of priorities of the cost, speed and accuracy is

16

M.,ﬂ

EURASIP Journal on Advances in Signal Processing

SO BE B PR =

FIGURE 11: Some training samples.

_15° 7150
—45° 45°
&/ 135°

- [=30°,-10°] ROP

FiGgure 12: Flip and rotate detectors. (The original detectors of frontal view ([—-10°, 10°] ROP) are the [—45
45°,15°], [—15°, 15°] and [15°, 45°] RIP ones for each ROP view).

The original detectors of nonfrontal faces are the [—

cost > speed > accuracy. The algorithm iterates until the
termination condition is satisfied.

5. Experimental Results

In this section, several experiments are performed to evaluate
the proposed RIMVFD method and hardware architecture.
The training data preparation, training procedure, and

the performance analysis of the detection procedure are
described.

5.1. Training Dataset. More than 85000 face samples are
collected by cropping from various sources. All the samples
are normalized to the standard 24 x 24 pixel patch. The
views of the samples cover all +90° ROP and +45° RIP
pose changes. We partition the sample space into smaller and
smaller subspaces of narrower view ranges. At the top level in
Figure 2, there is only one detector node. So all face samples
are grouped into one class. At the second level, there are
four detectors. Since the face samples cover + 45° RIP pose
changes, they are used to train the first node in this level.
As described in Section 3.1, the other three detector nodes
can be generated by simply rotating the first node for 90°,
180°, and 270° clockwise. At the third level, the face samples
are grouped into three view classes of (—90°, -30°), [-30°,
30°] and [30°, 90°]. The partition of the samples works in
the similar way at later levels. Figure 11 gives some training
samples.

5.2. Training Procedure. By using the training method intro-
duced in Sections 2.4 and 2.5, each detector node is trained
with the corresponding subset of face samples. Finally, the
detector tree is composed of 41 nodes in 5 levels. Because
of hardware resources restrictions, we constrain the cascade

LI

[-10°,10°] ROP

(10°,30°] ROP - - -

15°] and [—15°, 15°] RIP ones.

construction for each detector node to a maximum of 5
stages.

Since any detector can be rotated 90°, any detector
node in the (45°,135°),(135°,—135°), and (—135°,—45°)
RIP ranges can be generated by rotating the corresponding
detector node in the (—45°,45°) RIP range for 90°, 180°,
and 270°, which reduces 75% of the cost for the training
procedure. In addition, due to the horizontal symmetry
between the left and right faces, only one side of the detector
nodes needs to be trained, and the nodes for detecting
faces on the other side can be generated by mirroring the
trained nodes. Figure 12 illustrates the scheme of flipping
and rotating detectors. In this way, only the detector nodes
for the ranges marked as red sectors in Figure 12 should be
trained. Finally, the number of detector nodes to be trained
is reduced from 161 to 23.

5.3. Performance Evaluation of the Hardware RIMVFD System

5.3.1. Test-Bed and Test Data. In this paper, a prototype
of the proposed design has been implemented in an FPGA
test-bed for evaluation. The FPGA test-bed includes a large
capacity FPGA chip and an SDRAM module, connecting
to the host processor through USB interface. Our target
device is Altera Stratix II EP2S130F1020C5. This FPGA
chip contains 106 032 ALUTs and 6 747 840 bits of onchip
memory. The SDRAM module with capacity of 1G Bytes is
deployed as offchip memory. We use a PC with a Pentium 4
2.8 GHz CPU and a 1 GB memory bank as the host processor
in our test-bed, which functions as the Video Capture Device
and Display/Store Device as shown in Figure 5. The FPGA
implementation is coded with Verilog HDL, simulated with
Mentor Graphics ModelSim, and synthesized with Quartus
II. Table 2 introduces the specifications of the proposed
hardware prototype.

