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decompositions per DFT bin, and might be too computationally demanding for low-complexity applications like hearing aids.
In this paper we present a noise tracking method with low complexity, but approximately similar noise tracking performance as
the DFT-subspace approach. The presented method uses a periodogram with resolution that is higher than the spectral resolution
used in the noise reduction algorithm itself. This increased resolution enables estimation of the noise PSD even when speech
energy is present at the time-frequency point under consideration. This holds in particular for voiced type of speech sounds which
can be modelled using a small number of complex exponentials.
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1. Introduction

The growing interest in mobile digital speech processing
devices for both human-to-human and human-to-machine
communication has led to an increased use of these devices in
noisy conditions. In such conditions, it is desirable to apply
noise reduction as a preprocessing step in order to extend the
SNR range in which the performance of these applications is
satisfactory.

A group of methods that is often used for noise reduction
in the single-microphone setup are the so-called discrete
Fourier transform (DFT) domain-based approaches. These
methods work on a frame-by-frame basis where the noisy
signal is divided in windowed time-frames, such that both
quasistationarity constraints imposed by the input signal
and delay constraints imposed by the application at hand
are satisfied. Subsequently, these windowed time-frames
are transformed using a DFT. From the resulting noisy
speech DFT coefficients the corresponding clean speech
DFT coefficients are estimated, typically by using Bayesian
estimators [1] followed by an inverse DFT to the time

domain and an overlap-add procedure to synthesize the
enhanced signal.

Typically, clean speech DFT estimators depend on the
speech and noise power spectral density (PSD), for example,
[2–5]. Since these two quantities are defined in terms of the
statistical expectation operator they are unknown in practice
and have to be estimated from the noisy speech signal. The
speech PSD is often estimated by exploiting the so-called
decision-directed approach [2]. This method is sometimes
favored over maximum likelihood estimation of the speech
PSD [2], because it results in a lower amount and more
natural sounding residual noise [6]. Accurate noise PSD
estimation is also of vital importance in order to obtain an
estimated clean speech signal with good quality. Errors in the
noise PSD estimate influence directly the amount of achieved
noise suppression. Specifically, an overestimate of the noise
PSD will typically lead to oversuppression of the noise and
potentially to a loss of speech quality, while an underestimate
of the noise PSD leaves an unnecessary amount of residual
noise in the enhanced signal.
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Figure 1: Overview of a DFT-domain-based noise reduction system with the proposed noise PSD tracking algorithm.

Under rather stationary noise conditions, the use of a
voice activity detector [7, 8] (VAD) can be sufficient for
estimation of the noise PSD. With a VAD the noise PSD is
estimated during speech pauses. However, VAD based noise
PSD estimation fails when the noise is non-stationary. An
alternative is to estimate the noise PSD using algorithms
based on minimum statistics [9, 10] (MS). These methods
do not rely on the explicit use of a VAD, but make use of the
fact that the power level of the noisy signal in a particular
frequency bin seen across a sufficiently long time interval
will reach the noise-power level. From the minimum value in
such a time-interval the noise PSD is estimated by applying
an appropriate bias compensation [11]. A crucial parameter
in MS based noise PSD estimation is the length of the time-
interval. If the interval is chosen too short, speech energy
will leak into the noise PSD estimate, because the interval
will not contain a noise-only region. However, increasing the
duration of the interval will increase the tracking delay in
regions where the noise PSD is increasing in level.

Another method that does not depend on a VAD
is quantile-based (QB) noise PSD estimation [12]. This
method relies on estimation of the noise PSD by computing
per DFT bin a temporal quantile p of noisy periodograms
in a certain time-interval. For the special case of a p = 0.5
quantile, the noise PSD is estimated by the median of the
data in the time-interval. The speed at which this method
can estimate the noise PSD for nonstationary noise sources
depends on the length of the time-interval. As such, QB noise
PSD estimation methods are subject to a similar tradeoff
as MS. Since the noise PSD estimate is based on a quantile
across time and not only on the minimum, QB noise PSD
estimation is expected to track decreasing noise levels with
larger delay than MS, while an increasing noise level can
potentially be tracked faster than MS. In addition, it is
also more likely that QB noise PSD estimation is subject
to leakage of speech into the noise PSD estimate because it
exploits the quantile instead of the minimum within a time-
interval.

Other recent advancements for noise PSD estimation
comprise data-driven noise PSD estimation [13], improved

minima controlled recursive averaging [14], noise PSD
estimation based on classified codebooks [15], and noise
PSD estimation based on harmonic tunnelling [16]. The
approach based on harmonic tunnelling makes explicit use
of the harmonic structure in voiced speech sounds and
estimates the noise PSD by exploiting the gaps between
harmonics. Consequently, this method can continuously
update the noise PSD under the condition that the DFT bin
under consideration does not contain a speech harmonic.

Recently, in [17], a method for noise tracking was pro-
posed which exploits the tonal structure in speech, but which
can also estimate the noise PSD when speech is actually
present in the DFT bin under consideration. This method,
named DFT-subspace approach, is based on the construction
of correlation matrices in the DFT-domain for each time-
frequency point. These correlation matrices are decomposed
using an eigenvalue decomposition into two submatrices of
which the columns span two mutually orthogonal vector
spaces, namely, a noisy signal subspace and a noise-only
subspace. The eigenvalues that describe the energy in the
noise-only subspace then allow for an update of the noise
PSD, even when speech is present. Although the method
proposed in [17] has been shown to be effective for noise PSD
estimation and can be implemented in MATLAB in real-time
on a modern PC, the necessary eigenvalue decompositions
might be too complex for applications with very low-
complexity constraints like portable communication devices
such as mobile phones and hearing aids.

A possible way to reduce the computational complexity
of the algorithm in [17] is to use subspace tracking
algorithms that are able to track subspaces efficiently over
time, for example, [18, 19]. Although this might reduce the
computational complexity of the DFT-subspace algorithm, it
might also change its performance in an unpredictable way.

In this paper, we propose an alternative noise PSD
tracking algorithm with approximately similar performance
as the method presented in [17], but with considerably
reduced computational complexity. The proposed method
is outlined in Figure 1. The method makes use of the fact
that often speech sounds can be modelled using a small
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number of complex exponentials [20]. Notice that this holds
in particular for voiced type of speech sounds, especially
at lower frequencies. The noise PSD tracking method is
based on noisy periodograms computed using a DFT with
a frequency resolution that is typically higher than that of
the DFT used in the noise reduction algorithm itself. In the
following, we will use the expression HR-DFT to refer to the
high-resolution DFT that is used to estimate the noise PSD.
To refer to the DFT that is used to compute the noisy DFT
coefficients in the noise reduction algorithm we maintain the
expression DFT. For example, in the simulation experiments
reported in Section 4, we use a 256-points DFT and a 1024-
points HR-DFT at a sampling rate of 8 kHz. Hence, due to
the difference in resolution between the DFT and the HR-
DFT, every DFT bin corresponds to a sub-band of several
HR-DFT bins. The high-resolution periodogram is divided
in sub-bands, corresponding to the frequency bins obtained
by the DFT. Analogous to the method in [17] we divide the
HR-DFT bins within each sub-band to contain noisy speech
and noise only. The noise-only HR-DFT bins are used to
compute a maximum likelihood estimate of the noise PSD
level.

