
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 924135, 8 pages
doi:10.1155/2009/924135

Research Article

Wavelet-Based Speech Enhancement Using
Time-Frequency Adaptation

Kun-ChingWang

Department of Information Technology & Communication, Shin Chien University, No. 200, University Road,
Neimen Shiang, Kaohsiung 845, Taiwan

Correspondence should be addressed to Kun-Ching Wang, wkc0224@seed.net.tw

Received 22 February 2009; Revised 21 July 2009; Accepted 11 October 2009

Recommended by Satya Dharanipragada

Wavelet denoising is commonly used for speech enhancement because of the simplicity of its implementation. However, the
conventional methods generate the presence of musical residual noise while thresholding the background noise. The unvoiced
components of speech are often eliminated from this method. In this paper, a novel algorithm of wavelet coefficient threshold
(WCT) based on time-frequency adaptation is proposed. In addition, an unvoiced speech enhancement algorithm is also integrated
into the system to improve the intelligibility of speech. The wavelet coefficient threshold (WCT) of each subband is first temporally
adjusted according to the value of a posterior signal-to-noise ratio (SNR). To prevent the degradation of unvoiced sounds during
noise, the algorithm utilizes a simple speech/noise detector (SND) and further divides speech signal into unvoiced and voiced
sounds. Then, we apply appropriate wavelet thresholding according to voiced/unvoiced (V/U) decision. Based on the masking
properties of human auditory system, a perceptual gain factor is adopted into wavelet thresholding for suppressing musical residual
noise. Simulation results show that the proposed method is capable of reducing noise with little speech degradation and the overall
performance is superior to several competitive methods.
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1. Introduction

Many speech signal processing applications have been
applied in real-world [1]. The performance of speech coding
and recognition system that operate in noisy environments
decrease when high ambient noise levels occur. Therefore,
speech enhancement system becomes a hot research topic to
improve the performance of many computer-based speech
recognition systems, coding and communication applica-
tions [2, 3]. The exiting methods such as spectral subtraction
[4, 5], Wiener filtering [5, 6], and Ephraim-Malah filtering
[7] are well-known. Recently, wavelet shrinkage has emerged
as a powerful tool for removing noise from signal [8–11]. It
is a simple denoising technique based on the thresholding of
the wavelet coefficients (WCs). Donoho and Johnstone firstly
proposed a universal threshold for removing the additive
white Gaussian noise [8, 9]. In addition, they also pro-
posed a level-dependent threshold to remove colored noise
[12]. Bahoura and Rouat proposed a method of threshold
adaptation in time domain by utilizing the use of Teager
energy operator (TEO) [13]. The TEO can improve the

discriminability for a speech frame. Chen et al. presented an
improved wavelet-based speech enhancement method using
the perceptual wavelet packet decomposition and the TEO.
Lu and Wang proposed a method that the background noise
can be almost removed by adjusting the wavelet coefficient
threshold (WCT) according to the value of SNR [14].
After that, the adaptive wavelet-based methods in speech
enhancement are widely presented. They utilize adequately
WCT to improve the performance of speech enhancement.

For noisy speech, energies of unvoiced segments are
comparable to those of noise. In the most techniques which
use the wavelet thresholding for speech enhancement, they
may not only suppress additional noise but also some speech
components like unvoiced ones. Consequently, the detection
of the voiced/unvoiced segments of the speech signals is
a main problem in wavelet-based methods. Sheikhzadeh
and Abutalebi [15] suggested an improved scheme, which
categorized speech into either a voiced frame or an unvoiced
frame. They increased WCT for high bands in a voiced frame
and decreased the threshold values for high bands in an
unvoiced frame. As a result, both low-frequency components
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Figure 1: The architecture of proposed speech enhancement method based on the time-frequency adaptation of the wavelet threshold.

of voiced segments and high-frequency components of
unvoiced segments are reserved by the soft thresholding
algorithm. In addition, a number of methods were consid-
ered to reduce the effect of musical residual noise [16, 17].
Since human ears cannot perceive additive noise when at
levels below the noise masking threshold (NMT), Virag used
the masking properties of the human auditory system to
suppress the effect of musical residual noise [16].