EURASIP Journal on Advances in Signal Processing

17

TaBLE 2: Specifications of the proposed hardware prototype

Modules Specifications

FPGA chip Altera Stratix IT EP2S130F1020C5 (106 032 ALUTs and 6 747 840 bits of on-chip memory)
host processor Pentium 4 2.8GHz CPU and 1GB DDR RAM

offchip memory 1GB

total onchip memory bits 245696 bits

total logic cells 105127 ALUTs

working frequency 98 MHz

FiGUure 13: Some detection results of the proposed hardware
RIMVED system.

All initial image frames are captured by the PC. The
processing modules integrated in the FPGA chip read the
image data and generate the detection results. The final
results are transferred to host processor for displaying and
storing.

To give an overall evaluation, we test our MVED on the
CMU profile set, which consists of 208 images with 441
faces. Since the CMU profile set cannot evaluate the rotation
invariant characteristics well, we also collect a database of
360° rotation invariant test images from various sources,
containing 213 images with 682 rotation invariant multi-
view faces. The CMU + MIT frontal face test set containing
130 images with 507 main frontal faces is also used to
evaluate the frontal face detection performance. Some of
the detection results generated by the proposed hardware
RIMVED system are shown in Figure 13.

5.3.2. Resource Utilization. We synthesize the design on the
FPGA using Quartus II. In this experiment, the size of
the subwindow for classification, xo-by-yo, is 24 x 24. The
scanning steps in the x- and y-direction S, and §, are set
to be 1 pixel, and the scaling factor r is 1.25. The number
of detector nodes is 41, and these nodes are organized as
described in Section 3.1. The number of stages in the cascade
construction of each detector node, g;;, and the number of
weak classifiers in each cascade stage, Tjjk, are determined
by selecting operating points within a receiver operator
characteristic (ROC) curve. In each first-stage weak classifier,
the number of LUTS, u, is 64. Finally, 3820 weak classifiers are
included in the detector tree. Table 3 lists settings for some
related parameters in our experiments.

TaBLE 3: Parameter settings for test.

Parameters Values
X0 24
Yo 24
Sy 1

S, 1

r 1.25
u 64
number of detector nodes in the detector 41
tree

total number of weak classifiers 3820

Based on the synthesis results, the clock speed of the
entire design reaches 98 MHz, which can still be increased
through P&R (Place and Route) optimization. Table 4 gives
the resource utilization for different parts of the system. It
can be seen from the synthesis results that the Face Detector
Tree occupies most of the ALUT resources. The reason is that
the number of weak classifiers in it is pretty large.

5.3.3. Speed Comparison with Software Solution on PC and
Related Works. In this section, we compare the processing
speed of the hardware implementation with that of the
software solution on PC with a Pentium IV processor
operating at 2.8 GHz and 1 GB memory bank. The software
solution is implemented based on OpenCV. The program
code is written in Visual C++ language under Windows
XP OS. For the image rescaling procedure, we choose to
rescale the scanning subwindow in the software solution,
while rescale the image and fix the size of the subwindow in
the hardware solution as explained in Section 3.1. Both the
hardware and software implementations use the same test
dataset as described in Section 5.3.1. The execution time of
an image is calculated from reading image data to generating
the final result.

Table 5 gives the comparison of execution latency for
detecting rotation invariant multi-view faces in one image
frame by using these two solutions and the offchip memory
bandwidth requirements. Some test images with different
sizes are used. We can see from the results that although
the clock speed of our design is only 98 MHz, which is
much slower than that of PC (i.e., Pentium 4 2.8 GHz), the
processing speed of the hardware solution is still faster than

18 EURASIP Journal on Advances in Signal Processing
TABLE 4: Resource utilization for different parts of the system.

Modules Area (ALUTS) Onchip memory (bits)
Video capturer/database interface 238 67239

Results display/database interface 322 8325

Main memory controller 819 19200

Integral image computer 657 48921

Face detector tree 102512 69038

Image rescaler 579 32973

Total 105127 245696

TABLE 5: Performance comparison between the hardware and software solution and the offchip memory bandwidth requirements.