The remainder of this paper is organized as follows. In
Section 2 the basic notation and assumptions are introduced
that will be used throughout this paper. In Section 3 the
proposed noise PSD estimation method based on high-
resolution periodograms is presented. Furthermore, in Sec-
tion 4 experimental results will be presented followed by a
discussion on the proposed noise PSD estimator in Section 5.
Finally, in Section 6 concluding remarks are given.

2. DFT-Based Speech Estimators

Let the bandlimited and sampled time-domain noisy speech
signal be denoted by yt, where the subscript t explicitly
indicates that this is a time-domain signal. We assume that
yt consists of a clean speech signal xt that is degraded by
additive noise nt, that is,

yt = xt + nt. (1)

The noisy signal yt is divided in frames of length L1 by
applying a sliding window w1(m) with m ∈ {0, . . . ,L1 − 1}
with a window-shift M. Let k and i be the frequency-bin
index and time-frame index, respectively, and let K ≥ L1 be
the DFT order. The noisy DFT coefficients y(k, i) are then
given by the discrete Fourier transform of the windowed
time-frames, that is,

y(k, i) =
L1−1∑
m=0

yt(iM + m)w1(m) exp

[
−2πkmj

K

]
, (2)

where j = √−1 is the imaginary unit and where w1 is the
normalized analysis window such that

∑L1−1
m=0 w

2
1(m) = 1.

(This normalization is used to overcome energy differences
between the DFT and HR-DFT coefficients when using
different analysis windows in both transforms.) Similarly,
let x(k, i) and n(k, i) be the clean speech and noise DFT

coefficient at frequency bin k and time-frame i. Due to
linearity of the Fourier transform, it holds that

y(k, i) = x(k, i) + n(k, i). (3)

The DFT coefficients y(k, i), x(k, i), and n(k, i) are assumed
to be realizations of the zero-mean complex-valued random
variables Y(k, i), X(k, i), and N(k, i), respectively. Further, it
is assumed that X(k, i) and N(k, i) are uncorrelated, that is,

E[X(k, i)N∗(k, i)] = 0 ∀k, i. (4)

In order to find an estimate of the clean speech DFT
coefficient x(k, i), say x̂(k, i), a gain function G(k, i) is
typically applied to the noisy DFT coefficients, that is,

x̂(k, i) = G(k, i)y(k, i). (5)

There exist various ways to determine this gain function,
for example, based on Bayesian principles [2–5] or based
on more heuristically motivated arguments, for example,
spectral subtraction [21]. However, irrespective of how the
gain function is derived, it holds that all gain functions are
dependent on the noise PSD σ2

N (k, i) = E[|N(k, i)|2]. As
discussed above, this quantity is generally not known with
certainty, but must be estimated from the available data.

3. Noise PSD Estimation Based on
High-Resolution Periodograms

In the proposed noise PSD tracking method we distinguish
between two different type of time-frames. The time-frames
that are used for the actual processing of the noisy signal in
the noise reduction system have a length of L1 samples and
are defined in Section 2. We refer to these time-frames as
signal-frames. The second type will be called super-frames
and have a length of L2 samples where generally L2 > L1.
The super-frames are used to estimate the noise PSD using
high-resolution DFTs (HR-DFTs). Let D be the allowed
algorithmic delay in samples in addition to the delay of the
signal-frame. A super-frame with index i then comprises the
time samples yt(iM+m) withm ∈ {L1−L2+D, . . . ,L1−1+D}.
For simplicity we assume that size and position of the super-
frames with respect to the signal-frames is fixed. However,
notice that size and position of the super-frames could be
made adaptive with respect to the underlying noisy signal, for
example, using a segmentation algorithm for noisy speech as
presented in [22].

Let Q ≥ L2 be the order of the HR-DFT and let w2 be
a normalized window function such that

∑L2−1
m=0 w

2
2(m) = 1.

The HR-DFT coefficient of a super-frame at frequency bin q
and time-frame i is given by

yHR
(
q, i
) = L1−1+D∑

m=L1−L2+D

yt(iM + m)w2(m) exp
[
−2πqmj

Q

]
,

(6)

where the subscript HR indicates that this is a coefficient
of the HR-DFT of a super-frame. The HR-DFT coefficients
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yHR(q, i) are used to form a high-resolution noisy peri-
odogram |yHR(q, i)|2. Each DFT frequency bin k corresponds
to a band of, say W , HR-DFT frequency bins in the high-
resolution periodogram. More specifically, let HR-DFT-
order Q and DFT-order K be related as Q = PK and let the
kth band of the high-resolution periodogram consist of the
frequency bins q ∈ {q1, . . . , q2}, with W = q2 − q1 + 1. The
bin-numbers q1 and q2 for which the difference between their
center-frequencies equals the width of a DFT frequency bin
k can then be shown as

q1 = kP −
⌊

1
2
P
⌋

,

q2 = kP +
⌊

1
2
P
⌋

,

(7)

where �x� is defined as the nearest integer ≤ x. Because of
the higher-frequency resolution in the HR-DFT, it will be
possible to estimate the noise PSD at a frequency band k even
when speech is actually present in this frequency band. This
is possible under the condition that the clean speech signal as
observed in frequency bin k can be approximated well using
less than the W HR-DFT basis functions that are necessary
to represent the sub-band under consideration. Notice that
this holds in particular for voiced type of speech sounds.

To compute an estimate σ̂2
N (k, i) based on the kth

frequency band of |yHR(q, i)|2, we assume that the noise level
is constant across this frequency band. This assumption can
be made arbitrarily accurate by narrowing the width of the
DFT frequency bins. (Notice that even when this assumption
is not valid, e.g., when the noise level is not constant in a
frequency-band but has a certain slope, the estimated noise
PSD can still be correct as the average noise level in the kth
HR-DFT frequency band might still be equal to the noise
PSD level in the kth DFT bin.) Further we assume that the
noise HR-DFT coefficients NHR have a complex Gaussian
distribution, which is validated by the fact that the time-
span of dependency [23] is relative short for many noise
sources [4]. Let M(k, i) be the set of HR-DFT frequency bins
corresponding to the kth DFT frequency bin that do not
contain speech energy. The maximum likelihood estimate of
the noise PSD in DFT frequency bin k is then given by

σ̂2
N (k, i) = 1

|M(k, i)|
∑

q∈M(k,i)

∣∣yHR
(
q, i
)∣∣2, (8)

where |M(k, i)| denotes the cardinality of the set M(k, i).
When |M(k, i)| = 0, all HR-DFT coefficients contain speech
energy, and σ̂2

N (k, i) is not updated. To reduce the variance of
the estimated values, σ̂2

N (k, i) can be smoothed across time,
for example, using exponential smoothing in combination
with adaptive smoothing factors as in [10]. This will be done
in the simulation experiments in Section 4.

3.1. Determining M(k, i). In order to evaluate (8), it is
necessary to know the set M(k, i). To determine M(k, i) we
make use of a procedure that is quite similar to the one that
was proposed in [17] and which was used to determine the
dimension of a noise-only subspace. The procedure is based

on two assumptions. As already mentioned in Section 3,
the noise HR-DFT coefficients NHR(q, i) are assumed to be
complex Gaussian distributed. Based on this assumption, it
can easily be shown that the squared-magnitude of the noise
HR-DFT coefficients, that is, |NHR(q, i)|2, is exponentially
distributed. Secondly, we assume that the noise PSD develops
relatively slowly across time. This assumption does not limit
the practical performance, since, as it turns out, a noise PSD
that changes with 10 dB per second can still be tracked. This
allows us to use the noise PSD estimated in the previous
frame, that is, σ̂2

N (k, i − 1), as a priori information when
estimating the noise PSD in the current frame.