In this paper, we introduce a novel wavelet-based spe-
ech enhancement using time-frequency adaptation for pro-
viding robustness to nonstationary and colored noise. The
perceptual wavelet packet transform (PWPT) is applied to
approximate the human auditory system. The wavelet coeffi-
cient threshold (WCT) of each subband is first temporally
adjusted according to the value of a posterior signal-to-
noise ratio (SNR). Consequently, utilizing V/U decision, the
different threshold values are used as voiced and unvoiced
frames to further improve the intelligibility of the processed
speech signal. In addition, the musical residual noise can
be efficiently suppressed to improve the perceptual quality
when a gain factor is typically derived according to the

NMT. Finally, an inverse PWPT is applied to resynthesize the
enhanced speech.

2. Proposed Speech Enhancement Algorithm

Let s(n) represent a discrete time speech signal, and let d(n)
denote a discrete time background noise signal. The noise-
corrupted speech signal x(n) can be modeled as x(n) = s(n)+
d(n). The architecture of proposed speech enhancement
method based on the time-frequency adaptation of the
wavelet threshold is shown in Figure 1, and the proposed
method is organized in the following seven steps.

2.1. Perceptual Wavelet Packet Transform (PWPT). Critical
subband is widely used in perceptual auditory modeling [18].
In this work, a perceptual wavelet packet transform (PWPT)
is used to decompose the speech signal from 20 Hz to 16 kHz
into 24 critical frequency subbands:

w
j
ξ(k) = PWPT{x(n)}, ξ = 1, . . . , 24, (1)
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Figure 2: The structure of wavelet packet transform (PWPT).
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Figure 3: The highpass filter and lowpass filter implemented with the Daubechies family wavelet.

where w
j
ξ(k) means the kth coefficient of the ξth subband on

level j. PWPT{·} denotes a process of PWPT.
Figure 2 shows the implementation of an efficient five-

level tree structure. Before an operator of downsampling
by 2 in each level, the lowpass (LP) and highpass (HP)
are implemented with 18-tap FIR filters derived from the
Daubechies family wavelet shown in Figure 3 [19].

2.2. Speech/Noise Detector (SND) Using Teager Energy
on Wavelet Domain. Various techniques for detecting
voiced/unvoiced (V/U) speech regions have been proposed;
however, the performance of the speech/noise detector
(SND) is dramatically degraded in noise. The teager energy
operator (TEO) is a powerful nonlinear operator; it has
been experimentally observed that the TEO can enhance
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the discriminability among speech and noise and further
suppress the noise components from noisy speech signals
[20]. The discrete-time TEO is applied to the wavelet

coefficients w
j
ξ,m(k):

t
j
ξ,m(k) = w

j
ξ,m(k)2 −w

j
ξ,m(k − 1) ·wj

ξ,m(k + 1), (2)

where m represents the frame index.
The simple SND algorithm computes the level 1 energy

on wavelet coefficients of discrete-time TEO, t
j
ξ,m(k). If the

percentage of energy concentrated in level 1 approximation
is above 90% of the total energy, the current frame is regarded
as speech-dominated segment:

SND(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
voiced,

[∑
k t

1
1,m(k)

]2

[∑
k t

1
1,m(k) +

∑
k t

1
2,m(k)

]2

> 0.9,

unvoiced/noise, otherwise,
(3)

where t1
1,m(k) and t1

2,m(k) are the Teager coefficients of app-
roximation and detail subband, respectively.

To further separate the unvoiced sound from noise
segments, a method of unvoiced decision is proposed in this
section. According to the tree structure of PWPT (shown in
Figure 2), the three subenergies corresponding to the wavelet
subband signals are defined as

EL0(m) =
8∑

ξ=1

∑
k

t5
ξ,m(k),

EL1(m) =
12∑
ξ=9

∑
k

t4
ξ,m(k),

EL2(m) =
18∑

ξ=13

∑
k

t4
ξ,m(k) +

∑
k

t3
19,m.