Execution latency (ms)

Image size Speed-up Offchip memory bandwidth requirements (MB/s)
Hardware (98 MHz) Software (2.8 GHz)
160 x 120 1.58 23.2 14.68 99.8
192 x 144 2.06 33.6 16.31 110.7
320 x 240 5.36 93.9 17.52 158.7
384 x 288 7.27 135.4 18.62 168.5
480 x 320 9.71 188.2 19.38 175.4
640 % 480 18.42 376.6 20.45 185.1
768 X 576 26.08 542.5 20.8 188.3
800 x 600 28.22 588.7 20.86 188.9

that of the software solution. The execution time speedups
range from 14.68 to 20.86 for images with size of 160 x 120
up to 800 x 600. For the 320 x 240 video sequences, the
frame rate can reach 186 fps, which is 17.52 times faster than
the software solution as long as the capture device or the
video database can generate the original images fast enough.
Even for the 800 x 600 images, the frame rate can be 35 fps.
The offchip memory bandwidth requirements for different
image sizes are also described in Table 5. The available
offchip memory bandwidth in our prototype system is about
200 MB/s, which can meet the requirements.

In order to measure the latency caused by the second
stage of two-stage weak classifiers, the processing speeds for
FPGA design with and without two-stage mechanism are
compared. For the design without two-stage mechanism, the
work flow is similar with that of Huang’s Vector Boosting
[9]. That is, the confidence values generated in the first
stage of weak classifiers are directly used to generate the
strong classifier, and the output of the strong classifier is
compared with a threshold. Therefore, the length of the
entire detector tree pipeline in the design without two-
stage mechanism is shorter than that in the design with
two-stage mechanism. However, the latency for processing
a single subwindow in a frame is almost the same for the
pipelines with or without two-stage mechanism. Therefore,
the execution latency for processing a frame with a lot
of subwindows will be hardly affected by the increasing
of the pipeline length. Consequently, the introduction of
the two-stage mechanism will not cause too much negative
impact on the frame rate. Table 6 shows the performance
comparison for FPGA design with and without two-stage
mechanism.

We also compare the processing speed between our
design and other related works, that is, Rowley’s ANN
method [2], Viola’s cascade detector [4], Schneiderman’s
Bayesian decision rule method [3], Wu’s parallel cascade
method [6], and Huang’s WES tree method [9]. In Rowley’s
work [2], he claimed that a fast version of his system can
process a 320 X 240 pixel image in two to four seconds on
a 200 MHz R4400 SGI Indigo 2. Also, about 5 seconds are
required to process a 320 X 240 image in [3]. In Viola’s
contribution [4], on a 700 MHz Pentium III processor, the
face detector can process a 384 by 288 pixel image in about
0.067 seconds, which is roughly 15 times faster than Rowley’s
detector [2]. The above contributions all focus on frontal
face detection. According to the results presented in Table 5,
we can see that our work takes about 7.27 milliseconds for
RIMVED on a 384 x 288 image, which is even faster than
frontal face detection in the above contributions. In Wu’s
work, the running time is about 18 milliseconds for frontal
face detection, about 80 milliseconds for MVED, and about
250 milliseconds for RIMVFD while processing a 320 x 240
image on a Pentium 4 2.4 GHz PC. Also, Huang reported
in [9] that on a Pentium 4 2.8 GHz PC, MVFD takes about
40 milliseconds on the detection of a 320 x 240 image, and
RIMVED speed is about 11 fps. Obviously, the processing
speed in our work is much faster than these related works,
which is about 186 fps for 320 x 240 images. Table 7 lists the
comparison results.

The reason why our design outperforms related works is
that our design uses the tree-structured detector hierarchy
with much less detector nodes, and the temporal/spatial
parallelism in the algorithm is fully exploited to construct
highly parallel and pipelined hardware architecture.

EURASIP Journal on Advances in Signal Processing

19

TABLE 6: Performance comparison for FPGA design with and without two-stage mechanism.