With these assumptions, we are now in position to
determine which of the frequency bins q ∈ {q1, . . . , q2} in the
kth HR-DFT frequency band do not contain speech energy.
To do so, we apply a Neyman-Pearson hypothesis test [24]
with the following H0 and H1 hypotheses:

H0 :
∣∣yHR

(
q, i
)∣∣2 consists of only noise,

H1 :
∣∣yHR

(
q, i
)∣∣2 consists of noise and speech.

(9)

It can be shown that under rather general conditions, an
optimal decision test compares the value |yHR(q, i)| to a
threshold λth(k, i) [24], that is,

∣∣yHR
(
q, i
)∣∣2 H1

≷
H0

λth(k, i). (10)

Using the aforementioned distributional assumption on
|NHR(q, i)|2, we can express the threshold λth as a function
of the false-alarm probability Pfa by [24]

λth(k, i) = −σ2
N (k, i) lnPfa, (11)

where the unknown noise PSD σ2
N (k, i) is approximated in

practice by the estimated noise PSD value σ̂2
N (k, i− 1).

3.2. Bias Compensation. Generally, the estimate σ̂2
N (k, i) is

biased high due to spectral leakage from neighboring DFT
coefficients that contain speech energy. To overcome this bias
we introduce a bias compensation-factor B, much along the
same lines as in [10], that is dependent on the cardinality
of the set M(k, i), that is, B(|M(k, i)|). Altogether, the noise
PSD is estimated by

σ̂2
N (k, i) = 1

B(|M(k, i)|)|M(k, i)|
∑

q∈M(k,i)

∣∣yHR
(
q, i
)∣∣2, (12)

where |M(k, i)| ∈ {1, . . . ,P}. The exact values of
B(|M(k, i)|) are computed using an offline training pro-
cedure, where we used more than 12 minutes of speech
sentences that were degraded by white Gaussian noise with
a known variance σ2

N (k, i). Let B̃(k, i) be defined as

B̃(k, i) =
(1/|M(k, i)|)∑q∈M(k,i)

∣∣yHR
(
q, i
)∣∣2

σ2
N (k, i)

, (13)

and let T (|M|) be the set of time-frequency points in
the training data for which the number of noise-only
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bins in a frequency band is estimated to be |M|. The
bias compensation-factor B(|M(k, i)|), is then computed by
averaging B̃(k, i) over the set T (|M|) leading to

B(|M|) = 1
|T (|M|)|

∑
(k,i)∈T (|M|)

B̃(k, i). (14)

Although this training procedure makes use of white noise
in order to compute B(|M|), this does not limit the
applicability of the proposed noise PSD estimator as it can be
used to track both white and non-white noise sources as long
as the noise-level in a band can be assumed approximately
constant. The training procedure is applied using only one
SNR, that is, at a global SNR of 10 dB. Clearly, the bias
compensation could be extended by making B(|M|) also
a function of SNR. However, in the results presented in
Section 4 we keep B(|M|) independent of SNR in order to
keep complexity and storage requirements low.

3.3. Algorithm Overview. In this section, we give a summary
of the necessary processing steps in the proposed algorithm.
It is assumed that all processing steps are repeated for each
time-frame index i. However, when less processing power is
available the update rate could be reduced.

(1) Compute HR-DFT of a windowed noisy super-frame
using (6).

(2) Determine the set |M(k, i)| for each band k using (9).

(3) Compute σ̂2
N (k, i) for each band k using (12).

(4) Apply smoothing across time of the estimate noise
PSD in order to reduce its variance.

Whenever |M(k, i)| = 0, all frequency bins in the band
contain speech energy in which case it is not possible to
update the noise PSD in that band during time-frame i.
In these situations, the estimate from the time-frame i − 1
is used. To overcome a complete locking of the noise PSD
estimator under extreme situations when |M(k, i)| = 0 for a
very long time we adopt the safety-net proposed in [13] and
compute the minimum Pmin(k, i) of |y(k, i)|2 across a long
time-interval, for example, a time-interval of one second.
Using Pmin(k, i), the noise PSD is updated by

σ̂ ′
2
N (k, i) = max

[
σ̂2
N (k, i),Pmin(k, i)

]
. (15)

4. Experimental Results

For performance evaluation of the proposed method for
noise PSD estimation we compare its performance with
three reference methods, namely, noise PSD estimation based
on MS as proposed in [10], QB noise PSD estimation as
proposed in [12] with quantile parameter p = 0.5 and
a buffer length of 20 frames, and noise PSD estimation
based on the DFT-subspace approach as proposed in [17].
The speech database that we used consists of more than 7
minutes of Danish speech that was read from newspapers
by 17 different speakers, 9 female speakers and 8 male
speakers, and does not contain long portions of silence.

These speech signals were not used for computation of the
bias compensation in Section 3.2. The speech signals were
degraded by a variety of noise sources at input SNRs of 0,
5, 10, and 15 dB. Both the speech and the noise signals were
used at a sampling frequency of 8 kHz. All signals start with a
noise-only period of 0.5 seconds. All algorithms use the first
0.1 seconds for initialization; these noise-only samples are
excluded from all performance measurements. The length of
the signal-frames is set to L1 = 256, that is, 32 milliseconds.
The length L2 of the super-frames for the proposed method
is a tradeoff between complexity constraints and stationarity
requirements on the noisy speech signal on one hand, and
the potential to exploit the increased frequency resolution
for noise PSD estimation on the other hand. In Section 4.1.2
experiments will be performed that also reflect this tradeoff.
Based on these experiments it follows that the best choice
in terms of noise tracking performance for the length of
the super-frames is around 70–100 milliseconds. In order
to make a fair comparison possible with the DFT-subspace
approach [17], we therefore chose the length L2 such that it
equals the amount of data used in [17] and use L2 = 640
samples, that is, 80 milliseconds.

The signal-frames have an overlap of 50% and are
windowed using a square-root-Hann window. The super-
frames are windowed using a Hann window. The order of
the DFT and the HR-DFT are K = 256 and Q = 1024,
respectively, and are chosen as an integer power of 2 to
facilitate an efficient implementation of the DFT using FFTs.
The false-alarm probability in (11) was set to Pfa = 0.001.
The estimated values of B(|M|) are between 1 and 3.7.
Obviously, the estimated bias compensation factors B(|M|)
depend on the chosen parameter settings, for example,
super-frame length L2 and the HR-DFT order Q. In the
experimental results presented in this section we focus on
real-time applications that require low algorithmic delay.
Therefore, we set the allowed algorithmic delay to D = 0 for
all methods. Further, we apply the same safety-net procedure
as in (15) to the DFT-subspace approach [17] to avoid
locking of the estimator.

4.1. Noise PSD Estimation Performance. Because optimal
estimators used for noise reduction are always functions
of the true noise variance σ2

N (k, i), we can evaluate the
performance of noise PSD tracking algorithms by measuring
directly the error between σ2

N (k, i) and its estimate σ̂2
N (k, i).

