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Cooperative diversity protocols are designed with the assumption that terminals always help each other in a socially efficient
manner. This assumption may not be valid in commercial wireless networks where terminals may misbehave for selfish or
malicious intentions. The presence of misbehaving terminals creates a social-dilemma where terminals exhibit uncertainty about
the cooperative behavior of other terminals in the network. Cooperation in social-dilemma is characterized by a suboptimal Nash
equilibrium where wireless terminals opt out of cooperation. Hence, without establishing a mechanism to detect and mitigate effects of
misbehavior, it is difficult to maintain a socially optimal cooperation. In this paper, we first examine effects of misbehavior assuming
static game model and show that cooperation under existing cooperative protocols is characterized by a noncooperative Nash
equilibrium. Using evolutionary game dynamics we show that a small number of mutants can successfully invade a population of
cooperators, which indicates that misbehavior is an evolutionary stable strategy (ESS). Our main goal is to design a mechanism
that would enable wireless terminals to select reliable partners in the presence of uncertainty. To this end, we formulate cooperative
diversity as a dynamic game with incomplete information. We show that the proposed dynamic game formulation satisfied the
conditions for the existence of perfect Bayesian equilibrium.
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1. Introduction

Cooperative wireless communications is based on the princi-
ple of direct reciprocity where wireless terminals attain some
of the benefits of multiple input multiple output (MIMO)
systems through cooperative relaying, that is, by helping each
other. Since direct reciprocity is “help me and I help you”
kind of protocol, a terminal will be motivated to help others
attain cooperative diversity gain with the anticipation to reap
those same benefits when the helped terminals reciprocate.
When all terminals obey rules of cooperation, a stable and
socially efficient cooperation is realizable, which may be
true in wireless networks under the control of a single
entity wherein terminals cooperate to achieve a common
objective, as in military tactical networks. On the other
hand, in commercial wireless networks where terminals are
individually motivated to cooperate, the assumption that

terminals will always obey rules of cooperation may not
hold: (1) terminals may misbehave and violate rules of
cooperation to reap the benefits without bearing the cost, (2)
well-behaved terminals may refuse to relay for their poten-
tial partners without the assurance that the partners will
reciprocate. While the first reason is motivated by a selfish
intention to save energy, the second reason is motivated by
the absence of mechanisms to incentivize cooperation in
existing cooperative protocols. Hence, in commercial wireless
networks, it is difficult to ensure a stable and socially efficient
cooperation without implementing a mechanism to detect and
mitigate misbehavior.

Game theoretic approaches have been proposed to design
mechanisms that incentivize cooperation in commercial
wireless networks. The proposed mechanisms belong to
either price-based or reputation-based schemes. In price-
based cooperation [1, 2], terminals are charged for channel



use when transmitting their own data and get reimbursed
when forwarding for other terminals. It is shown that the
pricing scheme leads to a Nash equilibrium that is Pareto-
superior. In reputation-based schemes [3, 4], the authors
proposed Generous Tit for Tat (GTFT) algorithm which
conditions the behavior of nodes based on their past history.
The authors showed that if the game is played long enough,
GTFT leads to an equilibrium point that is Pareto-optimal.
The game theoretic models in the aforementioned works
in particular and in literature in general, consider a static
game model where players are assumed to make decisions
simultaneously. Since simultaneous decision making implies
that players are unable to observe each other’s actions, static
game models do not capture well dynamics of cooperative
interactions. Recently a dynamic Bayesian game framework
has been proposed to model routing in energy constrained
wireless ad hoc networks [5], which provides the motivation
for our work.

Motivated by the inadequacy of static game models to
fully characterize cooperative communications, we formu-
late interactions of terminals in cooperative diversity as a
dynamic game with incomplete information. The dynamic
game formulation captures temporal and information struc-
ture of cooperative interactions. Temporal structure of
a dynamic game defines the order of play: cooperative
transmissions occur in sequential manner wherein a source
terminal transmits first and then potential cooperators
decide to either cooperate or deviate from cooperation. The
sequential nature of cooperative transmissions is dictated
by the half-duplex constraint of wireless devices, that is,
a relay terminal cannot receive and transmit at the same
time in the same frequency band. The information structure
of dynamic games characterizes what each player knows
when it makes a decision: in commercial wireless networks,
intention of each user is not known a priori, hence,
incomplete information specification of the game represents
the uncertainty each user has about the intention of other
users in the network. In this paper, we present a general
dynamic game framework that may fit any of the existing
cooperative diversity protocols. We show that the proposed
model captures important aspects of existing cooperative
diversity protocols. We also show that the proposed dynamic
game formulation satisfies the requirements for the existence
of perfect Bayesian equilibrium.

This paper is organized as follows. In Section 2, the
system model is described. In Section 3, game theoretic
analysis of cooperative diversity is presented. Background
of dynamic games is presented in Section 4. In Section 5, a
dynamic game framework is presented. Finally, in Section 6,
concluding remarks are given.

2. System Model

We consider N-user TDMA-based cooperative diversity
system wherein terminals forward information for each
other using any one of the existing cooperative schemes.
We assume that a source terminal randomly selects utmost
one potential cooperator (relay) among all its neighboring
terminals. It is important to note that random selection
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FIGURE 1: Wireless cooperative network.

of potential cooperators indicates the assumption held by
all terminals that their relay terminals are always willing to
help. A source terminal and its potential partner establish a
possible cooperative partnership prior to data transmission
by exchanging control frames. Through the established
cooperative partnership, terminals enter into a nonbinding
agreement to forward information for each other (see
Figure 1). Details of the mechanism by which cooperative
partnerships are formed is beyond the scope of this work as
our primary focus is on examining the sustainability of this
partnership.