Execution latency (ms)

Image size
with two-stage mechanism without two-stage mechanism
160 x 120 1.58 1.49
192 x 144 2.06 1.98
320 x 240 5.36 5.31
384 x 288 7.27 7.21
480 x 320 9.71 9.67
640 x 480 18.42 18.39
768 X 576 26.08 25.98
800 x 600 28.22 28.17
TaBLE 7: Performance comparison with related works.
Works Platform Image size Detection type Speed
Rowley’s R4400 SGI Indigo 2 200 MHz 320 x 240 Frontal 2~4s
Schneiderman’s — 320 x 240 Frontal 5s
Viola’s Pentium III 700 MHz 384 x 288 Frontal 0.067 s
Frontal 18 ms
Wu’s Pentium 4 2.4 GHz 320 x 240 MVED 80 ms
RIMVED 250 ms
Huang’s Pentium 4 2.8 GHz 320 X 240 MVED 40ms
RIMVED 11 fps
Ours FPGA 98 MHz 384 x 288 RIMVED 7.27 ms
0.98 Frontal Face Detection Test on CMU + MIT Frontal Face Set.
0.96 - As frontal faces are very useful in face-related applications,
we first evaluate the proposed method on the CMU + MIT
0.94 1 o frontal face test set, and compare the results with those of
0.92 Rowley’s ANN method [2], Viola’s cascade detector [4], and
L oo . Wu’s parallel cascade method [6]. Figure 14 gives the ROC
E M g -mTTTTTTTT curves. We can see that our proposal has a much higher
508 detection rate.
;3 0.86 | :
S sl /_/':.-' MVED Test on CMU Profile Set. We compare the proposed
o method with the previous works, that is, Schneiderman’s
082 : Bayesian decision rule method [3] for MVED, Wu’s parallel
08 | cascade method [6] and Huang’s WES tree method [9] for
P MVED. All tests are based on the CMU profile set. Li et al.

0 50 100 150 200 250 300 350 400 450

False alarm

-m- Wu's
—A— Qurs

- Rowley’s
®:- Voila’s

FiGgure 14: ROC curves on CMU + MIT frontal face set.

5.3.4. Accuracy Comparison with Related Works. To evaluate
the detection accuracy of the proposed RIMVED method, the
results are compared with some previous published works,
that is, Rowley’s ANN method [2] and Viola’s cascade detec-
tor [4] for frontal face detection, Schneiderman’s Bayesian
decision rule method [3] for MVED, Wu’s parallel cascade
method [6], and Huang’s WES tree method [9] for MVFD.

[7] also tested their pyramid detector on this set, but did not
report any statistic on the results. Figure 15 gives the ROC
curves.

RIMVFD Test on our Own Database. For the rotation
invariant MVFD, since there is no available standard test set,
we collect a database of 360°-degree rotation invariant test
images from various sources, containing 213 images with 682
rotation invariant multi-view faces. In this test set, 57 images
with 142 multi-view faces are selected from CMU profile set,
and the rest 156 images with 540 faces are captured with
digital cameras covering various ROP poses from —90° to
90°, and then manually rotated to get faces with various RIP
poses in the entire 360°-degree range. Wu’s parallel cascade
method [6] and Huang’s WES tree method [9] did some

20

Detection rate

0.8t !

0.75 L
0 100 200 300 400 500 600 700

False alarm

-#- Schneiderman’s
® - Wu’s

-®- Huang’s
—A— Ours

FiGure 15: ROC curves on CMU profile set.

0.94

093
092
0.91 -

0.9+
0.89 -

0.88 1

Detection rate

0.87
0.86 1
0.85

0 100 200 300 400 500 600 700 800

0.84

False alarm

FiGure 16: The ROC curve on our own test set.

experiments on RIMVED, but they did not give the ROC
curves. In our experiment, the ROC curve of our proposal
on our own test set is given in Figure 16.

The main reason why our proposal achieves a better
performance is that the outputs of the first-stage weak
classifiers are further classified by the second-stage weak
classifiers. Consequently, faces belonging to each class can be
well separated from other classes.

5.3.5. Performance Impact of System Reconfiguration. In
this section, we evaluate the variation of the hardware
implementation cost, detection speed, and accuracy while
reconfiguring the proposed RIMVFED architecture model as
discussed in Section 4.