For this purpose we use the symmetric log-error distortion
measure defined in [17] as

LogErr = 1
IK

K∑
k=1

I∑
i=1

∣∣∣∣∣10 log

[
σ2
N (k, i)
σ̂2
N (k, i)

]∣∣∣∣∣ (dB), (16)

where I denotes the total number of signal-frames and
σ2
N (k, i) denotes the ideal noise PSD that is obtained by

smoothing measured noise periodograms across time using
an exponential window, that is,

σ2
N (k, i) = ασ2

N (k, i− 1) + (1− α)|n(k, i)|2, (17)

with a smoothing factor α = 0.9 [10].
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4.1.1. Synthetic Performance Example. To demonstrate the
potential of the proposed approach, we consider a synthetic
example of noise PSD estimation where the presence of
speech is modelled by a sinusoid at a frequency of 937.5 Hz,
that is, centered in the 31st frequency bin. This clean
synthetic signal is shown in Figure 2(a). During the time
instance of approximately 2 till 5 seconds, the sinusoid is
continuously present in periods of 450 milliseconds, each
time followed by a 150 ms period where the sinusoid is
absent in order to model speech absence. Subsequently,
this synthetic clean signal is degraded by white Gaussian
noise. The SNR in the frequency bin under consideration
is approximately 36 dB during presence of the sinusoidal
component in the first 3.5 seconds. In the time span
from 3.5 till 4.5 seconds the SNR decreases from 36 dB
to 30 dB. For visibility the results are distributed over two
subplots. Figure 2(b) shows the noise PSD estimated by the
proposed method and MS, compared to the true noise PSD.
Figure 2(c) shows the noise PSD estimated by the DFT-
subspace approach and QB noise PSD estimation, compared
to the true noise PSD.

From the comparison in Figures 2(b) and 2(c) it is clear
that both the MS and the QB approach heavily overestimate
the noise PSD. This is caused by the presence of the sinusoidal
component, which leads to tracking of the PSD of the noisy
sinusoid instead of the noise PSD. The proposed approach
and the DFT-subspace approach show accurate tracking of
the changing noise level. That the proposed approach is
able to track the changing noise level is due to the higher
frequency resolution that is exploited. This also becomes
clear from Figure 2(d) where the number of HR-DFT bins is
shown for the DFT bin under consideration that are classified
as noise-only, that is, |M(k, i)|. As expected, when there
is no speech presence |M(k, i)| equals the total number
of HR-DFT bins that fall within one DFT bin, that is,
under the given parameter settings |M(k, i)| = 5. When
the sinusoidal component is present, |M(k, i)| decreases to
one or two, which means that the estimated noise PSD can
still be updated even though the sinusoidal component is
present.

4.1.2. Super-Frame Size L2. In this section, we investigate
the relation between the length of the super-frames L2 and
noise tracking performance. To do so, we degraded the
speech signals in the database by two different noise sources,
namely, white noise and non-stationary white noise. The
non-stationary white noise consists of white noise that is
modulated by the following function:

f (m) = 1 + 0.5 sin

(
2πm f mod

fs

)
, (18)

where m is the sample index, fs the sampling frequency,
and f mod the modulation frequency, which increases linearly
in 25 seconds from 0 Hz to 0.5 Hz, that is, a maximum
change of the noise PSD of approximately 10 dB per second.
An example of such a modulated white noise sequence
can be seen in Figure 6. Subsequently, the proposed noise
tracking algorithm is applied with several super-frame sizes
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Figure 2: Synthetic noise tracking example. (a) Clean synthetic
signal. (b) Comparison between true noise PSD (dotted line),
proposed approach (solid line), and MS (dashed line) for DFT
bin centered around 937.5 Hz. (c) Comparison between true noise
PSD (dotted line), DFT-subspace approach (solid line), and QB
approach (dashed line) for DFT bin centered around 937.5 Hz. (d)
Cardinality of the set M(k, i) for the frequency bin centered around
937.5 Hz.

L2. The outcome of this experiment is shown in Figure 3. As
expected, the optimal length L2 is dependent on noise type
and noise level as the optimal L2-value is a tradeoff between
stationarity requirements on the noisy speech signal on one
hand and the potential to exploit the increased frequency
resolution for noise PSD estimation on the other hand.
This tradeoff results in the bowl-shaped performance curves
in Figure 3. With increasing super-frame size the LogErr
distortion decreases due to increased frequency resolution.
However, the noisy data within the super-frame is likely to
become non-stationary for a super-frame size that becomes
too large. In that case, more of the W HR-DFT basis
functions are necessary to model the clean speech signal as
observed in the sub-band under consideration and cannot
be used to estimate the noise PSD. Therefore, eventually,
the LogErr distortion will increase again. In general, the
optimal super-frame size is around 70–100 milliseconds. For
the experiments in the remaining sections of this paper, we
will use a super-frame size of 80 milliseconds, that is, L2 =
640, such that it equals the amount of data used by the DFT-
subspace approach in [17].

Using a super-frame size that is too short will lead to a
worse frequency resolution of the HR-DFT coefficients. To
demonstrate the effect of having a poor frequency resolution,
we consider in Figure 4 a similar synthetic example as in
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Figure 3: Noise tracking performance in terms of LogErr (dB) as a function of the length of the super-frames for stationary Gaussian white
noise (solid line) and nonstationary Gaussian white noise (dashed line) at an input SNR of (a) 0 dB (b) 5 dB (c) 10 dB (d) 15 dB.

Figure 2, but then with a super-frame size of only L2 = 320
samples (40 milliseconds). Let us first consider the time
span from 0 up till 3.5 seconds. Similar as for the synthetic
example in Figure 2, the number of noise-only HR-DFT
bins |M(k, i)| equals the total number of HR-DFT bins that
fall within one DFT bin when the sinusoidal component is
absent. However, in contrast to the example in Figure 2, the
cardinality of the set M(k, i) is zero when the sinusoidal
component is present. This is due to the lower resolution
that is obtained for the HR-DFT and means that the noise
PSD cannot be updated when the sinusoidal component is
present. When the noise level increases after 3.5 seconds, the
noise tracking algorithm can hardly distinguish the noise-
only HR-DFT bins from the speech-plus-noise HR-DFT bins
due to the poor frequency resolution. In this particular
situation, too many HR-DFT bins are classified as being
noise-only resulting in an overestimated noise PSD. The
behavior to wrongly classify HR-DFT bins as being noise-
only is influenced by the false alarm probability Pfa in (11). By
increasing the false alarm probability, the Neyman-Pearson
hypothesis test in (9) will become more conservative with
respect to updating the noise PSD. The hypothesis test will

classify more HR-DFT bins as consisting of speech-plus-
noise and will not use these to update the noise PSD. Setting
Pfa, for example, to Pfa = 0.005 instead of Pfa = 0.001,
in combination with a super-frame size of only L2 = 320
samples, we obtain the example in Figure 5.

The example in Figure 5 is comparable with the situ-
ation in Figure 4. However, due to the higher false alarm
probability, the Neyman-Pearson hypothesis test classifies
all HR-DFT coefficients as being speech-plus-noise when
the sinusoidal component is present also after the time
instance of 3.5 seconds. This results in an empty set M(k, i),
and, consequently, the noise PSD is only updated when the
sinusoidal component is clearly absent.