The interterminal channels are characterized by Rayleigh
fading. We denote by y54, ¥sr, ¥ra4 instantaneous signal-
to-noise ratio (SNR) of source-destination, source-relay, and
relay-destination channels. Information is transmitted at a
rate of R b/s in a frame length of M-bits. We assume that all
users transmit at the same power level and modulation/rate.

3. Game Theoretic Analysis of
Cooperative Diversity

3.1. Two-User Cooperation. In this section, we examine
the cooperative interaction between terminals within the
framework of noncooperative game theory. We assume
that the benefits of cooperation and the cost it incurs are
common knowledge. That is, terminals are willing to expend
their own resources to help other terminals achieve reliable
communication with the expectation to achieve those same
benefits when the helped terminals reciprocate. We assume
that terminals are individually rational in that terminals
behave in a manner to maximize their individual benefits
from cooperation. We assume rational behavior of terminals
is common knowledge, that is, terminals know that other
terminals are rational. Individuality rationality is crucial for
the evolution of cooperation as it states that well-behaved
terminals have strong preference for partners that conform
to rules of cooperation. On the other hand, individual
rationality may lead to selfish behavior where a terminal
is tempted to economize on cost of cooperation (energy)
while reaping the benefits. We show that in the presence of
selfish users, individual rationality dominates cooperation
which would consequently lead to a noncooperative Nash
equilibrium that is suboptimal in the Pareto sense.

We denote the strategy available to all terminals by ®
where ® € {6y = cooperate, 6; = misbehave}, that is, @ is
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the strategy space of the game. Source terminal S; transmits
to the network whenever it has information to send. Thus,
its strategy space is a singleton and is denoted by ®;. On
the other hand, relay terminal R; may either obey the rules
of cooperation or deviate from it. Thus, the strategy space
of R; is a nonsingleton set which is defined as ®; = {0 =
cooperate, 0 = misbehave}, where 6; € ©; is pure strategy
of R;. We assume that a misbehaving relay node R; adopts
mixed strategy where it plays pure strategyt; with probability
pj(®;). It is obvious that mixed strategy incurs uncertainty
in the game since source terminal S; has no knowledge
whether R; conforms to cooperation or violates it. Terminal
R; being a rational player will adopt this strategy to confuse
its partner by mimicking the unpredictable nature of the
wireless channel. From a game-theoretic viewpoint, mixed
strategy ensures that the game has Nash equilibrium.

The utility function of terminal S; is defined in
terms of cooperative diversity gain which is denoted by
ui(pi(0:), pj(©;)), where p;(®;) captures behavior of its
partner. In the next section, we formally define the utility
function for cooperative diversity in terms of achievable
performance gains at the physical layer. For the purpose
of simplifying the discussion in this section, achievable
cooperative diversity gain when all terminals obey the
rules of cooperation is denote by p.. On the other hand,
when all terminals opt out of cooperation, each terminal
derives a degraded cooperative diversity gain compared to
the attainable benefit; this utility is denoted by p,. where
obviously pne < p.. We assume that each terminal expends a
fraction of its available power for cooperation, which defines
the cost of cooperation and is denoted by c¢.. We assume
that the cost of cooperation is strictly less than the attainable
cooperation benefit, that is, c. < p.. The utility matrix of the

game is then
c— Cc nc — Cc
U- (pp PP ) (1)

where p. — ¢, is the net utility when all terminals cooperate,
Pnc — ¢c is the utility to a well-behaved terminal when
its partner deviates from cooperation. The terminal that
deviates from cooperation derives utility p. at no cost and
Pne 1s the noncooperative utility.

Suppose terminals i and j form cooperative partnership
where each terminal affirms its willingness to cooperate via a
protocol handshake. A willingness to cooperate may indicate
that a terminal has enough available power to expend for
cooperation. It may also indicate a terminal’s intent to
economize on the other terminal’s cooperative behavior. We
assume that both terminals 7 and j play mixed strategies
when each terminal acts as a relay to help the other terminal.
Their mixed strategies, respectively, are

P, = [pi(60)pi0D],  Pj=[p;(60)p;(6)],  (2)

where p;(8y) is the probability with which relay terminal R;
cooperates with source terminal S;, and p;(6;) is probability
of misbehavior. Similarly p;(6y)pi(6;) capture probabilities
of cooperation and misbehavior when terminal i acts as a

relay to terminal j. The expected net utility function of each
terminal can be shown as

ui(pi(©,), p;(©;)) = P,UPT
= pj(B0)pc + (1= pj(60)) puc
= pi(Bo)ce
ui(p;(©;), pi(®:) = P;UPT

= Pi(GO)Pc + (1 - pi(GO))Pnc

(3)

— pi(Bo)ce,

where []7 is the transpose operator.

When both terminals obey the rules of cooperation
(pi(B) = 1,pj(6h) = 1), each derives a net utility of
pe — ¢.. We examine next steady-state behavior of the game
when either player deviates from cooperation by adopting
mixed strategy. Let us consider the case where terminal j
is a potential cooperator that plays mixed strategyP;. The
goal of an individually rational and mixed strategy playing
terminal j is as follows: (1) maximize its net expected utility
by minimizing the cost of cooperation and (2) behave in a
manner that make it difficult for terminal i to distinguish
between effects of channel dynamics and misbehavior.
Thus, terminal j strategically selects P; (mimicking inherent
uncertainty of the wireless channel) in such away that player
iis indifferent in expected net utility. That is, player j chooses
a mixed strategy where player i would achieve the same
expected utility irrespective of the strategy terminal j plays.
If such a mixed strategy exists, it means that in the long-run
terminal i may be unable to learn about the behavior of its
partner.