Reconfiguring the Scanning Step and Scaling Factor. Accord-
ing to (7), the number of subwindows to be processed is
influenced by the scanning step {Sx,S,} and scaling factor

EURASIP Journal on Advances in Signal Processing

60

50 b

Detection time (ms)

(=] < f=} o] j=} j=} \O f=}
N <t < =] N o« D~ (=3
— — o o o < wn =)
* * * * * * * *
(=3 N =3 < (=3 (= =<} (=3
O N N 0 5] < O (=3
— — 32} 32} < =] D~ =)
Image resolution

I (10, 10,2) 0 (4,2,1.25)

I (8,8,2) N (2,2, 1.25)

B (6,6,1.5) (1,2,1.2)

[(4,4,15) I (1,1 10)

T (4,4,1.25)

FIGURE 17: Variation of detection speed while changing S,, S, and
r.

r. We evaluate the variations of detection speed and accuracy
on our own database while changing S,, S, and r, as shown in
Figures 17 and 18. In this experiment, the other parameters
are the same with what have been described in Section 5.3.2.

It can be seen from Figure 17 that the detection speed
increases with the increasing of Sy, S, and r. The reason is
that the increasing of S, S, and r will obviously decrease the
number of sub-windows in a frame.

From the ROC curves in Figure 18, we can see that the
detection rate decreases with the increasing of Sy, S, and r.
The reason is that the increasing of S, S, and r will obviously
decrease the number of subwindows in a frame and thus skip
some potential faces while scanning the frame.

Reconfiguring the Number of Detector Nodes, Cascade Stages
and Weak Classifiers. According to (10), (11), (12), the
number of detector nodes, cascade stages in each node
and weak classifiers in each strong classifier determines
the hardware cost of the detector tree. The sum of stages
in all nodes is the number of all strong classifiers in the
system actually. As discussed in Section 4.2, we can configure
different numbers of nodes and cascade stages in each
node to meet the requirements of different applications.
In addition, the number of weak classifiers in each strong
classifier can also be reconfigured.

Figure 19 gives the variation of ALUTs required by the
entire detector tree for different number of weak classifiers.
As expected, the number of ALUTs grows approximately
linearly with the number of weak classifiers. If the hardware
has more resources, more weak classifiers can be deployed to
achieve more accurate face detection (based on the analysis

EURASIP Journal on Advances in Signal Processing

ROC curves

0.95

0.9

0.85 |

Detection rate

0.8 F

0.75

0.7 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900

False alarm

—— (1,1, 1.1) —%- (4,4, 1.5)
-m- (1,2,1.2) % (6,6, 1.5)
e (2,2,1.25) 4~ (8,8,2)
- (4,2,1.25) —— (10, 10,2)

—v— (4,4,1.25)

FIGURE 18: Variation of detection accuracy for 320 x 240 images
while changing S,, S, and r.

x10%
11

10

9t

ALUTs
~

2
1000 1500 2000 2500 3000 3500 4000

Number of weak classifiers

FiGURE 19: Hardware cost variation of the detector tree for different
number of weak classifiers.

in [14], the detection error reduces monotonously with the
increasing of features (equally with the increasing of weak
classifiers) within a certain range), and the detection granu-
larity can be finer to classify the face poses more precisely.

6. Conclusions

For detecting rotation invariant multi-view faces with all
—/+90° ROP and 360°-degree RIP pose changes, we pre-
sented a fine-classified method and an FPGA-based recon-
figurable architecture. A tree-structured detector hierarchy

was

21

designed to organize multiple detector nodes. A fine-

classified boosting algorithm was proposed to train each
detector node, where each weak classifier is a novel two-stage
structure. The proposed method achieves higher accuracy
than related works. Due to the highly parallel and pipelined
design of the hardware architecture for RIMVFD and the
reusability of detector nodes, marvelous speed were realized
compared with previous related works.

Acknowledgment

This work is supported in part by the National Science Foun-
dation of China through grants 60633050 and 60833004.