(4)

The unvoiced frame on mth frame is determined as

SND(m) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

unvoiced, if EL2(m) > EL1(m) > EL0(m),

EL0(m)
EL2(m)

< 0.99,

noise, otherwise.
(5)

2.3. The Tracking of Subband Noise Power. Since the back-
ground noise level varies with time, the tracking of noise
plays a major role in determining the quality of a speech
enhancement system, especially in nonstationary environ-
ment. The decision result from SND approach is used to
update the subband noise power. Then, the subband noise
power, σ̃2

d (ξ,m), can be adaptively estimated by [21]

σ̃2
w(ξ,m)= α̃d(ξ,m) · σ̃2

d (ξ,m− 1) + [1− α̃d(ξ,m)] · ε(ξ,m),
(6)

where α̃d(ξ,m) = αd + (1 − αd) · p′(ξ,m), p′(ξ,m) = αp ·
p′(ξ,m− 1) + (1− αp) · I(ξ,m). ε(ξ,m) is the energy of ξth
critical subband and is defined in later. α̃d(ξ,m), αd(ξ,m),
and αp(ξ,m) all represent the smoothing parameter. p′(ξ,m)
and I(ξ,m) are a conditional signal presence probability and
an indicator of voice-dominated, respectively.

Observing (6), I(ξ,m) is an indicator of updating noise
power. The parameter depends on the speech-present ratio
and is determined by the decision of speech-only frame. If
SND(m) = voiced or unvoiced sounds, let I(ξ,m) = 1.
Consequently, α̃d(ξ,m) is increasing and the noise power
of next frame is nearly updated from the current estimated
noise power. Conversely, SND(m) = noise period, let
I(ξ,m) = 0. Consequently, α̃d(ξ,m) is decreasing and the
noise power of next frame is nearly updated from the current
observed signal power.

The result of noise tracking can be used to calculate a
posterior signal-to-noise ratio (SNR):

SNRpost(ξ,m) = 10 · log10
ε(ξ,m)

σ̃2
d (ξ,m− 1)

, (7)

where σ̃2
d (ξ,m − 1) is the estimated noise power of the

previous frame. The value of SNRpost(ξ,m) is determined by
the ratio of the observed ξth subband wavelet energy to the
previous ξth subband estimated noise power. Consequently,
the SNRpost(ξ,m) parameter will help us sense how much
the current subband is corrupted by noise. Therefore, we
will use this information for denoising noise. During the
initialization period, the observed power is assumed to be
noise only and the noise spectrum is estimated by averaging
the initial 10 frames.

2.4. Estimation of Noise Masking Threshold (NMT). This
subsection describes the incorporation of the human audi-
tory masking properties into our enhancement system. The
NMT is estimated on the WCs of PWPT. At first, WCs are
obtained from the PWPT of noisy speech. The energy of ξth
critical subband is calculated by

ε(ξ,m) =
h(ξ)∑
l(ξ)

∣∣∣wj
ξ,m(k)

∣∣∣2
, (8)

where l(ξ) and h(ξ) are the coefficient indices of the first and
last wavelet coefficients in ξth critical subband [16].

An excitation pattern B(ξ,m) can be regarded as an
energy distribution along the basilar membrane. B(ξ,m) can
be calculated by convolving the subband energy ε(ξ,m) with
the spreading function F(ξ) given by [16, 22]

B(ξ,m) = F(ξ)∗ ε(ξ,m) (9)

A relative threshold offset O(ξ), which can be found in
[12, 16], specifies whether a speech frame is tone like or
noise like. This threshold should be imposed when adjusting
the log subband energy. Therefore, a threshold B̃(ξ,m) is
computed as the sum of the log energy for the excitation
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pattern and the offset O(ξ), written as

B̃(ξ,m) = 10 · log10B(ξ,m) + O(ξ), (10)

where the values of the offset O(ξ) are all negative.
Convolving the subband energy ε(ξ,m) with the spread-

ing function F(ξ) increases the energy in each subband, so
to multiply each B̃(ξ,m) by the inverse of the energy gain
is necessary for renormalization. Accordingly, a normalized
threshold is given by

Th(ξ,m) = B̃(ξ,m)−G(ξ,m), (11)

where G(ξ,m) denotes the gain factor between the spread
energy B(ξ,m) and the subband energy ε(ξ,m) in dB.