However, terminal i is a rational player and will learn in
the long run about the behavior of its potential partner by
observing its utility. In wireless communications, quality of
service metrics such as target frame error rate (FER) help
terminals determine degradation in achievable cooperative
diversity performance gain. Thus, there is no P; that will
make terminal i indifferent in expected utility. Due to the lack
of indifferent strategy that could confuse its partner, rational
player j will reason that it can forgo the cooperation cost (i.e.,
pj(6) = 0) in order to maximize its expected net utility.
It is obvious to see from (3) that if player i is well behaved
(pi(6h) = 1) and player j misbehaves (p;(6;) = 0), player
i would derive net expected utility of u;(pi(©;), p;(®;)) =
Pne — €. On the other hand, the misbehaving partner j would
achieve expected utility u;(p;(®;), pi(®;)) = p.. Note that
(1 = p;j(6o))c. is an amount of energy terminal j saves by a
misbehaving.

Similarly, for the case of mixed strategy play by terminal
i, the same arguments can be applied to show that there is no
P; that will make player j indifferent in expected net utility,
which indicates that a selfishly rational player i will also be
tempted to forgo the cooperation cost (i.e., pi(6h) = 0) to
derive a net expected utility u;(p;(®;), p;(®;)) = p.. Thus,
an individually rational terminal i will play p;(6) = 0 to
achieve the highest utility irrespective of the strategy adopted
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FIGURE 2: Best response functions in the mixed strategy noncoop-
erative game. It can be seen that the strategy combination (p;(6y) =
1,p;j(6y) = 1) is attained when trust develops between the players
which leads to the evolution of cooperation.

by its partner. For this reason, the steady-state behavior of
both players is characterized by the strategic combination
(pi(8) = 0, p;(6p) = 0) which is a degenerate mixed strategy
Nash equilibrium. Hence, the optimal strategy of both ter-
minals is to deviate from cooperation: (1) for selfish reasons
where a relay terminal exploits cooperative behavior of other
terminals to economize on cost of cooperation; (2) to avoid
being economized on. Thus, at steady state each terminal
opts out of cooperation, where in terms of the best response
function of each player (Figure 2); if p;(6y) = 0, then player
j’s unique best response is p;(6y) = 0 and vice versa.

We have shown that the degenerate mixed strategy Nash
equilibrium of the game is (pi(6y) = 0,p;(6y) = 0) which
is suboptimal in the Pareto sense. Generally, the suboptimal
solution tells us that while well-behaved terminals are willing
to cooperate for the social benefit, misbehaving terminals
maintain their individual rationality to reap the cooperation
benefits at no cost, which leads to a social-dilemma. In
other words, while cooperation is a socially efficient strategy,
individually rational terminals reason that they can do
better by deviating from cooperation. Cooperation in social-
dilemma is characterized by a lack of trust among the players
since each terminal is uncertain about the intention of other
terminals in the cooperative network. In other words, the
attainable Pareto efficient cooperation requires terminals
to trust their partners and also to be trustworthy [6].
That is, by putting trust on their partners, terminals make
themselves vulnerable by cooperating; by being trustworthy
terminals become socially rational and avoid exploiting the
vulnerability of the other terminals.

Next we examine evolution of selfish behavior in mul-
tiuser cooperative networks. Particularly, we are interested in
how the presence of a group of terminals that jointly deviate
from cooperation affects cooperative communications. Since
the strategies dictated by Nash equilibrium are not stable if
a group of terminals jointly deviate to attain better utility,
we use evolutionary game theory approaches to examine
multilateral deviation by a group of misbehaving terminals.
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3.2. Evolution of Selfish Behavior. We consider a cooperative
diversity system comprised of a population of terminals that
interact randomly to attain cooperative diversity gain. We
assume that at any given time a terminal can interact only
with utmost one partner in the population. Due to mobility,
we assume that every terminal i interacts at least once with
every other terminal j,i# j.

Suppose that initially the population conforms to coop-
eration. Now assume that a small group of selfish terminals
(mutants) enter the cooperative diversity system. The ques-
tion we would like to answer is if the mutants can successtully
invade the cooperative diversity system.

Let ncdenote the initial number of cooperators and
nydenote the number of mutants, note ny; < nc. The
rationale behind the presence of very few mutants is to show
vulnerability of cooperative diversity to misbehavior (see
Figure 3). We denote by pc and py the fraction of cooperat-
ing and misbehaving terminals, respectively. In other words,
nc terminals cooperate with probability pc while the rest of
the terminals deviate from cooperation with probability py;.
We assume that the population of cooperators and mutants
play pure strategy. Although cooperators and mutants adopt
pure strategy, the entire population plays mixed strategy. The
mixed strategy probability vector of the population is

P=[pc pul. )

The utility matrix of the game is defined in (1).

We examine the interaction within the population within
evolutionary game theory framework to characterize dynam-
ics of the spread of misbehavior in multiuser cooperative
diversity. Evolutionary game theory deals with constantly
interacting players that adapt their behavior by observing
their utilities. The evolution of strategies into higher util-
ity yielding strategies is characterized by using replicator
dynamics [7]. Replicator dynamics predicts the rate at
which strategies that yield higher utilities spread through
the network. Thus, for multiterminal cooperative diversity
system with utility matrix U and mixed strategyP that varies
continuously with time, the evolution of cooperation and
misbehavior is given by the replication equation:

pc = pc|(UP), —PTUP],
(5)
pi = pu[ (UP), - PTUP],

where x denotes the derivative, (UP), and (UP), are expected
utilities of cooperators and mutants, respectively:

(UP)I = pcPct PMPnc — Ce» (63)