4.1.3. Natural Performance Examples. To further illustrate
the performance of the proposed method in comparison to
the three reference methods with natural speech we consider
an example where a speech signal obtained from a female
speaker is degraded by non-stationary white noise described
by (18) at an SNR of 5 dB. In Figure 6 examples of noise PSD
estimation at the frequency bin centered around 0.9 kHz (left
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Figure 4: Synthetic noise tracking example with super-frame size
of 40 milliseconds. (a) Clean synthetic signal. (b) Comparison
between true noise PSD (dotted line), proposed approach (solid
line), and MS (dashed line) for DFT bin centered around 937.5 Hz.
(c) Comparison between true noise PSD (dotted line), DFT-
subspace approach (solid line), and QB approach (dashed line)
for DFT bin centered around 937.5 Hz. (d) Cardinality of the set
M(k, i) for the frequency bin centered around 937.5 Hz.

column) and 2.0 kHz (right column) are shown. Together
with the estimated noise PSDs we also show the ideal noise
PSD σ2

N (k, i) that is obtained using (17). For visibility the
results are shown per frequency bin and distributed over two
subplots. Subplot (c) and (d) show the noise PSD estimated
by the proposed method, MS and the true noise PSD at a
DFT bin centered around 0.9 kHz and 2.0 kHz, respectively.
Subplots (e) and (f) show the noise PSD estimated by the
DFT-subspace approach, QB noise PSD estimation and the
true noise PSD at a DFT bin centered around 0.9 kHz and
2.0 kHz, respectively.

From Figure 6, we see that for a low modulation
frequency the noise tracking performance is approximately
similar and close to the true noise PSD for all four noise PSD
tracking methods. However, as the modulation frequency
increases over time we see that MS is not able to track the
changes when the noise PSD increases. The QB noise PSD
estimator is slightly better in following the increasing noise
levels, however, compared to MS, it has more problems in
tracking the noise PSD for decreasing noise levels. The DFT-
subspace and the proposed noise PSD tracking method on
the other hand keep track of the changing noise PSD and
obtain estimates that are fairly close to the true noise PSD.

In Figure 7 we show a second example at frequency
bins centered around 0.9 kHz (left column) and 2.0 kHz
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Figure 5: Synthetic noise tracking example with super-frame size of
40 ms and Pfa = 0.005. (a) Clean synthetic signal. (b) Comparison
between true noise PSD (dotted line), proposed approach (solid
line), and MS (dashed line) for DFT bin centered around 937.5 Hz.
(c) Comparison between true noise PSD (dotted line), DFT-
subspace approach (solid line), and QB approach (dashed line)
for DFT bin centered around 937.5 Hz. (d) Cardinality of the set
M(k, i) for the frequency bin centered around 937.5 Hz.

(right column). In this example the same speech signal is
degraded with noise originating from passing cars at an
overall SNR of 10 dB. We see that all four methods have
similar performance when the noise is stationary, that is,
in the time-interval from 10 till 15 seconds. When the
noise level changes rather fast both the proposed and DFT-
subspace-based noise PSD tracker show almost immediate
tracking of the changing noise PSD, while both the QB
approach and MS are unable to track these fast increasing
noise levels. Similar to the previous example, QB noise PSD
estimation has the tendency to estimate increasing noise
levels with slightly less delay than MS. However, decreasing
noise levels are generally overestimated. As overestimates
generally lead to oversuppression and a potential loss in
speech quality this is an undesired effect.

4.1.4. Evaluation of Noise Tracking Performance. For a more
comprehensive study of noise tracking performance, we
degraded the speech signals in our database by a wide
variety of noise sources. Some of these noise sources are
rather stationary, some rather nonstationary, and some are
a mixture between stationary and non-stationary elements.
The individual noise sources can be described as follows:
as completely stationary noise sources we use computer
generated pink noise and white noise. Party noise consists
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Figure 6: Comparison between estimated noise PSD and the true noise PSD. (a)-(b) Speech signal degraded by modulated white noise at
an overall SNR of 5 dB. (c)-(d) Comparison between true noise PSD (dotted line), proposed approach (solid line), and MS (dashed line) for
DFT bin centered around (c) 0.9 kHz and (d) 2.0 kHz. (e)-(f) Comparison between true noise PSD (dotted line), DFT-subspace approach
(solid line), and QB approach (dashed line) for DFT bin centered around (e) 0.9 kHz and (f) 2.0 kHz.
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Figure 7: Comparison between estimated noise PSD and the true noise PSD. (a)-(b) Speech signal degraded by noise originating from
passing cars at an overall SNR of 10 dB. (c)-(d) Comparison between true noise PSD (dotted line), proposed approach (solid line), and
MS (dashed line) for DFT bin centered around (c) 0.9 kHz and (d) 2.0 kHz. (e)-(f) Comparison between true noise PSD (dotted line),
DFT-subspace approach (solid line), and QB approach (dashed line) for DFT bin centered around (e) 0.9 kHz and (f) 2.0 kHz.

of many background speakers. Although this noise source
consists of a large amount of speakers being nonstationary
noise-sources individually, the sum of all these noise-sources
can be perceived as being rather stationary. Noise originating
from a circle saw and waves at the beach are both locally

non-stationary, but also contain long stretches of rather
stationary noise. Noise originating from a passing train and
passing cars both consist of gradually changing noise sources
and some shorter stretches of rather stationary background
noise. Modulated white and modulated pink noise are
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Table 1: Required processing-time normalized by the processing-
time of the proposed approach.

Method DFT-sub. [17] Prop. MS [10] QB [12]

Proc. time 13.5 1.0 2.4 0.3

computer generated noise sources that are modulated using
the function in (18).

The performance of MS, the QB approach, the DFT-
subspace approach, and the proposed approach is shown
in Table 2 in terms of the LogErr distortion measure.
From the results in Table 2 we see that in general the
performance of the proposed approach is better than MS and
the QB approach, and close to the DFT-subspace approach.
Especially for gradually changing noise sources, such as
passing cars and modulated noise, the proposed approach
improves over MS, and the QB approach.

An exception on this are the results for pink noise. For
pink noise the noise level across a sub-band is not completely
constant. This means that the assumption on which (8) is
based is not completely valid. A similar argument holds
for the DFT-subspace approach, where it is assumed that
the eigenvalues in the noise-only DFT-subspace have a flat
spectrum. The assumptions that underly MS are completely
valid and therefore MS has a slightly better performance for
this noise source.