G(ξ,m) is expressed as

G(ξ,m) = 10 · log10

(
B(ξ,m)
ε(ξ,m)

)
. (12)

Additionally, the normalized threshold Th(ξ,m) is com-
pared with the absolute-hearing threshold (AHT) which is
frequency-dependent and can be closely approximated as
[16, 22]

AHT
(
f
) = 3.64 f −0.8 − 6.5e−0.6( f−3.3)2

+ 0.001 f 4 [dB] (13)

with f in kHz.
Finally, the NMT T(ξ,m) is obtained by

T(ξ,m) = max
{

AHT
(
f
)
, Th(ξ,m)

}
, (14)

where f is chosen as the central frequency of the critical band
ξ.

2.5. Estimation of Wavelet Coefficient Threshold. In this work,
we propose a novel scheme that adjusts WCT according to
the value of a posterior SNR and formulate the WCT as
follows:

λ(ξ,m) = λj ·
(

1− 1

1 + e−γ·(SNRpost(ξ,m)−η)

)
, (15)

where λj = MAD j /0.6745 ·
√

2 · log(Nj) means the level-
dependent threshold λj [12]. MAD j represents the absolute
median estimated at the jth level. γ and η are the slope and
center-offset of the Sigmoid function, respectively. These two
factors are chosen to be 0.2 and 1, respectively.

Observing (15), the value of λ(ξ,m) is adjusted by a
Sigmoid functions, and its value varies with the estimate of
a posterior signal-to-noise ratio while locating nonspeech
segments. Otherwise, the smoothing parameter will be set
one. γ and η are the slope and center-offset of the Sigmoid
function, respectively. Elevating γ can decrease the transition
range according to posteriori subband SNR. On the contrary,
decreasing it would increase the transition range.

In general, a frame with high value of signal-to-noise
ratio (SNR) implies that the current frame is a speech-
dominated frame. On the contrary, a frame with low value
of SNR implies that the frame is either in a noise-only region

or in a very noisy environment. So, the wavelet threshold of
the frame should be made smaller for a speech-dominated
frame. The wavelet coefficients are contributed mostly by the
noise component in a noise-dominated frame.

The speech-dominated frame can be further categorized
into two types: those are the voiced speech and the unvoiced
speech according the V/U decision. A voiced frame possesses
a strong tone-like spectrum in lower subbands, so that
the WCs of lower frequency must be reserved. On the
contrary, the WCT tends to increase in lower frequency if the
frame is categorized as unvoiced speech. The voiced sounds
are quasiperiodic in the time domain and harmonically
structured. In frequency domain, these sounds are generally
localized in bands that are less than 1 kHz. For many vowels
of male and female voices, the statistic results indicate
approximately that the frequency of the first formant does
not exceed 1 kHz and is superior to 100 Hz. Consequently,
when a voiced-dominated frame forms V/U decision, the
WCT from (15) must be adapted to as

λ′(ξ,m) =
⎧⎨⎩αL · λ(ξ,m), if fξ > 100 Hz, fξ < 1000 Hz,

αH · λ(ξ,m), otherwise,
(16)

where αL = 0.1 and αH = 1.0 are experimentally dete-
rmined. The frequency boundary covers most of the tone-
like frequency components. fξ denotes the frequency bin of
subband ξ.

In (16), more WCs in lower subbands must be properly
reserved since a voiced frame contains strong tone-like com-
ponents in the lower frequency. This can be accomplished by
reducing the WCT in lower wavelet subbands.

However, the energy of the unvoiced sounds is usually
concentrated in high frequencies (≥3 kHz). If an unvoiced-
dominated frame forms V/U decision, the WCT from (15)
must be adjusted to as

λ′(ξ,m) =
⎧⎨⎩βH · λ(ξ,m), if fξ > 3000 Hz,

βL · λ(ξ,m), otherwise,
(17)

where βL = 1.2 and βH = 0.05 are experimentally
determined.

The higher subbands contain less voiced information;
reducing the WCs in higher subbands would suppress back-
ground noise. The higher subbands contain more significant
information than the lower subbands do in an unvoiced
frame. Hence, reserving the WCs of higher subbands can
achieve a better performance by reducing the WCT in higher
wavelet subbands shown as (17). The WCs corresponding
to the lower subbands must be reduced to suppress the
background noise.