(UP)Z = pcpct+ PMmPnc- (6b)

The first term on the right-hand side in (6a) is utility derived
from cooperator-cooperator cooperation while the second
term on the right-hand side in (6a) is utility derived from
cooperator-mutant cooperation; the third term is the cost
incurred by cooperators. Similarly, the first term on the right
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FiGure 3: Evolution of misbehavior in cooperative diversity in the
absence of a mechanism to mitigate effects of deviation from the
rules of cooperation.

hand side in (6b) is utility derived from mutant-cooperator
cooperation while the second term is from mutant-mutant
cooperation which actually results in noncooperation. The
average utility of the population is

PTUP = pC(Pc - Cc) + PMPnc- (7)

It is evident that cooperators derive utility that is
strictly less than the average utility of the population, that is,
(UP); < PTUP. On the other hand, mutants reap utility that
is well above the average, that is, (UP), > PTUP. Dynamics of
the game dictates that nodes observe their utilities and adapt
to strategies that provide higher utilities. In other words, low-
utility cooperators will start imitating strategy of mutants
(their misbehaving partners) and forgo the cooperation cost
in an attempt to achieve a higher utility. That is, low-utility
cooperators will learn that they can do better at the expense
of other nodes. Due to the absence of techniques to deter-
misbehavior, the number of misbehaving nodes (mutants)
increases monotonically while the number of cooperators
grows at a negative rate. This indicates that the mutants
successfully invade a relatively larger population of well-
behaved cooperators. A decrease in number of cooperators
indicates a reduction in the number of nodes that selfish
nodes will cheat on. The population will reach a steady state
where there is no cooperator left to exploit. The network
evolves to a noncooperative state where each node opts out
of cooperation as shown in Figure 4. Thus, noncooperation
is an evolutionary stable strategy (ESS) which means that
the presence of a few misbehaving nodes can drive away
cooperators from the Pareto optimal cooperative strategy.
ESS is robust against coalition of cooperators that attempt
to shift the equilibrium point toward cooperation. That is,
a small number of cooperators cannot invade a population
of misbehaving nodes. Thus, cooperation is an evolutionary
unstable strategy. Hence, we have shown that the presence
of misbehaving nodes impedes evolution of socially efficient
and stable cooperation.

Hence, without establishing a mechanism to detect and
mitigate effects of misbehavior, cooperative diversity will not
evolve into a stable system in which users interact in a socially
efficient manner to attain a Pareto efficient equilibrium. The
game theoretic analysis presented in this section assumes
a static game model where the order in which terminals

pc/pm

0 5 10 15 20 25 30 35 40
Time, t

— Proportion of cooperating terminals
- -~ Proportion of misbehaving terminals

FiGURE 4: Evolution of misbehavior in cooperative diversity in the
absence of a mechanism to mitigate effects of deviation from the
rules of cooperation.

make decisions has not been taken into account. Indeed,
the order of play has no significance in the outcome of the
analysis since the goal has been to give insight into effects
of selfish behavior in existing cooperative schemes. While
the static game model proves useful in the analysis, due to
its simplicity it may not capture the underlying dynamics of
cooperative schemes. Even though evolutionary game theory
enables us to analyze dynamics of interaction of a population
of nodes, it does not provide a framework to capture
the complex structure of cooperative interactions. In the
next section, we characterize cooperative communications
within the dynamic Bayesian game framework which would
enable us to develop mechanisms that ensure evolution of
stable cooperation. The Bayesian dynamic game model fully
captures relevant details of cooperative interactions between
source and relay nodes. First we present background material
on dynamic games.

4. Dynamic Games: Background

Dynamic games model a decision-making problem where
the order of play and information available to each player are
very significant to understanding the decision of each player
[8, 9]. While order of play characterizes sequential interac-
tions, information available to each player describes what
each player knows when making decisions. For instance,
cooperative interactions occur sequentially, that is, source
terminals always transmit first and then relay terminals
decide to either forward or drop the transmission. A dynamic
game is represented in extensive-form [10].

In extensive form, a game is represented in a tree structure
which describes the sequential interactions and evolution of
the game. The root of the tree where the game begins is the
initial decision node and is denoted by . A noninitial nodeD



FIGURE 5: Extensive form representation of a cooperative network.

that has branches leading to and away from it is a decision
node which may indicate end of a stage game and represent
the sequence relation of the decision of the players [11]. A
decision node with no outgoing branches is referred to as a
terminal node and it is where the game ends.

A dynamic game is a multistage game, where a stage
game is represented by one level on the tree. In the temporal
domain, stages of the game are defined by time periods where
the kth stage is denoted by tx [12]. A dynamic game with
finite number of stages is referred to as a finite-horizon game
where t; € {0,1,...,K}; otherwise, it is an infinite horizon
game, that is, fx € {0,1,...}.

4.1. Information Sets. The edges of the tree represent actions
available at decision nodes that would lead to other decision
nodes. The sequence of actions defines the path that connects
decision nodes to each other (within a stage) or decision nodes
to terminal nodes. The path for each stage game f; identifies
history h(t;) of play during time period t,. Players may have
uncertainty about history of the game which is referred to
as a game of imperfect information. That is, when it is its
turn to move, a player has no knowledge about the node
the game has reached. This uncertainty is captured in a set
of decision nodes the game can possibly reach. We refer to
this set of decision nodes as information set and is denoted as
h. Information sets identify information possessed by players
[9]. For instance, in a game of perfect information where
players have exact knowledge about history of the game, the
information set is a singleton set, that is, for all h € H, |h| =
1, where H is information set of the game. On the other
hand, in a game of incomplete information where some
players have private information, the information set is a
nonsingleton set for at least one of the players, thatis, 3h € H,
such that || > 1. An elliptic curve is drawn around a player
to show its uncertainty about which node in the information
set is reached, as shown in Figure 5.