4.2. Influence of Noise PSD Estimator on Noise Reduction
Performance. Although it is reasonable to evaluate the
performance of a noise PSD tracking method directly on
the estimated noise PSD as in the previous paragraph,
it is also of interest to investigate the impact in a noise
reduction framework. We, therefore, combined the proposed
and the three reference noise PSD estimators within a single-
microphone DFT-based noise reduction system, as indicated
in Figure 1. In this noise reduction system, we estimate the
speech PSD using the decision-directed approach [2]. For
the speech estimator we use a magnitude MMSE estimator
derived under the generalized-Gamma distribution with
distribution parameters γ = 1 and ν = 0.6 [5]. For
performance evaluation we measure PESQ [25] available
from [26] and segmental SNR defined as [27]

SNRseg = 1
I

I−1∑
i=0

T

{
10 log10

‖xt(i)‖2∥∥xt(i)− x̂t(i)
∥∥2

}
, (19)

where xt(i) and x̂t(i) denote time-frame i of the clean speech
signal xt and the enhanced speech signal x̂t, respectively, I
is the number of frames, and T (x) = min{max(x,−10), 35}
constrains the estimated SNR per frame to the range between
−10 dB and 35 dB [27]. The results in terms of SNRseg and
PESQ are given in Tables 3 and 4, respectively. These results
are in line with the performance directly measured on the
estimated noise PSDs, except for the QB approach. The QB
approach generally has worse performance in terms of both
PESQ and segmental SNR in comparison to the proposed
and other reference methods. This can be explained by the

fact that it quite regularly leads to overestimates of the noise
PSD.

The general tendency is that the proposed noise PSD
estimator improves on MS for the more nonstationary noise
sources and shows performance close to the DFT-subspace
based. For rather stationary noise sources, MS, the DFT-
subspace approach, and the proposed approach lead to quite
similar performance. Notice that the performance measured
in such a noise reduction system is only partly determined
by the noise PSD estimator. Other aspects that determine
the performance are estimation of the speech PSD and
the speech estimator. Although all speech estimators are
dependent on the true noise PSD, different estimators might
react differently on over- or underestimates of the noise PSD.

5. Discussion

5.1. Signal Model and Complexity. From Sections 4.1 and
4.2, we see that the performance of the proposed method is
quite similar to the recently presented DFT-subspace based
method [17]. The latter approach is based on a Karhunen-
Loève transform (KLT) of a sequence of complex DFT
coefficients observed in the same frequency bin across time.
This implies the use of a KLT for each DFT bin, while
the proposed method is based on one single HR-DFT per
super-frame; the DFT-subspace approach and the proposed
method are based on different signal models. Specifically,
the proposed method assumes that the speech signal can be
represented by a sum of undamped complex exponentials
of which the frequencies are constrained to be at the center
of a HR-DFT bin. The DFT-subspace approach applies a
KLT, that is, a signal-adaptive transform, to a sequence of
DFT coefficients. This does not require that the sequence of
DFT coefficient consist of undamped complex exponentials,
but allows the use of damped complex exponentials with
unrestricted frequencies as well. In theory, the DFT-subspace
approach should therefore have better acces to the underlying
noise level. However, this is at the cost of a much higher
complexity, which cannot always be justified for applications
where only few computational resources are available.

We compare the computational complexity of the pro-
posed method and the DFT-subspace approach in terms
of necessary operations per time-frame and in terms of
processing-time. The computational complexity of the pro-
posed method is mainly determined by the HR-DFT of order
Q that needs to be computed. Based on the Cooley-Tukey
algorithm [28] this leads to a complexity that is in the order
of Q log2Q ≈ 1.0 · 104 operations per time-frame. The DFT-
subspace approach requires the singular values of a matrix
with dimensions L × M at each frequency bin, where we
used the same settings as in [17], that is, L = M = 7. The
computational complexity for obtaining singular values only
is in the order of 2.67L3 operations [29, 30]. This means that
per time-frame the computational complexity of the DFT-
subspace approach is in the order of (K/2 + 1)2.67L3 ≈
1.2·105 operations. Hence, for the specific parameter settings
as used in the experimental results presented in this section,
the proposed approach has a complexity reduction in the
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Table 2: Performance in terms of LogErr (dB).

noise source input SNR (dB) MS [10] DFT-Sub. [17] prop. method QB [12]

pink noise
0 1.0 1.1 1.3 1.3

5 1.1 1.2 1.3 1.2

10 1.2 1.3 1.4 1.3

15 1.3 1.6 1.7 1.7

white noise
0 1.1 0.8 0.8 1.5

5 1.2 0.9 0.8 1.5

10 1.3 1.0 0.9 1.6

15 1.4 1.2 1.1 2.0

party noise
0 2.2 1.7 1.7 2.0

5 2.2 1.8 1.8 1.9

10 2.3 2.1 2.0 2.3

15 2.4 2.6 2.4 3.3

waves at the beach
0 2.0 1.3 1.4 2.0

5 2.0 1.5 1.5 2.1

10 2.1 1.7 1.6 2.3

15 2.2 2.2 2.0 3.0

circle saw
0 3.0 2.3 2.3 3.1

5 3.2 2.4 2.3 3.4

10 3.4 2.6 2.5 3.9

15 3.7 3.0 2.9 4.6

passing train
0 3.7 2.0 2.0 2.9

5 3.6 2.3 2.2 3.2

10 3.5 2.8 2.5 3.8

15 3.7 3.5 3.2 5.0

passing cars
0 3.9 2.2 2.1 3.5

5 3.9 2.5 2.5 4.1

10 4.1 3.1 3.1 5.3

15 4.6 3.9 3.9 7.1

modulated white noise
0 2.7 1.0 0.9 2.4

5 2.8 1.0 1.0 2.5

10 2.8 1.2 1.1 2.7

15 2.8 1.4 1.4 3.0

modulated pink noise
0 2.7 1.2 1.4 2.3

5 2.7 1.3 1.5 2.3

10 2.7 1.5 1.6 2.4

15 2.7 1.8 1.9 2.8

order of 11.5 in comparison to the DFT-subspace approach.
Notice that there do exist other subspace tracking algorithms
then the ones in [29, 30] that can reduce the complexity in a
predictable way, for example, [18, 19, 31], but might change
the performance of the DFT-subspace approach in a rather
unpredictable way.

In Table 1 the computational complexity is reflected in
terms of processing-time of matlab implementations of the
noise PSD tracking methods, normalized by the processing-
time of the proposed approach. Next to the DFT-subspace
approach and the proposed approach, we also show the
processing-time for the MS and QB approach. The proposed
and MS approach have a processing-time that is in the same

order of magnitude, while the quantile based approach is
a bit faster. In comparison to the DFT-subspace approach,
the proposed approach has a processing-time which is a
factor 13.5 smaller. This reduction in terms of processing-
time is in the same order of magnitude as the aforementioned
reduction in terms of required operations per time-frame.
Notice, that the processing times as given in Table 1 should
only be considered as a rough estimate since they will in
general depend on implementation details.

5.2. Unvoiced Speech Sounds. The assumption under which
the proposed method is able to estimate the noise level in
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Table 3: Performance in terms of SNRseg (dB).