In order to improve the final perceptual quality after
thrsholding, a suppression method of musical residual noise
can adopt a perceptual gain factor into wavelet thresholding.
The time-frequency-adapted wavelet threshold is modified
from (16) and (17), respectively:

λ′′(ξ,m) = λ′(ξ,m) · gPECP(ξ,m), (18)
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Table 1: The objective evaluation using SegSNR improvement.

Input SNR [dB]

Noise type Method −5 0 5 10

White Gaussian

TI 5.13 4.11 2.6 2.37

WPD+TEO 9.52 6.74 4.42 2.48

TSA 7.84 6.28 4.02 2.61

PER+WPT 10.52 8.44 5.63 3.58

Proposed 13.52 11.06 9.02 5.62

Vehicle

TI 7.43 5.02 2.79 2.04

WPD+TEO 8.76 5.84 4.52 2.51

TSA 7.11 4.82 3.03 2.02

PER+WPT 9.34 6.73 5.64 3.52

Proposed 12.01 9.84 8.62 5.42

Factory

TI 3.48 3.23 1.68 1.41

WPD+TEO 5.43 3.54 2.52 1.82

TSA 4.53 2.84 2.03 1.32

PER+WPT 5.84 4.52 3.06 2.01

Proposed 9.22 8.51 6.02 4.92

Table 2: The objective evaluation using IS measure.

Input SNR [dB]

Noise type Method −5 0 5 10

White Gaussian

TI 3.48 3.1 2.68 2.52

WPD+TEO 2.2 2.01 1.74 1.59

TSA 2.32 2.19 1.99 1.76

PER+WPT 2.21 2.02 1.77 1.6

Proposed 1.94 1.62 1.51 1.3

Vehicle

TI 3.62 3.39 3.13 2.55

WPD+TEO 1.71 1.65 1.48 1.29

TSA 2.11 1.91 1.73 1.68

PER+WPT 1.98 1.71 1.73 1.42

Proposed 1.4 1.22 1.07 0.92

Factory

TI 3.71 3.49 3.26 2.71

WPD+TEO 1.96 2.81 1.63 1.42

TSA 2.23 2.12 1.94 1.7

PER+WPT 2.11 2.02 1.72 1.65

Proposed 1.63 1.31 1.22 1.02

where gPECP(ξ,m) = 1/(1+max{
√
|σ̃2

d (ξ,m)|/T(ξ,m)−1, 0})
denotes a perceptual gain factor given by [23], and T(ξ,m) is
derived from the NMT.

From (18), it is known that if the energy of musical
residual noise, σ̃2

d (ξ,m), is greater than the NMT in a
subband, the wavelet coefficient thresholds become small
adjusted by the gain factor to suppress infecting noise.
However, if the energy of residual noise is smaller than
the NMT, the corrupting noise cannot be perceived by the
human ear. We do not need to change the WCTs for retaining
the speech quality.

2.6. Soft Thresholding. The noise components are suppressed
by soft thresholding wavelet packet coefficients of the noisy
signal as follows:

w̃
j
ξ,m(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sgn
[
w

j
ξ,m(k)

]
·
[∣∣∣wj

ξ,m(k)
∣∣∣− λ′′(ξ,m)

]
,

if
∣∣∣wj

ξ,m(k)
∣∣∣ > λ′′(ξ,m),

0, if
∣∣∣wj

ξ,m(k)
∣∣∣ ≤ λ′′(ξ,m),

(19)
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Table 3: The objective evaluation using PESQ measure.

Input SNR [dB]

Noise type Method −5 0 5 10

White Gaussian

TI 1.10 (1.04) 1.37 (1.24) 1.88 (1.55) 2.10 (1.96)

WPD+TEO 1.25 (1.04) 1.45 (1.24) 1.94 (1.55) 2.26 (1.96)

TSA 1.26 (1.04) 1.42 (1.24) 1.92 (1.55) 2.18 (1.96)

PER+WPT 1.28 (1.04) 1.72 (1.24) 2.01 (1.55) 2.30 (1.96)

Proposed 1.62 (1.04) 1.85 (1.24) 2.13 (1.55) 2.45 (1.96)

Vehicle

TI 1.21 (1.04) 1.42 (1.24) 1.89 (1.55) 2.12 (1.96)