In a game of incomplete information, the action taken by
a player is a function of which decision node in its information
set has been reached. We denote by +(h) the set of actions
available to a player with information set h. The action
taken by the player at stage game f; is denoted by a(tx)
and it is a mapping from h to A(h), that is, a(tx) : h —
A(h). In extensive form games, players may adopt random
strategies at each information set. This is called behavior
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strategy wherein players assign probability measure over
actions available at each information seth. Behavior strategy
is denoted by o(a(ty) | h) where o(a(ty) | h) € A(A(h)),
A(A(h)) probability distribution over +(h). For instance, in
a cooperative network wherein every one obeys the rules of
cooperation o(a(t;) | h) = 1, which is pure strategy. Nature
is usually introduced as a nonstrategic player that randomly
informs players which decision nodeD in h has been reached.
Figure 5 shows cooperative communications as a dynamic
game. The initial node is a source terminal that transmits
to the network. The two decision nodes represent potential
cooperators where behavior of D; is known perfectly as
shown by its singleton information set, whereas £, maintains
private information that is not common knowledge in the
network. Nature N randomly assigns decision nodes for
player D,.

5. Cooperative Diversity as a Dynamic Game
with Incomplete Information

We have shown that cooperation in wireless networks is
characterized by social-dilemmas which ultimately impede
the evolution of a socially efficient cooperation. It is evident
that social-dilemmas are prevalent in commercial wireless
networks where terminals violate rules of cooperation for
selfish reasons. In the presence of heterogeneously behaving
terminals, cooperators exhibit uncertainty about the inten-
tion of their potential partners which makes selection of
a reliable partner challenging. Our goal is to develop a
mechanism that would enable terminals strategically select
reliable partners in the presence of uncertainty. To this end,
we develop a framework in which cooperative communi-
cations is formulated as a dynamic game with incomplete
information. Note that a dynamic game with incomplete
information is a dynamic Bayesian game.

We consider a wireless communications system with
a population of N terminals wherein terminals that are
within transmission ranges of each other form a cooperative
diversity system. We assume that benefits of cooperation and
the cost it incurs are common knowledge. That is, terminals
are willing to expend their own resources to help others
achieve reliable communication with the expectation to
achieve those same benefits when their partners reciprocate.
Terminals are rational in that they behave in a manner to
maximize their individual benefit of cooperation. We assume
that terminals maintain private information pertaining to
their behavior (i.e., to either cooperate or misbehave). Note
that the problem formulation is general in that it is not
tailored toward one particular cooperative diversity protocol.
However, we may present examples based on a specific
protocol for purposes of simplifying discussions.

We formulate cooperative communications as a finite-
horizon discrete-time dynamic game. The game is discrete-
time since each player is assumed to have a finite number
of strategies [8]. Within each stage %, k = 0,1,...,K, a
source terminal and its potential cooperator (relay) interact
repeatedly for a duration of T seconds. The assumption
of multiple cooperative interactions within a stage game
is intuitively valid since cooperative transmissions span
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FiGure 6: Example 1. Extensive form representation of a cooperative
network with perfect information; R}, R, and Ry denote cooperative
relay nodes and S; denotes source node i. Note the absence of Nature
in this network.

multiple time slots. The period T for each stage game
tfr may be defined as the time it takes a cooperatively
transmitted signal to reach its intended destination. We
assume that duration of a stage game T is long enough
to average out effects of channel variation. It is obvious
that a new stage game starts when a source terminal i (i €
{1,2,...,N}) that has data to send begins transmitting to the
network. We characterize next the behavior of every potential
cooperator j and source terminal i within the dynamic
Bayesian game framework. Note that we use the terms relay
and potential cooperator interchangeably. We next model
selfish behavior of relay terminals within a dynamic Bayesian
game framework. We then present a framework in which
source terminals make optimal decisions.

5.1. Modeling Selfish Behavior. We assume each relay ter-
minal j maintains private information which corresponds
to the notion of type in Bayesian games. The set of types
available to relay terminal j constitutes relay terminal’s type
space defined as ®; = {6y = Cooperate,§; = Misbehave}.
Since every terminal j either conforms to cooperation or
deviates from it, ®; is also the global type space of the game.
Following the notation of Bayesian games, type of player j
is denoted by 8; while other players’ type is denoted by 8_;,
where 0,0 ; € ©;. We assume that types associated with
each relay terminal are independent.

Type space of every relay terminal j maps to an action
spaceA; which defines a set of actions a;(#;) available to
player j of typef);. The set of actions 4 ; defines information
seth; of relay terminal j; in other words, h; maps to action
spaceA;(h;), that is, a(tx | hj) : hj — +;(h;). Note that
the change in notation is to show that the action taken by
the relay is a function of the information set. We assume
that type of terminal j and the associated action a(t; | h;)
do not change within a stage game. Indeed, a relay that
obeys rules of cooperation do not change its type at each

stage game. On the other hand, a misbehaving relay may
strategically change its fype at the beginning of each stage
game. In this paper we assume that a misbehaving relay
adopts behavior strategy wherein it randomly changes its
behavior from cooperation to misbehavior at each stage
game. Behavior strategyo; assigns a conditional probability
over +A;, that is, 0; = p(aj(tx | h;j). For completeness, we
define history of the game at the beginning of stage game f;
as Wty = (a(ty),a(tr),...,a(ty_)). It is intuitive to assume
that a relay which violates rules of cooperation may not need
to observe history of the game when it chooses its actions.
The utility function of relay terminal of type); is denoted as
uj(0;,0_;) where 0_; is type of other terminals. Later in this
section we give a formal definition of the utility function.