Noise source Input SNR (dB) MS [10] DFT-Sub. [17] Prop. method QB [12]

Pink noise

0 0.8 1.4 1.1 0.7

5 3.8 4.2 4.0 3.2

10 7.0 7.2 7.0 5.6

15 10.1 10.2 10.1 7.7

White noise

0 2.2 3.0 2.6 1.6

5 5.2 5.6 5.3 3.9

10 8.0 8.3 8.1 5.9

15 10.8 11.1 11.0 7.8

Party noise

0 −0.4 0.3 0.0 −0.5

5 2.5 3.1 3.0 2.2

10 5.7 6.2 6.1 4.8

15 9.1 9.4 9.4 7.2

waves at the beach

0 0.5 1.2 1.0 0.3

5 3.4 4.0 3.9 2.9

10 6.6 7.0 7.0 5.4

15 9.9 10.1 10.2 7.7

Circle saw

0 0.9 1.0 1.5 0.8

5 3.7 4.0 4.5 3.1

10 6.8 7.1 7.5 5.3

15 9.9 10.3 10.6 7.3

Passing train

0 0.8 1.6 1.4 0.8

5 3.8 4.3 4.4 3.3

10 7.2 7.4 7.6 5.8

15 10.6 10.8 10.9 8.0

Passing cars

0 5.6 6.3 6.9 4.4

5 8.8 9.4 9.9 6.5

10 12.0 12.5 12.9 8.4

15 15.0 15.6 15.9 9.9

Modulated white noise

0 1.3 3.1 2.9 1.2

5 4.2 5.8 5.6 3.6

10 7.2 8.6 8.4 5.7

15 10.3 11.4 11.3 7.7

Modulated pink noise

0 0.4 1.7 1.4 0.5

5 3.4 4.5 4.3 3.1

10 6.6 7.4 7.3 5.5

15 9.9 10.5 10.5 7.6

the kth frequency band is that the speech signal as observed
in this band can be represented by less than the W complex
exponential basis functions that are necessary to completely
represent the noisy sub-band signal under consideration. It
is well known that this is possible for voiced speech sounds
which can be modelled using a small number of complex
exponentials [20]. For unvoiced speech sounds however,
this assumption will generally not be valid. Therefore, it
is interesting to investigate the behavior of the proposed
method during these speech sounds. To illustrate this situ-
ation we focus on a speech sentence saying “since this story
hap”, which contains some clearly pronounced /s/ sounds.
To give a clear example we use in this particular situation a
speech signal at a sampling frequency of 20 kHz, since these

unvoiced sounds are especially dominantly present at higher
frequencies. Ideally, to prevent leakage of speech energy in
the noise PSD estimate, the noise PSD should not be updated
in this situation. The clean speech time-domain signal is
shown in Figure 8(a); three noise bursts representing the /s/
sounds are clearly visible. This signal is degraded by street
noise at an SNR of 10 dB and processed using the proposed
noise PSD estimator. The PSD of both the clean speech signal
and the noise at the time interval 11.85 till 11.88 seconds are
shown in Figure 8(c), where it is clearly visible that the speech
signal is dominant at higher frequencies. In Figure 8(b) we
show in the time-frequency plane for each frequency band
the estimated number of noise-only bins in a band. We can
see that during the unvoiced speech sounds the cardinality
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Table 4: Performance in terms of PESQ.

Noise source Input SNR (dB) MS [10] DFT-Sub. [17] Prop. method QB [12]

Pink noise

0 1.91 1.98 1.95 1.91

5 2.33 2.38 2.36 2.31

10 2.67 2.67 2.67 2.64

15 2.96 2.92 2.94 2.89

White noise

0 1.86 1.96 1.91 1.82

5 2.26 2.33 2.29 2.19

10 2.57 2.61 2.60 2.51

15 2.86 2.86 2.86 2.77

Party noise

0 1.62 1.63 1.66 1.63

5 2.02 2.05 2.07 2.02

10 2.40 2.43 2.44 2.39

15 2.74 2.75 2.78 2.72

waves at the beach

0 1.75 1.86 1.85 1.74

5 2.14 2.26 2.26 2.13

10 2.49 2.55 2.57 2.47

15 2.81 2.82 2.85 2.77

Circle saw

0 1.52 1.51 1.60 1.54

5 1.88 1.90 1.97 1.89

10 2.23 2.25 2.32 2.24

15 2.57 2.59 2.65 2.56

Passing train

0 1.87 1.96 1.97 1.89

5 2.26 2.34 2.36 2.28

10 2.62 2.65 2.69 2.61

15 2.93 2.91 2.96 2.88

passing cars

0 2.09 2.39 2.40 2.09

5 2.40 2.67 2.70 2.41

10 2.72 2.92 2.95 2.68

15 3.00 3.14 3.15 2.91

modulated white noise

0 1.59 1.97 1.92 1.64

5 1.98 2.33 2.29 2.02

10 2.34 2.60 2.60 2.37

15 2.68 2.86 2.86 2.67

modulated pink noise

0 1.75 2.00 1.97 1.79

5 2.14 2.38 2.37 2.18

10 2.50 2.66 2.67 2.52

15 2.83 2.91 2.93 2.81

of the set M(k, i), that is, the number of noise-only bins in a
band, is determined to be |M(k, i)| = 0. Consequently, the
noise PSD is not updated at these time-frequency points.

5.3. Noise PSD Estimation in High SNR Situation. Although
accurate noise PSD estimation is important for applying
noise reduction on noisy speech signals, it is also relevant
to investigate the situation when very little noise is present.
Clearly, the higher the SNR, the lower the noise-to-signal
ratio (NSR) and consequently a worse noise PSD estimate is
to be expected. Obviously, for very high SNRs the noise PSD
will be overestimated due to leakage of speech energy into
the noise PSD estimate. However, the question is whether

the level of the estimated noise PSD is low enough to
not influence the amount of suppression applied to the
speech signal afterwards by the noise suppression system.
To investigate this situation, an experiment is performed
with a speech signal degraded by white noise at an SNR
of 60 dB. Subsequently, the proposed noise PSD estimator
and the reference noise PSD estimators are applied to this
signal. The a priori SNR, defined as ξ(k, i) = σ2

X(k, i)/σ2
N (k, i),

is estimated using the decision-directed approach [2] after
which it is used to compute the value of the gain function
used in Section 4. Figure 9(a) shows the original clean speech
signal. Figure 9(b) shows the estimated a priori SNRs in a
frequency bin centered around 1.25 kHz. This is compared
with the a priori SNR computed using knowledge of the
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Figure 9: (a) Clean speech signal. (b) Comparison at frequency bin
centered around at 1.25 kHz between the estimated a priori SNR
and the true a priori for speech degraded by white noise at an
SNR of 60 dB. (c) The amount of suppression that is applied using
estimated a priori SNR for speech degraded by white noise at an
SNR of 60 dB.

clean speech signal and the noise signal, which we refer to
as the true a priori SNR. Clearly, all noise PSD estimators
lead to a somewhat underestimated a priori SNR due to an
overestimation of the noise PSD for this very high SNR.

Further, we see that all algorithms have a one frame delay
with respect to the true a priori SNR, which is due to
estimation of the a priori SNR using the decision-directed
approach [6]. To verify whether the estimated a priori SNR
is high enough not to apply any unwanted suppression we
computed the value of the gain function used in Section 4.2.
The resulting amount of suppression is shown in Figure 9(c).
We see that for all noise PSD estimators, except for QB, the
amount of suppression is generally 0 dB. The QB noise PSD
estimator applies too much suppression due to leakage of
speech into the noise PSD estimate.

6. Concluding Remarks

In general, noise reduction methods for speech enhancement
rely on knowledge of the noise PSD. Because this quantity
is defined in terms of expected values and is generally
unknown, estimation from the noisy signal is necessary.
In this paper, we presented a method which aims at
accurate noise PSD estimation under both stationary and
non-stationary noise conditions with low complexity. The
proposed method makes use of the fact that speech sounds
can often be modelled using a small number of complex
exponentials. This is exploited by computing periodograms
using an DFT with a higher order than the DFT as used in the
noise reduction algorithm itself. Experiments demonstrated
that the presented method leads to approximately similar
noise tracking performance as the recently proposed DFT-
subspace approach. However, this is at the cost of a
computational complexity that is more than a factor 10
lower.