WPD+TEO 1.39 (1.04) 1.52 (1.24) 1.92 (1.55) 2.31 (1.96)

TSA 1.33 (1.04) 1.48 (1.24) 1.90 (1.55) 2.10 (1.96)

PER+WPT 1.48 (1.04) 1.51 (1.51) 1.84 (1.55) 2.41 (2.16)

Proposed 1.83 (1.04) 1.95 (1.51) 2.46 (1.55) 2.50 (2.16)

Factory

TI 1.19 (1.04) 1.33 (1.24) 1.92 (1.55) 2.01 (1.96)

WPD+TEO 1.28 (1.04) 1.41 (1.24) 1.98 (1.55) 2.15 (1.96)

TSA 1.21 (1.04) 1.38 (1.24) 1.92 (1.55) 2.10 (1.96)

PER+WPT 1.47 (1.04) 1.51 (1.42) 2.28 (1.55) 2.34 (2.11)

Proposed 1.59 (1.04) 1.78 (1.42) 2.31 (1.55) 2.49 (2.11)

where sgn[·] is the sign function. w̃
j
ξ,m(k) is thresholded

wavelet coefficient.

2.7. Inverse PWPT. Finally, the speech signal is synthesized
with the inverse transformation of the thresholded wavelet
packet coefficients as follows:

s̃(n) = PWPT−1
{
w̃

j
ξ,m(k)

}
, (20)

where PWPT−1{·}means process of inverse PWPT.

3. Experimental Results

In this section, we select the speech database that contains
60 speech phrases (in Chinese Mandarin and in English)
spoken by both male and female speakers. To set up the
noisy signal for test, we added the prepared noise signals
to the recorded speech signal with different SNRs range
from −5 dB to 10 dB. A variety of nonstationary noises are
taken from the Noisex-92 database [24] for experiments.
All noisy signals are sampled at 8 kHz with 16 bits/sample.
The frame size is 64 milliseconds and the frame shift is 32
milliseconds. To evaluate the performance of our algorithm,
the methods including (1) speech enhancement using time-
invariant threshold (TI) [8], (2) speech enhancement using
perceptual wavelet packet decomposition and Teager energy
operator proposed (WPD+TEO) [10], (3) wavelet speech
based on time-scale adaptation (TSA) [25], and (4) speech
enhancement method using perceptually constrained gain
factors in critical-band-WPT proposed (PER+WPT) [14] are
compared to our proposed algorithm.

Several objective speech quality measures including
segmental SNR (SegSNR) improvements, Itakura-Saito (IS)
measure [26], and perceptual evaluation of speech quality

(PESQ) [27–29] are tested to vary noise at the range
[−5, 10] dB in this section. Table 1 shows the SegSNR
improvements of the speech enhancement evaluations for
different methods. The amounts of noise reduction, residual
noise, and speech distortion can be measured by SegSNR
improvement. Observing Table 1, the SegSNR improvements
are used for the performance evaluations in different noise
environments. The higher SegSNR improvements results
show that the proposed method has much better enhance-
ment performance than others. In addition, the perceptual
gain factor offers the best performance at the lower SNR
inputs in the proposed method. Table 2 shows the Itakura-
Saito (IS) measure results of the speech enhancement. The
majority of IS results show that the proposed method has
the lower spectral distortion values than those of other
methods at different SNR levels for various nonstationary
noises such as factory and vehicle. The results of PESQ
scores are performed by the actual human listeners among
the algorithms and presented in Table 3. In Table 3, the
comments in brackets are the scores of PESQ without
thresholding process. It is observed that the proposed
enhancement method produces the better improvement of
quality speech than other methods especially for low SNR.

4. Conclusion

The proposed speech enhancement algorithm uses time-
frequency wavelet threshold instead of traditional invariant
and time-variant threshold. The wavelet coefficient threshold
is adjusted according to the value of a posterior SNR. In
addition, the V/U decision lets the WCT be different with
voiced frame or unvoiced frame. A residual musical noise
is successfully suppressed when a perceptual gain factor is
adopted into the estimation of WCT. Experimental results
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show that the proposed method yields a higher improvement
in SegSNR, lower IS measure, and higher PESQ scores than
other methods under all tested environmental conditions.
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