We present examples to elucidate the game theoretic
framework we just introduced. Let us consider Amplify-and-
Forward (AF) [13] cooperation protocol where a potential
cooperator j amplifies faded and noisy version of signal
received from source terminal i and forwards it to a desti-
nation. Suppose that an amplification factor that depends on
the potential cooperator’s type and dynamics of the channel
is defined as

:B(hi,j,hj) = fa; (tk | hj), (8)

where f is amplification subject to power constraint at the
relay and dynamics of the interuser channel denoted as h;
[13]. On the other hand, a;(# | h;) captures action taken by
relay j when one of the decision nodes in its information set is
reached. We describe below various types0; of relay terminal
j which will give a significant insight into the dynamic game
framework.

(1) First, we consider a cooperative network where every
relay node j obeys the rules of cooperation. This is a network
where nodes cooperate for a common objective, that is, type
of each relay node j is 8; = 0. Consequently, the information
set of each relay j is a singleton set, that is, |h;j| = 1 and
the corresponding action space is #A;(h;) = {1}. Since relay
node j has deterministic behavior, it would play a;(# |
hj) = 1 with probability o;(#x) = 1, that is, it plays pure
strategy (it always forwards). History at the end of stage
game is t, Wi (tx) = (alty) = l,a(ty) = 1,...,a(tx) =
1). The amplification B(hj,hs,g;) is then a function of
channel dynamics and power constraint at the relay, that is,
B(hj, hs,r;) = . The extensive form representation of this
game is straightforward. We would like to point out that
the dynamic game framework can used to design a resource
management for a cooperative network such as this one (see
Figure 6).

(2) In the second example, we consider a cooperative
network where relay nodes violate rule of cooperation in
probabilistic manner. That is, relay node j plays behavior
strategy where it exhibits mixed behaviors of cooperation and
selfishness. This is a network where nodes have uncertainty
about the behavior of other nodes. In other words, relay
node j has private information, that is, type of relay node
jis 8; = 1. The relay has two strategies that it selects
randomly, that is, it decides to either forward or refuse
cooperation which means that it has two decision nodes



a(ty) =0

B(hj, hs;,Rj) = B
$(hj>h5,>Rj) =0

F1GURe 7: Example 2. Extensive form representation of a cooperative
network with imperfect information; R;;, R;, denote the decision
nodes in the relay’s information. Note that the incomplete informa-
tion of the game has been transformed to imperfect information
since we introduce Nature as N which will randomly assigns a
decision node to the relay. S; denotes source node i.

in its information seth;, that is |h;j| = 2. Since the relay
adopts behavior strategy, the action space is captured in
random variable 4 ;(h;) where 4 ;(h;) = {0, 1}. The adopted
behavior strategy is defined as 0(tx) = p(a;(tx | h;) where
plaj(te | hj) € A(Aj(hj). A(Aj(h;) is probability measure
over set of actions #;(h;). Randomly behaving relay either
cooperates (i.e., aj(tx | h;) = 1) with probability o; or
it deviates from cooperation (i.e., a;(tx | h;j) = 0) while
with probability 1 — 0;j(#). Consequently, the amplification
is a function of relay behavior and dynamics of the channel,
that is, !B(hj,hs,.,RJ) € {0,p}. Note that in the special case
where a relay always refuses to forward, that is, ®; = (6,),
|hj| = 1,and a;(t | hj) € A; = {0} deterministically, thus
B(hj, hs,r;) = 0 (see Figure 7).

(3) The third example is a continuation of the second
example. Here we consider an intelligent and selfish relay j of
typef; = 1. The relay is intelligent in the sense that it always
forwards for its partner but at a randomly selected reduced
power level. Obviously the relay has selfish intentions, that
is, minimizing its cost-to-benefit ratio. We assume that selfish
relay R; random selects a normalized power level I from a
finite set of power levels L, where 0 < [ < 1. Thus, information
set of the relay is defined by the set of normalized power
levels L, that is, |hj| = [L|. The action space of the selfish
relay j is the set of power levels, that is, 4 ;(h;) = (0,...,1).
The behavior strategy is 0j(tx) = p(aj(t | hj)) where a;(t |
hj) =1, I € L. The amplification B(h;, hs, ;) is obviously
determined by behavior of the relay and channel dynamics,
where B(hj, hs,r;) = (0,...,). Note that a terminal which
exhibits such ambiguous behavior may exploit dynamics of
the channel to evade detection (see Figure 8).

The extensive form representation of Example 1 is
straight forward since all information sets are singleton sets.
On the other hand, for Examples 2 and 3 NatureN will
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Bi(hj, hs;,Rj) = (0,..., )

FiGure 8: Example 3. Extensive form representation of a cooperative
game with imperfect information. Rjy,...,R;; denote decision
nodes of the relay, that is, the different power levels that Nature A
will randomly selects for R;. S; denotes source node i.

assign decision nodes to relay j. The probability with which
decision nodes are assigned is determined by the behavior
strategy of the relay. The role of Nature can be justified within
the context of behavior strategy. Since relay node j plays
behavior strategy, it requires a device that will randomly select
a strategy from the possible set of strategies. Nature will play
the role of this randomizing device and assign strategies at
each stage of the game. We assume the amount of power
relay expends for randomization is negligible compared to
cost it would have incurred by cooperating. Although it is
customary to put Nature at the beginning of a game, Kreps
and Wilson [9] noted that moves of Nature may also be put
anywhere on the game tree.