In comparison to other noise PSD estimators, like
minimum statistics and quantile-based noise PSD estima-
tion, the proposed approach improves noise PSD tracking
performance and speech enhancement performance while
computational complexity is in the same order of magnitude.



EURASIP Journal on Advances in Signal Processing 15

Acknowledgments

The research is supported by the Oticon foundation and
the Dutch Technology Foundation STW. The authors would
like to thank the anonymous reviewers whose constructive
remarks helped to improve the presentation of this work.

References

[1] H. L. van Trees, Detection, Estimation and Modulation Theory,
vol. 1, John Wiley & Sons, New York, NY, USA, 1968.

[2] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum mean-square error short-time spectral amplitude
estimator,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 6, pp. 1109–1121, 1984.

[3] R. Martin, “Speech enhancement based on minimum mean-
square error estimation and supergaussian priors,” IEEE
Transactions on Speech and Audio Processing, vol. 13, no. 5, pp.
845–856, 2005.

[4] T. Lotter and P. Vary, “Speech enhancement by MAP spectral
amplitude estimation using a super-Gaussian speech model,”
EURASIP Journal on Applied Signal Processing, vol. 2005, no.
7, pp. 1110–1126, 2005.

[5] J. S. Erkelens, R. C. Hendriks, R. Heusdens, and J. Jensen,
“Minimum mean-square error estimation of discrete fourier
coefficients with generalized gamma priors,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 15, no. 6, pp.
1741–1752, 2007.

[6] O. Cappe, “Elimination of the musical noise phenomenon
with the Ephraim and Malah noise suppressor,” IEEE Transac-
tions on Speech and Audio Processing, vol. 2, no. 2, pp. 345–349,
1994.

[7] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based
voice activity detection,” IEEE Signal Processing Letters, vol. 6,
no. 1, pp. 1–3, 1999.

[8] J.-H. Chang, N. S. Kim, and S. K. Mitra, “Voice activity detec-
tion based on multiple statistical models,” IEEE Transactions
on Signal Processing, vol. 54, no. 6, pp. 1965–1976, 2006.

[9] R. Martin, “Spectral subtraction based on minimum statis-
tics,” in Proceedings of the European Signal Processing Confer-
ence (EUSIPCO ’94), pp. 1182–1185, 1994.

[10] R. Martin, “Noise power spectral density estimation based on
optimal smoothing and minimum statistics,” IEEE Transac-
tions on Speech and Audio Processing, vol. 9, no. 5, pp. 504–512,
2001.

[11] R. Martin, “Bias compensation methods for minimum statis-
tics noise power spectral density estimation,” Signal Processing,
vol. 86, no. 6, pp. 1215–1229, 2006.

[12] V. Stahl, A. Fischer, and R. Bippus, “Quantile based noise
estimation for spectral subtraction and Wiener filtering,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’00), vol. 3, pp. 1875–
1878, Istanbul, Turkey, June 2000.

[13] J. S. Erkelens and R. Heusdens, “Tracking of nonstationary
noise based on data-driven recursive noise power estimation,”
IEEE Transactions on Audio, Speech and Language Processing,
vol. 16, no. 6, pp. 1112–1123, 2008.

[14] I. Cohen, “Noise spectrum estimation in adverse environ-
ments: Improved minima controlled recursive averaging,”
IEEE Transactions on Speech and Audio Processing, vol. 11, no.
5, pp. 466–475, 2003.

[15] S. Srinivasan, Knowledge-based speech enhancement, Ph.D.
thesis, Royal Institute of Technology (KTH), 2005.

[16] D. Ealey, H. Kelleher, and D. Pearce, “Harmonic tunneling:
tracking non-stationary noises during speech,” in Proceedings
of the 7th European Conference on Speech Communication and
Technology (Eurospeech ’01), pp. 437–440, Aalborg, Denmark,
September 2001.

[17] R. C. Hendriks, J. Jensen, and R. Heusdens, “Noise tracking
using DFT domain subspace decompositions,” IEEE Transac-
tions on Audio, Speech and Language Processing, vol. 16, no. 3,
pp. 541–553, 2008.

[18] B. Yang, “Projection approximation subspace tracking,” IEEE
Transactions on Signal Processing, vol. 43, no. 1, pp. 95–107,
1995.

[19] Y. Miao and Y. Hua, “Fast subspace tracking and neural
network learning by a novel information criterion,” IEEE
Transactions on Signal Processing, vol. 46, no. 7, pp. 1967–1979,
1998.

[20] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis
based on a sinusoidal representation,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 34, no. 4, pp. 744–
754, 1986.

[21] S. F. Boll, “Suppression of acoustic noise in speech using
spectral subtraction,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 27, no. 2, pp. 113–120, 1979.

[22] R. C. Hendriks, R. Heusdens, and J. Jensen, “Adaptive
time segmentation for improved speech enhancement,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 14,
no. 6, pp. 2064–2074, 2006.

[23] D. R. Brillinger, Time Series: Data Analysis and Theory, SIAM,
Philadelphia, Pa, USA, 2001.

[24] S. K. Kay, Fundamentals of Statistical Signal Processing, vol. 2,
Prentice-Hall, Upper Saddle River, NJ, USA, 1998.

[25] ITU, “Perceptual evaluation of speech quality (PESQ), and
objective method for end-to-end speech quality assesment of
narrowband telephone networks and speech codecs,” Tech.
Rep. ITU-T P.862, 2000.

[26] P. Loizou, Speech Enhancement: Theory and Practice , CRC
Press, Boca Raton, Fla, USA, 2007.

[27] J. R. Deller, J. H. L. Hansen, and J. G. Proakis, Discrete-Time
Processing of Speech Signals, IEEE Press, Piscataway, NJ, USA,
2000.

[28] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of Fourier series,” Mathematics of Computation,
vol. 19, pp. 297–301, 1965.

[29] G. H. Golub and C. F. van Loan, Matrix Computations, The
Johns Hopkins University Press, Baltimore, Md, USA, 3rd
edition, 1996.

[30] E. Z. Anderson, LAPACKUsers’ Guide, SIAM, Philadelphia, Pa,
USA, 3rd edition, 1999.

[31] R. Badeau, B. David, and G. Richard, “Fast approximated
power iteration subspace tracking,” IEEE Transactions on
Signal Processing, vol. 53, no. 8, pp. 2931–2941, 2005.


	1. Introduction
	2. DFT-Based Speech Estimators
	3. Noise PSD Estimation Based on High-Resolution Periodograms
	3.1. Determining
	3.2. Bias Compensation
	3.3. Algorithm Overview

	4. Experimental Results
	4.1. Noise PSD Estimation Performance
	4.1.1. Synthetic Performance Example
	4.1.2. Super-Frame Size
	4.1.3. Natural Performance Examples
	4.1.4. Evaluation of Noise Tracking Performance

	4.2. Influence of Noise PSD Estimator on Noise Reduction Performance

	5. Discussion
	5.1. Signal Model and Complexity
	5.2. Unvoiced Speech Sounds
	5.3. Noise PSD Estimation in High SNR Situation

	6. Concluding Remarks
	Acknowledgments
	References