References

(1]

(2]

M.-H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces
in images: a survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 1, pp. 34-58, 2002.

H. A. Rowley, Neural network-based human face detection,
Ph.D. thesis, Carnegie Mellon University, 1999.

H. Schneiderman and T. Kanade, “A statistical method for
3d object detection applied to faces and cars,” in Proceedings
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR °00), vol. 1, pp. 746-751, Hilton
Head Island, SC, USA, 2000.

P. Viola and M. Jones, “Rapid object detection using a
boosted cascade of simple features,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR °01), vol. 1, pp. 511-518, 2001.

A. Kuchinsky, C. Pering, M. L. Creech, D. Freeze, B. Serra, and
J. Gwizdka, “FotoFile: a consumer multimedia organization
and retrieval system,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 496-503,
Pittsburgh, Pa, USA, 1999.

B. Wu, H. Ai, C. Huang, and S. Lao, “Fast rotation invariant
multi-view face detection based on real adaboost,” in Proceed-
ings of the 6th IEEE International Conference on Automatic Face
and Gesture Recognition (FGR ’04), pp. 79-84, May 2004.

S. Z. Li, L. Zhu, Z. Q. Zhang, A. Blake, H. J. Zhang, and H.
Shum, “Statistical learning of multi-view face detection,” in
Proceedings of the 7th European Conference on Computer Vision
(ECCV °02), pp. 117-121, Copenhagen, Denmark, May 2002.

M. Jones and P. Viola, “Fast multi-view face detection,”
Tech. Rep. MERL-TR2003-96, Mitsubishi Electric Research
Laboratories, 2003.

C. Huang, H. Ai, Y. Li, and S. Lao, “Vector boosting for
rotation invariant multi-view face detection,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV
’05), vol. 1, pp. 446—453, October 2005.

R. E. Schapire and Y. Singer, “Improved boosting algorithms
using confidence-rated predictions,” Machine Learning, vol.
37, no. 3, pp. 297-336, 1999.

J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic
regression: a statistical view of boosting,” Annals of Statistics,
vol. 28, no. 2, pp. 337-407, 2000.

R. Xiao, L. Zhu, and H.-J. Zhang, “Boosting chain learning
for object detection,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV ’03), vol. 1, pp. 709—
715, Nice, France, 2003.

22

(13]

[14]

[26]

(27

S.Z.Liand Z. Q. Zhang, “FloatBoost learning and statistical
face detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 9, pp. 1112-1123, 2004.

T. Mita, T. Kaneko, and O. Hori, “Joint Haar-like features for
face detection,” in Proceedings of the 10th IEEE International
Conference on Computer Vision (ICCV °05), vol. 2, pp. 1619—
1626, Beijing, China, 2005.

R. Lienhart and J. Maydt, “An extended set of Haar-like
features for rapid object detection,” in Proceedings of IEEE
International Conference on Image Processing (ICIP °02), vol.
1, pp. 900903, 2002.

C. Liu and H.-Y. Shum, “Kullback-Leibler boosting,” in Pro-
ceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’03), vol. 1, pp. 587-594,
June 2003.

S. Baluja, M. Sahami, and H. A. Rowley, “Efficient face
orientation discrimination,” in Proceedings of International
Conference on Image Processing (ICIP °04), vol. 1, pp. 589-592,
2004.

P. Wang and Q. Ji, “Learning discriminant features for multi-
view face and eye detection,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR °05), vol. 1, pp. 373-379, 2005.

Y. Abramson and B. Steux, “YEF real-time object detection,”
in Proceedings of the International Workshop on Automatic
Learning and Real-Time (ALART ’05), pp. 5-13, 2005.

Y. Hori, K. Shimizu, Y. Nakamura, and T. Kuroda, “A real-
time multi face detection technique using positive-negative
lines-of-face template,” in Proceedings of the 17th International
Conference on Pattern Recognition (ICPR ’04), vol. 1, pp. 765—
768, 2004.