5.2. Behavior of Source Terminals. While introducing the
model for selfish behavior in the previous subsection, we
said that each relay maintains private information pertaining
to its behavior. The private information and the sequential
nature of cooperative interactions gives relay terminals
a dominant position in deciding to either cooperate or
misbehave. In other words, source terminals are vulnerable
to defection by their partners. In this subsection, we present a
framework for designing a technique where source terminals
make optimal decisions in the presence of uncertainty.

It is evident that a stage game begins when a source
terminal starts transmitting to the network. In the language
of game theory, this means a source terminal makes the
decision to transmit whenever it has information to transmit.
In the extensive-form representation, a source terminal has
only a single decision node which characterizes the decision
to transmit. Thus, any source terminal i has an information
set that is a singleton. In other words, its decision node maps
to an action space that is also a singleton, that is, A; = {1},
which implies that if a source terminal has data to send, it
will transmit to the network with probability 1. Note a(# |
hi) = 1 captures the decision to transmit. It follows from
the singleton information set that the type space of source
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terminal 7 is also a singleton set. In the subsequent paragraphs
we describe a framework for selecting reliable partners. We
introduce the concept of belief which characterizes each
source terminal’s level of uncertainty about the behavior of
its potential partners.

Definition 1. Belief of source terminal i ] (t;) is a subjective
probability measure over the possible types of relay terminal
j given 6; and history h(t;) at the beginning of stage game
1k, that is,

ul (t) = p (0 165, 1 (1)) 9)

We would like to point out that by maintaining belief,
source terminals deviate from the assumption (as in existing
cooperative protocols) that their partners are always willing
to cooperate. Indeed, belief is a security parameter that
characterizes the level of trust each terminal maintains on its
potential partners. We assume that beliefs are independent
across the network which is intuitively valid since beliefs
are subjective measures of terminal behavior. We assume
that every source terminal i maintains a strictly positive
belief, that is, u!(tx) > 0. This is intuitively valid in
commercial wireless networks that are characterized by
dynamic user population where it is difficult to have definite
prior knowledge about the behavior of every user. We assume
that the belief structure of the dynamic game is common
knowledge which means that relay terminals (which are also
potentially source terminals) are aware that cooperation is
belief based. We argue that individual rationality together
with knowledge of game structure motivates relays to adopt
behavior strategy.

The obvious questions are (1) since /4{ (tx) is conditioned
on how relay j behaves in the previous stage t—1 (h'(tx)),
how would source i learn about the history since it does
not perfectly observe what Nature assigned to the relay
(game of imperfect information)?, (2) how is belief at the

first stage of the game y!(ty) initialized? Before addressing
the questions, we would like to point out that each source
terminal i determines behavior of its partners using any
of the misbehavior detection techniques proposed in [14—
17]. Although actions of relay terminal j are not perfectly
observable, the effects of relay’s actions are captured by
the detection techniques which will provide a probabilistic
measure of the history. This probability measure will be used
to update belief of source terminal i at the end of stage
game t;. Before we discuss how prior beliefs are assigned,
we introduce belief system that describes the belief updating
procedure.

5.3. Belief System. The belief system defines belief updating
procedure for each source terminal i using Bayes’ rule at the
end of each stage game t;. The posterior belief at the end of
stage game f is

p(hi(tk), 0; | 9]‘)1’(9])
S cop ((10,618,)p(3))

where p(hi(t), 6; | 8;) is probability measure on the history
of the game at the end of stage game #, which is obtained

ul(ty) = , (10)

from a detection technique; p(8;) is prior belief at the
beginning of stage game f. At the end of each stage game,
source terminals obtain new information about behavior of
their partners. The belief at the end of stage game f; will
be used as prior belief for the next stage game t4;. The
belief at the end of the last stage of the game tx reveals
reputation of relay terminal j which is a measure of the relay’s
trustworthiness.

It is important to note that detection techniques are
designed to tolerate certain levels of false alarm and miss
detection. While false alarm events result in degradation
of belief probability, miss detection events wrongly elevate
belief probability of misbehaving terminals. Thus, it is
obvious that accuracy of the belief system is determined by
the robustness of the detection technique implemented.

5.3.1. Initializing Beliefs. At stage game to, source terminal i
may assign prior belief 4] (ty) in anyone of the following ways.

(1) Nondistributed. If source terminal i has no prior inter-
action with relay terminal j, it will assign equal prior
probabilities for all possible types of relay terminal j, that is,

p(©;=6) =

(n
p(6;=61) -

.“zj(to) =

N =N~

(2) Direct Reciprocity. This is also a nondistributed approach
in which source terminals initialize their beliefs based on
what they know about the relay. Thus, if source terminal
i and relay terminal j have prior history of cooperation,
source terminal i will condition future cooperation based on
past history. That is, the prior belief for the new cooperative
interaction will be set to the reputation of the relay in the
previous cooperation, that is, ‘u{(to) = p(0; | 0;h(tx)),
where h(tg,) history at the last stage game of the previous
cooperative interaction.

(3) Distributed (Indirect Reciprocity). Indirect reciprocity is
a mechanism where terminals obtain information on their
potential partners from other terminals in the network. It
is a distributed mechanism which is enabled by exchanging
of reputation information. At the end of each cooperative
interaction, source terminals reveal reputation information
of their partners to the rest of the network. By exchanging
reputation information, each terminal gains a global view of
the network. Note that indirect reciprocity is a robust mech-
anism which ensures stable and socially efficient cooperation
[18] if adopted by all nodes.

It is important to note that detection techniques are
designed to tolerate a certain level of false alarm and miss
detection, which means that accuracy of the belief system is
determined by the performance of the detection technique
implemented.

5.4. Partner Selection. Partner selection is the mechanism by
which source terminals select reliable relays based on their
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past history. We assume that each source terminal i stores
belief information on each potential relay in a trust vector,

P‘i:[#}’---)#{], Zy§»=1, jEN\I, (12)
j

where y; is normalized trust vector. It is clear that relay
terminals with relatively higher normalized belief will be
more likely selected as partners. It is important to note that
a selected potential relay may refuse cooperation based on
its belief about source terminal i. Source terminal i may
share its trust vector with other terminals in the network. For
instance, terminal 7 may inform terminal / about behavior of
terminal k. Terminal / then forms a weighted belief about k
based on its belief about i, that is,

uk = ykul,  ub: I's belief about i. (13)
5.5. Utility Function. The utility function of the game is a
measure of the net cooperation gain of each individual node.
It is defined in terms the attainable benefit of cooperation
and the cost incurred. The attainable benefit of cooperation
is measured by the average frame success rate (FSR)

FSR = [1 — BER]Y, (14)

where BER is average bit error. For instance, for cooperative
AF BER is given by

BER = [[[ () (ea + F () )

X p(Ysd) P(Ysr) P(yra) Aysa dysr dyras

(15)

p is modulation parameter, Q(x) = (1/+/27) [ e #/2dz.

The cost of cooperation &g which is incurred by a
relay terminal R is sum of (1) energy expended to establish
cooperative partnership; (2) energy expended to forward
information bearing signals to help a partner. The total
energy a relay terminal expends for cooperation,

gR = 8R,data + gR,handshake) (16)

where Eg dara energy expended to forward data and &g handshake
energy expended to establish cooperative partnership. The
source terminal also expends &g handshake fOr protocol hand-
shake. Total energy expended for cooperative transmission
of information bearing signal is given by & = Erdaa +
&5 data, Where g dara is energy expended by source terminal
assuming the presence of direct transmission from source to
destination. Note 8R,handshake < (SS,dataa 8R,data)-

In [19] utility function of a wireless network is defined
as a measure of the number of information bits received per
joule of total energy expended,

u; = @ bits/Joule, (17)

where T;(§) = W x ESR is throughput of user u;,
W is the bandwidth, and &€ = & + &handshake 1S total
cost of cooperation. Note that Ehandshake = GRhandshake T
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Figure 9: Utility as a function of energy required for cooperative
transmission of information bearing signal.

&s handshake contributes zero utility since no information bits
are transmitted during the protocol handshake. Thus, (17)
defines a well-behaved utility function where & — 0,u; —
0, and & — oo,u; — 0. We verify behavior of the utility
function as shown in Figure 9. Note that the utility function
is inverse of the cost-to-benefit ratio (see Figures 10 and 11).

5.6. Formal Definition of the Game. Cooperative com-
munications is a 6-tuple dynamic Bayesian game § :
(N,0,h, A,p,u), where N is the number of nodes in the
cooperative network. ® is the type space of relay nodes, h
is the information set of nodes, # is action space profile of
the nodes. g is system of beliefs of source nodes, and u is a
vector of utility functions.

5.7. Perfect Bayesian Equilibrium (PBE). PBE is a belief-
based solution concept for dynamic games of incomplete
information [9]. Unlike static games where equilibrium
points are comprised of strategies, PBE incorporates belief
in the equilibrium definition [20]. In [20], the author noted
the importance of beliefs in the equilibrium definition. Thus,
PBE defines a solution concept where players make optimal
decisions at each stage of the game given their beliefs. We
show that the proposed dynamic Bayesian game model for
cooperative communications satisfies the requirements for
the existence of PBE [9],

(1) Requirement 1: at each information set the player with
the move has some beliefs about which node in its
information set has been reached.

(2) Requirement 2: given its belief a player must be
sequentially rational, that is, whenever it is its turn
to move, the player must choose an optimal strategy
from that point on.

(3) Requirement 3: beliefs are determined using Bayes’
rule.
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Ficure 10: Utility of source terminal i as a function of total energy
expended for cooperative transmission of information bearing
signal. It can be observed that utility of the source terminal degrades
in the presence of a selfish terminal.
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Figure 11: Utility relay terminal j as a function of total energy
expended for cooperative transmission of information bearing
signal. It is evident that a selfish terminal can exploit the cooperative
behavior of its partners to maximize its utility.

We intentionally left out a fourth requirement which deals
with unreationalizable strategies which have no practical
meaning in our setting since the action space of the game is
concisely defined.

Proof. Requirement 1 is trivially satisfied since the informa-
tion sets of source nodes are singleton sets which indicate
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that whenever a source node has information to send, it
transmits to the network. Thus, we can assign probability
one to each decision node in the singleton set at each stage
game tx. Requirement 2 is met by the problem this thesis set
out to solve, that is, we would like to design a mechanism
where source nodes make optimal decisions given their
belief. Requirement 3 is satisfied by the belief system in
(10). Thus, the proposed dynamic game model satisfies the
conditions for the existence of PBE and that it admits PBE. It
also admits sequential equilibrium since for every extensive
form game, there exists at least one sequential equilibrium
[9, Proposition 1]. We argue based on evolutionary game
theoretic arguments that if (1) a significant fraction of the
nodes adopts sequential rationality (obey Requirement 2) and
(2) they share reputation information with other nodes, an
evolutionary stable cooperation is attainable. O

6. Conclusion

In this paper we develop a dynamic Bayesian game theoretic
framework for cooperative diversity. We showed that the
proposed game theoretic framework captures vital aspects of
cooperative communications. We showed that the dynamic
game framework admits perfect Bayesian equilibrium. The
framework presented in this paper would provide a foun-
dation to develop a reputation-based cooperative diversity
system where source terminals exchange belief information
to confine cooperation to terminals whose behavior is known
a priori.
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