S. Paschalakis and M. Bober, “A low cost FPGA system for
high speed face detection and tracking,” in Proceedings of IEEE
International Conference on Field-Programmable Technology
(ICEPT ’03), pp. 214-221, December 2003.

T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Irwin, and
W. Wolf, “Embedded hardware face detection,” in Proceedings
of the 17th IEEE International Conference on VLSI Design
(ICVLSI 04), vol. 17, pp. 133-138, 2004.

M. Yang, Y. Wu, J. Crenshaw, B. Augustine, and R. Mareachen,
“Face detection for automatic exposure control in handheld
camera,” in Proceedings of the 4th IEEE International Confer-
ence on Computer Vision Systems (ICVS 06), p. 17, 2006.

R. E. Schapire, “The strength of weak learnability,” Machine
Learning, vol. 5, no. 2, pp. 197-227, 1990.

Y. Freund and R. E. Schapire, “A decision-theoretic general-
ization of on-line learning and an application to boosting,”
Journal of Computer and System Sciences, vol. 55, no. 1, pp.
119-139, 1997.

R. E. Schapire, “The boosting approach to machine learning:
an overview, in Proceedings of the MSRI Workshop on
Nonlinear Estimation and Classification, pp. 149-172, Berkeley,
Calif, USA, 2002.

C. Papageorgiou and T. Poggio, “A trainable system for object
detection,” International Journal of Computer Vision, vol. 38,
no. 1, pp. 15-33, 2000.

P. Viola and M. J. Jones, “Robust real-time face detection,”
International Journal of Computer Vision, vol. 57, no. 2, pp.
137-154, 2004.

I. DeMacq and L. Simar, “Hyper-rectangular space partition-
ing trees, a few insight,” Tech. Rep., Universite Catholique de
Louvain, Louvain, Belgium, 2002.

EURASIP Journal on Advances in Signal Processing

[30] J. Mitéran, J. Matas, E. Bourennane, M. Paindavoine, and J.

Dubois, “Automatic hardware implementation tool for a dis-
crete adaboost-based decision algorithm,” EURASIP Journal
on Applied Signal Processing, vol. 2005, no. 7, pp. 1035-1046,
2005.

[31] Y. Wei, X. Bing, and C. Chareonsak, “FPGA implementation

of AdaBoost algorithm for detection of face biometrics,” in
Proceedings of IEEE International Workshop on Biomedical
Circuits and Systems, pp. 17-20, December 2004.

	1. Introduction
	2. Proposed RIMVFD Method
	2.1. Review of AdaBoost
	2.2. AdaBoost-Based Face Detection Framework
	2.3. Tree-Structured Detector Hierarchy for RIMVFD
	2.4. Fine-Classified Boosting Method for RIMVFD
	2.5. Training of Weak Classifiers
	2.5.1. The First Stage of Weak Classifier
	2.5.2. The Second Stage of Weak Classifier

	3. Design of the Hardware Architecture Model
	3.1. Design of the Global Structure
	3.2. Organization of the Detector Hierarchy
	3.3. Parallel Implementation of the Strong Classifier
	3.4. Design of the Weak Decision Function

	4. Reconfiguration of the Architecture Model
	4.1. Reconfiguration on the Global Structure Level
	4.2. Reconfiguration on the Detector Hierarchy Level
	4.2.1. Reconfiguration of the Detection Granularity and Range
	4.2.2. Reconfiguration of the Cascade Number

	4.3. Reconfiguration on the Strong Classifier Level
	4.4. Reconfiguration on the Weak Decision Function Level
	4.5. Design Space Exploration Algorithm

	5. Experimental Results
	5.1. Training Dataset
	5.2. Training Procedure
	5.3. Performance Evaluation of the Hardware RIMVFD System
	5.3.1. Test-Bed and Test Data
	5.3.2. Resource Utilization
	5.3.3. Speed Comparison with Software Solution on PC and Related Works
	5.3.4. Accuracy Comparison with Related Works
	5.3.5. Performance Impact of System Reconfiguration

	6. Conclusions
	Acknowledgment
	References

